首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nonhuman primate genera are differentially inclined to attend to stimuli of the immediate foreground. When great apes were trained to a criterion on each of a series of two-choice visual discrimination problems and then given critical test trials with irrelevant visual cues (12 in wire mesh) positioned immediately in front of each problem's objects, accuracy of performance was significantly more disrupted in orang-utans (Pongo) than in chimpanzees (Pan) and gorillas (Gorilla). Two groups of chimpanzees known to differ profoundly in complex-learning skills did not differ in their readiness to attend to irrelevant foreground cues; hence, it is concluded that the observed differences among the three genera of great apes must be species related and associated with how arboreal/terrestial they are in their natural habitats.  相似文献   

2.
Discrimination-reversal learning was assessed in nine rhesus monkeys (Macaca mulatta) using an automated learning-set apparatus which permitted the measurement of learning-set skills and analysis of the patterns of incorrect responding. The three animals who attained the highest reversal scores (High) were compared with the three animals which had the lowest reversal scores (Low) with respect to the relative frequencies of errors involving either a single wrong response or more than one wrong response (2–9 consecutive errors). The groups did not differ from each other in acquisition, whereas in reversal the High Group made more errors involving a single incorrect response and fewer strings of consecutive errors. For the Low Group the relationship was reversed. These results suggest that the patterning of incorrect responses is an index of discrimination-reversal performance which may be useful in comparative studies of primate learning.  相似文献   

3.
Schmitt V  Pankau B  Fischer J 《PloS one》2012,7(4):e32024
Understanding the evolution of intelligence rests on comparative analyses of brain sizes as well as the assessment of cognitive skills of different species in relation to potential selective pressures such as environmental conditions and social organization. Because of the strong interest in human cognition, much previous work has focused on the comparison of the cognitive skills of human toddlers to those of our closest living relatives, i.e. apes. Such analyses revealed that apes and children have relatively similar competencies in the physical domain, while human children excel in the socio-cognitive domain; in particular in terms of attention sharing, cooperation, and mental state attribution. To develop a full understanding of the evolutionary dynamics of primate intelligence, however, comparative data for monkeys are needed. We tested 18 Old World monkeys (long-tailed macaques and olive baboons) in the so-called Primate Cognition Test Battery (PCTB) (Herrmann et al. 2007, Science). Surprisingly, our tests revealed largely comparable results between Old World monkeys and the Great apes. Single comparisons showed that chimpanzees performed only better than the macaques in experiments on spatial understanding and tool use, but in none of the socio-cognitive tasks. These results question the clear-cut relationship between cognitive performance and brain size and--prima facie--support the view of an accelerated evolution of social intelligence in humans. One limitation, however, is that the initial experiments were devised to tap into human specific skills in the first place, thus potentially underestimating both true nonhuman primate competencies as well as species differences.  相似文献   

4.
Comparatively little is known about the inherited primate background underlying human cognition, the human cognitive "wild-type." Yet it is possible to trace the evolution of human cognitive abilities and tendencies by contrasting the skills of our nearest cousins, not just chimpanzees, but all the extant great apes, thus showing what we are likely to have inherited from the common ancestor. By looking at human infants early in cognitive development, we can also obtain insights into native cognitive biases in our species. Here, we focus on spatial memory, a central cognitive domain. We show, first, that all nonhuman great apes and 1-year-old human infants exhibit a preference for place over feature strategies for spatial memory. This suggests the common ancestor of all great apes had the same preference. We then examine 3-year-old human children and find that this preference reverses. Thus, the continuity between our species and the other great apes is masked early in human ontogeny. These findings, based on both phylogenetic and ontogenetic contrasts, open up the prospect of a systematic evolutionary psychology resting upon the cladistics of cognitive preferences.  相似文献   

5.
Results from three experiments on basic learning and transfer in rhesus monkeys (Macaca mulatta) are reported in which fully automated testing paradigms, afforded by the Language Research Center's Computerized Test System (LRC-CTS), were employed. Performance levels for discrimination learning set, transfer index, and mediational-learning testing were uniformly higher than was predicted from the literature, in contrast to previous reports of compromised learning under similar conditions (automated apparatus, planimetric stimuli, spatial discontiguity between stimuli and response loci). Analyses reveal relatively advanced learning set performance, transfer-index ratios, and positive transfer of learning even at stringent criterion levels. Moreover, the data suggest that rhesus monkeys tested in these experiments exhibit mediational instead of associative learning strategies, as do great apes and in contrast to previous reports of rhesus learning. We argue that the LRC-CTS enhances learning by nonhuman primate subjects, obviating those factors, reported in the literature from experiments in which manual or other automated systems were employed, that compromise learning.  相似文献   

