首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
The 70 kDa heat shock proteins (Hsp70) are a family of molecular chaperones involved in protein folding, aggregate prevention, and protein disaggregation. They consist of the substrate‐binding domain (SBD) that binds client substrates, and the nucleotide‐binding domain (NBD), whose cycles of nucleotide hydrolysis and exchange underpin the activity of the chaperone. To characterize the structure–function relationships that link the binding state of the NBD to its conformational behavior, we analyzed the dynamics of the NBD of the Hsp70 chaperone from Bos taurus (PDB 3C7N:B) by all‐atom canonical molecular dynamics simulations. It was found that essential motions within the NBD fall into three major classes: the mutual class, reflecting tendencies common to all binding states, and the ADP‐ and ATP‐unique classes, which reflect conformational trends that are unique to either the ADP‐ or ATP‐bound states, respectively. “Mutual” class motions generally describe “in‐plane” and/or “out‐of‐plane” (scissor‐like) rotation of the subdomains within the NBD. This result is consistent with experimental nuclear magnetic resonance data on the NBD. The “unique” class motions target specific regions on the NBD, usually surface loops or sites involved in nucleotide binding and are, therefore, expected to be involved in allostery and signal transmission. For all classes, and especially for those of the “unique” type, regions of enhanced mobility can be identified; these are termed “hot spots,” and their locations generally parallel those found by NMR spectroscopy. The presence of magnesium and potassium cations in the nucleotide‐binding pocket was also found to influence the dynamics of the NBD significantly. Proteins 2015; 83:282–299. © 2014 Wiley Periodicals, Inc.  相似文献   

2.
    
yDNA is a base‐modified nucleic acid duplex containing size‐expanded nucleobases. Base‐modified nucleic acids could expand the genetic alphabet and thereby enhance the functional potential of DNA. Unrestrained 100 ns MD simulations were performed in explicit solvent on the yDNA NMR sequence [5′(yA T yA yA T yA T T yA T)2] and two modeled yDNA duplexes, [5′(yC yC G yC yC G G yC G G)2] and [(yT5′ G yT A yC yG C yA yG T3′)?(yA5′ C T C yG C G yT A yC A3′)]. The force field parameters for the yDNA bases were derived in consistent with the well‐established AMBER force field. Our results show that DNA backbone can withstand the stretched size of the bases retaining the Watson‐Crick base pairing in the duplexes. The duplexes retained their double helical structure throughout the simulations accommodating the strain due to expanded bases in the backbone torsion angles, sugar pucker and helical parameters. The effect of the benzo‐expansion is clearly reflected in the extended C1′‐C1′ distances and enlarged groove widths. The size expanded base modification leads to reduction in base pair twist resulting in larger overlapping area between the stacked bases, enhancing inter and intra strand stacking interactions in yDNA in comparison with BDNA. This geometry could favour enhanced interactions with the groove binders and DNA binding proteins., 2016. © 2015 Wiley Periodicals, Inc. Biopolymers 105: 55–64, 2016  相似文献   

3.
4.
Muscle contraction is driven by a cycle of conformational changes in the myosin II head. After myosin binds ATP and releases from the actin fibril, myosin prepares for the next power stroke by rotating back the converter domain that carries the lever arm by 60 degrees . This recovery stroke is coupled to the activation of myosin ATPase by a mechanism that is essential for an efficient motor cycle. The mechanics of this coupling have been proposed to occur via two distinct and successive motions of the two helices that hold the converter domain: in a first phase a seesaw motion of the relay helix, followed by a piston-like motion of the SH1 helix in a second phase. To test this model, we have determined the principal motions of these structural elements during equilibrium molecular dynamics simulations of the crystallographic end states of the recovery-stroke by using principal component analysis. This reveals that the only principal motions of these two helices that make a large-amplitude contribution towards the conformational change of the recovery stroke are indeed the predicted seesaw and piston motions. Moreover, the results demonstrate that the seesaw motion of the relay helix dominates in the dynamics of the pre-recovery stroke structure, but not in the dynamics of the post-recovery stroke structure, and vice versa for the piston motion of the SH1 helix. This is consistent with the order of the proposed two-phase model for the coupling mechanism of the recovery stroke. Molecular movies of these principal motions are available at http://www.iwr.uni-heidelberg.de/groups/biocomp/fischer.  相似文献   

5.
A molecular dynamics study of pig heart citrate synthase is presented that aims to directly address the question of whether, for this enzyme, the ligand-induced closed domain conformation is accessible to the open unliganded enzyme. The approach utilises the technique of essential dynamics sampling, which is used in two modes. In exploring mode, the enzyme is encouraged to explore domain conformations it might not normally sample in free molecular dynamics simulation. In targeting mode, the enzyme is encouraged to adopt the domain conformation of a target structure. Using both modes extensively, it has been found that when the enzyme is prepared from a crystallographic open-domain structure and is in the unliganded state, it is unable to adopt the crystallographic closed-domain conformation of the liganded enzyme. Likewise, when the enzyme is prepared from the crystallographic closed liganded conformation with the ligands removed, it is unable to adopt the crystallographic open domain conformation. Structural investigations point to a common structural difference that is the source of this energy barrier; namely, the shift of alpha-helix 328-341 along its own axis relative to the large domain. Without this shift, the domains are unable to close or open fully. The charged substrate, oxaloacetate, binds near the base of this helix in the large domain and the interaction of Arg329 at the base of the helix with oxaloacetate is one that is consistent with the shift of this helix in going from the crystallographic open to closed structure. Therefore, the results suggest that without the substrate the enzyme remains in a partially open conformation ready to receive the substrate. In this way, the efficiency of the enzyme should be increased over one that is closed part of the time, with its binding site inaccessible to the substrate.  相似文献   

6.
    
Biomolecular simulations at millisecond and longer time‐scales can provide vital insights into functional mechanisms. Because post‐simulation analyses of such large trajectory datasets can be a limiting factor in obtaining biological insights, there is an emerging need to identify key dynamical events and relating these events to the biological function online, that is, as simulations are progressing. Recently, we have introduced a novel computational technique, quasi‐anharmonic analysis (QAA) (Ramanathan et al., PLoS One 2011;6:e15827), for partitioning the conformational landscape into a hierarchy of functionally relevant sub‐states. The unique capabilities of QAA are enabled by exploiting anharmonicity in the form of fourth‐order statistics for characterizing atomic fluctuations. In this article, we extend QAA for analyzing long time‐scale simulations online. In particular, we present HOST4MD—a higher‐order statistical toolbox for molecular dynamics simulations, which (1) identifies key dynamical events as simulations are in progress, (2) explores potential sub‐states, and (3) identifies conformational transitions that enable the protein to access those sub‐states. We demonstrate HOST4MD on microsecond timescale simulations of the enzyme adenylate kinase in its apo state. HOST4MD identifies several conformational events in these simulations, revealing how the intrinsic coupling between the three subdomains (LID, CORE, and NMP) changes during the simulations. Further, it also identifies an inherent asymmetry in the opening/closing of the two binding sites. We anticipate that HOST4MD will provide a powerful and extensible framework for detecting biophysically relevant conformational coordinates from long time‐scale simulations. Proteins 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
    
B‐cell lymphoma (Bcl‐2) is commonly associated with the progression and preservation of cancer and certain lymphomas; therefore, it is considered as a biological target against cancer. Nevertheless, evidence of all its structural binding sites has been hidden because of the lack of a complete Bcl‐2 model, given the presence of a flexible loop domain (FLD), which is responsible for its complex behavior. FLD region has been implicated in phosphorylation, homotrimerization, and heterodimerization associated with Bcl‐2 antiapoptotic function. In this contribution, homology modeling, molecular dynamics (MD) simulations in the microsecond (µs) time‐scale and docking calculations were combined to explore the conformational complexity of unphosphorylated/phosphorylated monomeric and trimeric Bcl‐2 systems. Conformational ensembles generated through MD simulations allowed for identifying the most populated unphosphorylated/phosphorylated monomeric conformations, which were used as starting models to obtain trimeric complexes through protein–protein docking calculations, also submitted to µs MD simulations. Principal component analysis showed that FLD represents the main contributor to total Bcl‐2 mobility, and is affected by phosphorylation and oligomerization. Subsequently, based on the most representative unphosphorylated/phosphorylated monomeric and trimeric Bcl‐2 conformations, docking studies were initiated to identify the ligand binding site of several known Bcl‐2 inhibitors to explain their influence in homo‐complex formation and phosphorylation. Docking studies showed that the different conformational states experienced by FLD, such as phosphorylation and oligomerization, play an essential role in the ability to make homo and hetero‐complexes. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 393–413, 2016.  相似文献   

8.
    