6.
DNA methylation is an epigenetic modification involved in regulatory processes such as cell differentiation during development, X-chromosome inactivation, genomic imprinting and susceptibility to complex disease. However, the dynamics of DNA methylation changes between humans and their closest relatives are still poorly understood. We performed a comparative analysis of CpG methylation patterns between 9 humans and 23 primate samples including all species of great apes (chimpanzee, bonobo, gorilla and orangutan) using Illumina Methylation450 bead arrays. Our analysis identified ∼800 genes with significantly altered methylation patterns among the great apes, including ∼170 genes with a methylation pattern unique to human. Some of these are known to be involved in developmental and neurological features, suggesting that epigenetic changes have been frequent during recent human and primate evolution. We identified a significant positive relationship between the rate of coding variation and alterations of methylation at the promoter level, indicative of co-occurrence between evolution of protein sequence and gene regulation. In contrast, and supporting the idea that many phenotypic differences between humans and great apes are not due to amino acid differences, our analysis also identified 184 genes that are perfectly conserved at protein level between human and chimpanzee, yet show significant epigenetic differences between these two species. We conclude that epigenetic alterations are an important force during primate evolution and have been under-explored in evolutionary comparative genomics.  相似文献   

7.
The capacity of nonhuman primates to actively modify the acoustic structure of existing sounds or vocalizations in their repertoire appears limited. Several studies have reported population or community differences in the acoustical structure of nonhuman primate long distance calls and have suggested vocal learning as a mechanism for explaining such variation. In addition, recent studies on great apes have indicated that there are repertoire differences between populations. Some populations have sounds in their repertoire that others have not. These differences have also been suggested to be the result of vocal learning. On yet another level great apes can, after extensive human training, also learn some species atypical vocalizations. Here we show a new aspect of great ape vocal learning by providing data that an orangutan has spontaneously (without any training) acquired a human whistle and can modulate the duration and number of whistles to copy a human model. This might indicate that the learning capacities of great apes in the auditory domain might be more flexible than hitherto assumed. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
There are consistent individual differences in human intelligence, attributable to a single 'general intelligence' factor, g. The evolutionary basis of g and its links to social learning and culture remain controversial. Conflicting hypotheses regard primate cognition as divided into specialized, independently evolving modules versus a single general process. To assess how processes underlying culture relate to one another and other cognitive capacities, we compiled ecologically relevant cognitive measures from multiple domains, namely reported incidences of behavioural innovation, social learning, tool use, extractive foraging and tactical deception, in 62 primate species. All exhibited strong positive associations in principal component and factor analyses, after statistically controlling for multiple potential confounds. This highly correlated composite of cognitive traits suggests social, technical and ecological abilities have coevolved in primates, indicative of an across-species general intelligence that includes elements of cultural intelligence. Our composite species-level measure of general intelligence, 'primate g(S)', covaried with both brain volume and captive learning performance measures. Our findings question the independence of cognitive traits and do not support 'massive modularity' in primate cognition, nor an exclusively social model of primate intelligence. High general intelligence has independently evolved at least four times, with convergent evolution in capuchins, baboons, macaques and great apes.  相似文献   

9.
Research on social learning may be of use in the conservation of primates, especially great apes, through (a) promoting their public image, (b) identifying specific adaptations, and (c) devising reintroduction training programs. We surveyed all the instigated social learning studies in primates published since 1950 in order to assess their usefulness to devise reintroduction training programs. We identified 99 publications containing 130 data sets from 27 species of primates. Great apes produced significantly more positive social learning effects than either cercopithecines or cebids. There was also an enhanced social learning effect when skilled demonstrators were used. Our survey indicates that the scientific understanding of many aspects of primate social learning relevant to conservation, including its function, learning spatial route plotting, food and sleeping site location, predator avoidance and detection, and the effect of model and tutee status, would benefit from greater research. Future instigated studies on primate social learning would be most informative for reintroduction if they included ecologically valid tasks presented to 2 similarly composed social groups, one of which functioned as a control, i.e., without being exposed to a model.  相似文献   

10.
Allometric analyses of brain structure sizes across the primate order demonstrate that human, ape, and other anthropoid brains are not simply allometrically scaled versions of the same generalized design. Both human and ape brains exhibit specializations with respect to other anthropoid brains. Ape specializations include elaboration of the cerebellum (all apes) and frontal lobes (great apes only), and probably connectivity between them. Human brain specializations include an overall larger proportion of neocortex, with disproportionate enlargement of prefrontal and temporal association cortices; an apparent increase in cerebellar connections with cerebral cortical association areas involved in cognition; and a probable augmentation of intracortical connectivity in prefrontal cortex.  相似文献   