Zhang Z  Wriggers W 《Proteins》2006,64(2):391-403
Multivariate statistical methods are widely used to extract functional collective motions from macromolecular molecular dynamics (MD) simulations. In principal component analysis (PCA), a covariance matrix of positional fluctuations is diagonalized to obtain orthogonal eigenvectors and corresponding eigenvalues. The first few eigenvectors usually correspond to collective modes that approximate the functional motions in the protein. However, PCA representations are globally coherent by definition and, for a large biomolecular system, do not converge on the time scales accessible to MD. Also, the forced orthogonalization of modes leads to complex dependencies that are not necessarily consistent with the symmetry of biological macromolecules and assemblies. Here, we describe for the first time the application of local feature analysis (LFA) to construct a topographic representation of functional dynamics in terms of local features. The LFA representations are low dimensional, and like PCA provide a reduced basis set for collective motions, but they are sparsely distributed and spatially localized. This yields a more reliable assignment of essential dynamics modes across different MD time windows. Also, the intrinsic dynamics of local domains is more extensively sampled than that of globally coherent PCA modes.  相似文献   

9.
Abstract

The behaviour of the popular TIP3P water model has been investigated using both molecular dynamics and Monte Carlo simulation procedures. Long-range electrostatic interactions were included through a reaction-field treatment, and the nonbonded interactions were either truncated at the cutoff distance, or smoothly scaled to zero using a switching function. The thermodynamic observables, and in particular the dipole-dipole correlation functions, are found to differ between the two simulation techniques if a rigid nonbonded cutoff is applied. However, use of a switching function gives exact agreement between the simulation methodologies. This difference is ascribed to the effect of energy pumping in the molecular dynamics simulations, and suggests that dielectric constants calculated using this simulation method with the fluctuation procedure in conjunction with a reaction field should be reappraised. Thus the Monte Carlo simulation procedure offers a number of intrinsic advantages over molecular dynamics for the calculation of dielectric constants with a reaction field. The most precise value for the dielectric constant of TIP3P is calculated to be 102 ± 3 at 298 K.  相似文献   

10.
    
Snow C  Qi G  Hayward S 《Proteins》2007,67(2):325-337
Essential dynamics sampling simulations of the domain conformations of unliganded Escherichia coli adenylate kinase have been performed to determine whether the ligand-induced closed-domain conformation is accessible to the open unliganded enzyme. Adenylate kinase is a three- domain protein with a central CORE domain and twoflanking domains, the LID and the NMPbind domains. The sampling simulations were applied to the CORE and NMPbind domain pair and the CORE and LID domain pair separately. One aim is to compare the results to those of a similar study on the enzyme citrate synthase to determine whether a similar domain-locking mechanism operates in adenylate kinase. Although for adenylate kinase the simulations suggest that the closed-domain conformation of the unliganded enzyme is at a slightly higher free energy than the open for both domain pairs, the results are radically different to those found for citrate synthase. In adenylate kinase the targeted domain conformations could always be achieved, whereas this was not the case in citrate synthase due to an apparent free-energy barrier between the open and closed conformations. Adenylate kinase has been classified as a protein that undergoes closure through a hinge mechanism, whereas citrate synthase has been assigned to the shear mechanism. This was quantified here in terms of the change in the number of interdomain contacting atoms upon closure which showed a considerable increase in adenylate kinase. For citrate synthase this number remained largely the same, suggesting that the domain faces slide over each other during closure. This suggests that shear and hinge mechanisms of domain closure may relate to the existence or absence of an appreciable barrier to closure for the unliganded protein, as the latter can hinge comparatively freely, whereas the former must follow a more constrained path. In general though it appears a bias toward keeping the unliganded enzyme in the open-domain conformation may be a common feature of domain enzymes.  相似文献   

11.
    
Caves LS  Verma CS 《Proteins》2002,47(1):25-30
Central to the study of a complex dynamical system is knowledge of its phase space behavior. Experimentally, it is rarely possible to record a system's (multidimensional) phase space variables. Rather, the system is observed via one (or few) scalar-valued signal(s) of emission or response. In dynamical systems analysis, the multidimensional phase space of a system can be reconstructed by manipulation of a one-dimensional signal. The trick is in the construction of a (higher-dimensional) space through the use of a time lag (or delay) on the signal time series. The trajectory in this embedding space can then be examined using phase portraits generated in selected subspaces. By contrast, in computer simulation, one has an embarrassment of riches: direct access to the complete multidimensional phase space variables, at arbitrary time resolution and precision. Here, the problem is one of reducing the dimensionality to make analysis tractable. This can be achieved through linear or nonlinear projection of the trajectory into subspaces containing high information content. This study considers trajectories of the small protein crambin from molecular dynamics simulations. The phase space behavior is examined using principal component analysis on the Cartesian coordinate covariance matrix of 138 dimensions. In addition, the phase space is reconstructed from a one dimensional signal, representing the radius of gyration of the structure along the trajectory. Comparison of low-dimensional phase portraits obtained from the two methods shows that the complete phase space distribution is well represented by the reconstruction. The study suggests that it may be possible to develop a deeper connection between the experimental and simulated dynamics of biomolecules via phase space reconstruction using data emerging from recent advances in single-molecule time-resolved biophysical techniques.  相似文献   

12.
13.
    