11.
The variety and complexity of human-made tools are unique in the animal kingdom. Research investigating why human tool use is special has focused on the role of social learning: while non-human great apes acquire tool-use behaviours mostly by individual (re-)inventions, modern humans use imitation and teaching to accumulate innovations over time. However, little is known about tool-use behaviours that humans can invent individually, i.e. without cultural knowledge. We presented 2- to 3.5-year-old children with 12 problem-solving tasks based on tool-use behaviours shown by great apes. Spontaneous tool use was observed in 11 tasks. Additionally, tasks which occurred more frequently in wild great apes were also solved more frequently by human children. Our results demonstrate great similarity in the spontaneous tool-use abilities of human children and great apes, indicating that the physical cognition underlying tool use shows large overlaps across the great ape species. This suggests that humans are neither born with special physical cognition skills, nor that these skills have degraded due to our species’ long reliance of social learning in the tool-use domain.  相似文献   

12.
Neurotrypsin is one of the extra-cellular serine proteases that are predominantly expressed in the brain and involved in neuronal development and function. Mutations in humans are associated with autosomal recessive non-syndromic mental retardation (MR). We studied the molecular evolution of neurotrypsin by sequencing the coding region of neurotrypsin in 11 representative non-human primate species covering great apes, lesser apes, Old World monkeys and New World monkeys. Our results demonstrated a strong functional constraint of neurotrypsin that was caused by strong purifying selection during primate evolution, an implication of an essential functional role of neurotrypsin in primate cognition. Further analysis indicated that the purifying selection was in fact acting on the SRCR domains of neurotrypsin, which mediate the binding activity of neurotrypsin to cell surface or extra-cellular proteins. In addition, by comparing primates with three other mammalian orders, we demonstrated that the absence of the first copy of the SRCR domain (exon 2 and 3) in mouse and rat was due to the deletion of this segment in the murine lineage.  相似文献   

13.
Neuropsin is a secreted-type serine protease involved in learning and memory. The type II splice form of neuropsin is abundantly expressed in the human brain but not in the mouse brain. We sequenced the type II-spliced region of neuropsin gene in humans and representative nonhuman primate species. Our comparative sequence analysis showed that only the hominoid species (humans and apes) have the intact open reading frame of the type II splice form, indicating that the type II neuropsin originated recently in the primate lineage about 18 MYA. Expression analysis using RT-PCR detected abundant expression of the type II form in the frontal lobe of the adult human brain, but no expression was detected in the brains of lesser apes and Old World monkeys, indicating that the type II form of neuropsin only became functional in recent time, and it might contribute to the progressive change of cognitive abilities during primate evolution.  相似文献   

14.
Mouse lemurs are suggested to represent promising novel non-human primate models for aging research. However, standardized and cross-taxa cognitive testing methods are still lacking. Touchscreen-based testing procedures have proven high stimulus control and reliability in humans and rodents. The aim of this study was to adapt these procedures to mouse lemurs, thereby exploring the effect of age. We measured appetitive learning and cognitive flexibility of two age groups by applying pairwise visual discrimination (PD) and reversal learning (PDR) tasks. On average, mouse lemurs needed 24 days of training before starting with the PD task. Individual performances in PD and PDR tasks correlate significantly, suggesting that individual learning performance is unrelated to the respective task. Compared to the young, aged mouse lemurs showed impairments in both PD and PDR tasks. They needed significantly more trials to reach the task criteria. A much higher inter-individual variation in old than in young adults was revealed. Furthermore, in the PDR task, we found a significantly higher perseverance in aged compared to young adults, indicating an age-related deficit in cognitive flexibility. This study presents the first touchscreen-based data on the cognitive skills and age-related dysfunction in mouse lemurs and provides a unique basis to study mechanisms of inter-individual variation. It furthermore opens exciting perspectives for comparative approaches in aging, personality, and evolutionary research.  相似文献   

15.
Nicholas Humphrey's social intelligence hypothesis proposed that the major engine of primate cognitive evolution was social competition. Lev Vygotsky also emphasized the social dimension of intelligence, but he focused on human primates and cultural things such as collaboration, communication and teaching. A reasonable proposal is that primate cognition in general was driven mainly by social competition, but beyond that the unique aspects of human cognition were driven by, or even constituted by, social cooperation. In the present paper, we provide evidence for this Vygotskian intelligence hypothesis by comparing the social-cognitive skills of great apes with those of young human children in several domains of activity involving cooperation and communication with others. We argue, finally, that regular participation in cooperative, cultural interactions during ontogeny leads children to construct uniquely powerful forms of perspectival cognitive representation.  相似文献   