The vascular endothelial growth factor (VEGF) seems to be the most important regulator of physiological and pathological angiogenesis, being, for this reason, a favorite target for therapies against angiogenesis-related diseases. VEGF is a homodimer in which the monomers are formed by beta-strands interconnected on the poles by three loops. A recent work showed that an intimate relationship between loops-1 and -3 is required for high affinity binding to the receptors (Kiba et al., J Biol Chem 2003;278:13453-13461). In this work, we report the results of a 10-ns molecular dynamics simulation of VEGF. We analyzed the dynamical behavior of the protein (using a dynamical cross-correlation map) and found that it is governed by a high degree of correlation between the motions of the loops. We also performed a principal component analysis and found an overall motion in which the opposite poles are projected against each other, just like the movement of the wings of a butterfly. From the biological point of view, it is likely that this motion would facilitate receptor binding since VEGF must enter a restricted cavity formed by the two subunits of the receptor.  相似文献   

14.
    
Seibold SA  Cukier RI 《Proteins》2007,69(3):551-565
HIV proteases can develop resistance to therapeutic drugs by mutating specific residues, but still maintain activity with their natural substrates. To gain insight into why mutations confer such resistance, long ( approximately 70 ns) Molecular Dynamics simulations in explicit solvent were performed on a multiple drug resistant (MDR) mutant (with Asn25 in the crystal structure mutated in silico back to the catalytically active Asp25) and a wild type (WT) protease. HIV proteases are homodimers, with characteristic flap tips whose conformations and dynamics are known to be important influences of ligand binding to the aspartates that form the catalytic center. The WT protease undergoes a transition between 25 and 35 ns that is absent in the MDR protease. The origin of this distinction is investigated using principal component analysis, and is related to differences in motion mainly in the flap region of each monomer. Trajectory analysis suggests that the WT transition arises from a concerted motion of the flap tip distances to their catalytic aspartate residues, and the distance between the two flap tips. These distances form a triangle that in the WT expands the active site from an initial (semi-open) form to an open form, in a correlated manner. In contrast, the MDR protease remains in a more closed configuration, with uncorrelated fluctuations in the distances defining the triangle. This contrasting behavior suggests that the MDR mutant achieves its resistance to drugs by making its active site less accessible to inhibitors. The migration of water to the active site aspartates is monitored. Water molecules move in and out of the active site and individual waters hydrogen bond to both aspartate carboxylate oxygens, with residence times in the ns time regime.  相似文献   

15.
    
The chromatin modification is regulated by the histone acetyltransferase (HAT) and histone deacetyltransferase (HDAC) enzymes; abnormal function of these enzymes leads to several malignant diseases. The inhibition of these enzymes using natural ligand molecules is an emerging technique to cure these diseases. The in vitro analysis of natural molecules, venenatine, spinosine, palmatine and taxodione are giving the best inhibition rate against p300 HAT enzyme. However, the detailed understanding of binding and the stability of these molecules with p300 HAT is not yet known. The aim of the present study is focused to determine the binding strength of the molecules from molecular dynamics simulation analysis. The docking analysis confirms that, the venenatine (−6.97 kcal/mol - conformer 8), spinosine (−6.52 kcal/mol conformer −10), palmatine (−5.72 kcal/mol conformer-3) and taxodione (−4.99 kcal/mol conformer-4) molecules form strong hydrogen bonding interactions with the key amino acid residues (Arg1410, Thr1411 and Trp1466) present in the active site of p300. In the molecular dynamics (MD) simulation, the spinosine retain these key interactions with the active site amino acid residues (Arg1410, Thr1411, and Trp1466) than venenatine and are stable throughout the simulation. The RMSD value of spinosine (0.5 to 1.3 Å) and venenatine (0.3 to 1.3 Å) are almost equal during the MD simulation. However, during the MD simulation, the intermolecular interaction between venenatine and the active site amino acid residues (Arg1410, Thr1411, and Trp1466) decreased on comparing with the spinosine-p300 interaction. The binding free energy of the spinosine (−15.30 kcal/mol) is relatively higher than the venenatine (−11.8 kcal/mol); this increment is attributed to the strong hydrogen bonding interactions of spinosine molecule with the active site amino acid residues of p300.  相似文献   

16.
    
Telomere assumes intra-molecular G-quadruplex that is a significant drug target for inhibiting telomerase maintenance of telomeres in cancer. Metal cations have been recognized as playing important roles in stabilizing G-quadruplex, but their binding processes to human telomeric G-quadruplex remain uncharacterized. To investigate the detailed binding procedures, molecular dynamics simulations were conducted on the hybrid [3+ 1] form-one human telomeric intra-molecular G-quadruplex. We show here that the binding of a potassium ion to a G-tetrad core is mediated by two alternative pathways. Principal component analysis illustrated the dominant concerted motions of G-quadruplex occurred at the loop domains. MM-PBSA calculations revealed that binding was energetically favorable and driven by the electrostatic interactions. The lower binding site was found more constructive favorable for binding. Our data provide useful information on a potassium-mediated stable structure of human telomeric intra-molecular G-quadruplex, implicating in ion disorder associated conformational changes and targeted drug design.  相似文献   

17.
    
The central question in evaluating almost any result from a molecular dynamics simulation is whether the calculation has converged. Unfortunately, assessing the ergodicity of a single trajectory is very difficult to do. In this work, we assess the sampling of molecular dynamics simulations of the membrane protein rhodopsin by comparing the results from 26 independent trajectories, each run for 100 ns. By examining principal components and cluster populations, we show that rhodopsin's fluctuations are not well described by 100 ns of dynamics, and that the sampling is not fully converged even for individual loops. The results serve as a reminder of the caution required when interpreting molecular dynamics simulations of macromolecules.  相似文献   

18.
    
The conformational dynamics of human serum albumin (HSA) was investigated by principal component analysis (PCA) applied to three molecular dynamics trajectories of 200 ns each. The overlap of the essential subspaces spanned by the first 10 principal components (PC) of different trajectories was about 0.3 showing that the PCA based on a trajectory length of 200 ns is not completely convergent for this protein. The contributions of the relative motion of subdomains and of the subdomains (internal) distortion to the first 10 PCs were found to be comparable. Based on the distribution of the first 3 PC, 10 protein conformers are identified showing relative root mean square deviations (RMSD) between 2.3 and 4.6 Å. The main PCs are found to be delocalized over the whole protein structure indicating that the motions of different protein subdomains are coupled. This coupling is considered as being related to the allosteric effects observed upon ligand binding to HSA. On the other hand, the first PC of one of the three trajectories describes a conformational transition of the protein domain I that is close to that experimentally observed upon myristate binding. This is a theoretical support for the older hypothesis stating that changes of the protein onformation favorable to binding can precede the ligand complexation. A detailed all atoms PCA performed on the primary Sites 1 and 2 confirms the multiconformational character of the HSA binding sites as well as the significant coupling of their motions. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 561–572, 2014.  相似文献   

19.
The giant protein titin, which comprises immunoglobulin (Ig) domains, acts as a bidirectional spring in muscle. The unfolding of Ig domains has been extensively studied, but their dynamics under native states have not been well-characterized. We performed molecular dynamics simulation on a single titin Ig domain and multi-domains. Mobile regions displaying concerted motions were identified. The dynamics of Ig domains are constrained by evolutionary pressures, in such a way that global dominant motion is conserved, yet different flexibilities within Ig domains and in linkers connecting neighbouring domains were observed. We explain these heterogeneous conserved dynamics in relation to sequence conservation across species and the sequence diversity among neighbouring Ig domains.  相似文献   

20.
The viscosity of the Price–Brooks modified TIP3P water model is investigated for different temperatures and NaCl concentrations using molecular dynamics with long-range electrostatic interactions. The viscosity has been determined from the equilibrium fluctuations of the pressure tensor by the Green–Kubo formalism. At 298 K in salt-free conditions, the resulting viscosity is higher than the value reported by other authors for TIP3P water. The viscosity is shown to decrease with temperature and increase with salt concentration, such as in real water, but with an absolute value always about half of the experimental value in analogous conditions. This difference must be attributed to the simplicity and the empirical nature of the TIP3P model, and also to the properties chosen for the original parameterisation, which did not include viscosity. At the considered levels of salinity, the effect of temperature is predominant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号