16.
17.
Recently, in addition to quinacrine staining, fluorochrome techniques have been developed which brilliantly stain other heterochromatic regions. Two of these staining techniques are Distamycin/DAPI (DA/DAPI) and D287/170. We stained the chromosomes of all species of great apes and 14 species of primates (48 individuals) using these three fluorochrome techniques. Only african apes and man show brilliant quinacrine staining while, man and all the great apes show brilliant DA/DAPI staining and only species belonging to the hominoidea (including the siamang) showed bright D287/170 staining. In the lower primates a medium level of DA/DAPI fluorescence was found in some species with large amount of pericentromeric heterochromatin. Brilliant DA/DAPI staining could represent a derived trait linking all great apes and humans, while D287/170 may link all hominoidea. Fluorochrome staining is believed to be correlated with some satellite DNA sequences. However, data available on the chromosome location of satellite DNAs in non-human primates were derived from buoyant density fractions resulting in cross hybridization and now are not considered reliable. Before making any correlation between fluorochrome staining and satellite DNAs in non human primates there is need of data onin situ hybridization with cloned DNA sequences on primate chromosomes. These data would help clarify the evolution and relationship of satellite DNAs and heterochromatin in primates.  相似文献   

18.
When viewed from the perspective of time, human genetic disorders give new insights into their etiology and evolution. Here, we have correlated a specific set of Alu repetitive DNA elements, known to be the basis of certain genetic defects, with their phylogenetic roots in primate evolution. From a differential distribution of Alu repeats among primate species, we identify the phylogenetic roots of three human genetic diseases involving the LPL, ApoB, and HPRT genes. The different phylogenetic age of these genetic disorders could explain the different susceptibility of various primate species to genetic diseases. Our results show that LPL deficiency is the oldest and should affect humans, apes, and monkeys. ApoB deficiency should affect humans and great apes, while a disorder in the HPRT gene (leading to the Lesch-Nyhan syndrome) is unique to human, chimpanzee, and gorilla. Similar results can be obtained for cancer. We submit that de novo transpositions of Alu elements, and saltatory appearances of Alu-mediated genetic disorders, represent singularities, places where behavior changes suddenly. Alus' propensity to spread, not only increased the regulatory and developmental complexity of the primate genome, it also increased its instability and susceptibility to genetic defects and cancer. The dynamic spread not only provided markers of primate phylogeny, it must have actively shaped the course of that phylogeny.  相似文献   

19.
Primates adopt diverse hand postures during terrestrial and above-branch quadrupedal locomotion--knuckle-walking, digitigrady, and palmigrady--that incorporate varying degrees of wrist dorsiflexion (i.e., extension). Although relationships between hand postures, wrist joint range of motion, and the external properties of wrist bones (e.g., surface morphology) have been examined, the relationship between hand postures and the internal properties of wrist bones (e.g., bone density) remains largely unexplored. Because articular joint surfaces transmit mechanical loads between conjoining limb bones, measures of density (e.g., magnitudes and patterns) in the subchondral cortical plate of bone of the distal radius can be used to evaluate load regimes experienced by the wrist joint in different hand postures. We assessed apparent (i.e. optical) density patterns in several extant catarrhine primate taxa partitioned into different hand posture groups: knuckle-walking apes, digitigrade monkeys, and palmigrade monkeys. Computed tomography osteoabsorptiometry (CT-OAM) was used to construct maximum intensity projection (MIP) maps of apparent densities. High apparent density areas were characterized relative to a dorsal-volar reference plane and compared across hand posture groups. All groups had large percentage areas of high apparent density in the dorsal region of the distal radial articular surface. Only knuckle-walking apes, however, had a large percentage area of high apparent density in the volar region of the distal radial articular surface. These patterns are consistent with radiocarpal articulations in specific hand postures as evidenced by available radiographic data and suggest that the different habitual hand postures adopted by monkeys and African apes during quadrupedal locomotion have different stereotypic loading patterns. This has implications for understanding the functional morphology and evolution of knuckle-walking and digitigrade hand postures in primates.  相似文献   

20.
We present data on hand preference in great apes and discuss them in the context of theoretical models of hand preference in nonhuman primates presented by MacNeilageet al. (1987) and by Fagot and Vauclair (1991). We also discuss several methodological and statistical issues as they pertain to the assessment of hand preference in great apes and other primate species. Finally, we present a comparative framework for the study of hand preference, emphasizing the importance of studies with great apes in developing evolutionary models of hemispheric specialization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号