首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A novel, sensitive and rapid CL method coupled with high‐performance liquid chromatography separation for the determination of carbamazepine is described. The method was based on the fact that carbamazepine could significantly enhance the chemiluminescence of the reaction of cerium sulfate and tris(2,2‐bipyridyl) ruthenium(II) in the presence of acid. The chromatographic separation was performed on a Kromasil® (Sigma‐Aldrich) TM RP‐C18 column (id: 150 mm × 4.6 mm, particle size: 5 µm, pore size: 100 Å) with a mobile phase consisting of methanol–water‐glacial acetic acid (70:29:1, v/v/v) at a flowrate of 1.0 mL/min, the total analysis time was within 650 s. Under optimal conditions, CL intensity was linear for carbamazepine in the range 2.0 × 10?8 ~ 4.0 × 10?5 g/mL, with a detection limit of 6.0 × 10?9 g/mL (S/N = 3) and the relative standard detection was 2.5% for 2.0 × 10?6 g/mL (n = 11). This method was successfully applied to the analysis of carbamazepine in human urine and serum samples. The possible mechanism of the CL reaction is also discussed briefly. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
It was found that meloxicam could enhance the chemiluminescence (CL) of the tris(2,2'‐bipyridine) ruthenium(II)–Ce(IV) system in the medium of sulfate acid. Based on this phenomenon a new flow‐injection system with chemiluminescent detection has been proposed for determination of meloxicam. Under optimum conditions, meloxicam had a good linear relationship with the CL intensity in the concentration range of 6.0  10?4 to 1.0 µg/mL and the detection limit was 3.7 × 10?4 µg/mL. The proposed method was applied to detect meloxicam in tablets and a satisfactory recovery was obtained. The possible mechanism for this CL system is also discussed in this paper. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Introduction – Honokiol and magnolol are the active components of Magnolia officinalis, which is a widely used traditional Chinese medicine. Their simultaneous analysis is, therefore, important for the quality control of the product. Objective – To establish a simple, sensitive and rapid electrochemical method for the simultaneous detection of honokiol and magnolol based on the remarkable enhancement effect of acetylene black nanoparticle (AB). Methodology – The AB‐modified electrode was prepared via solvent evaporation. The electrochemical response of honokiol and magnolol was investigated using cyclic voltammetry. The simultaneous detection was performed with differential pulse voltammetry. The method was validated in terms of linearity, sensitivity, precision and accuracy. Results – The linear range for honokiol is 0.5–300 µg/L, and the limit of detection (LOD) is 0.25 µg/L (9.4 × 10?10 mol/L). For magnolol, the linear range is 10–250 µg/L, and the LOD is 5 µg/L (1.88 × 10?8 mol/L). Conclusion – The new method was successfully used to determine honokiol and magnolol in a traditional Chinese medicine called Ageratum liquid. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
A rapid and sensitive flow‐injection chemiluminescence (FI–CL) method is described for the determination of diazepam based on its reaction with N‐bromosuccinimide (NBS) in alkaline medium in the presence of dichlorofluorescein (DCF) as an effective energy‐transfer agent. Under optimum conditions, the proposed method allowed the measurement of diazepam over the range of 2.0 × 10?6 to 2.0 × 10?4 mol/L with a detection limit of 5.0 × 10?7 mol/L. The relative standard deviation for 11 parallel measurements of 2.0 × 10?5 mol/L diazepam was 2.1%. The method was applied satisfactorily for the determination of diazepam in pharmaceutical preparations, and the results agree well with those obtained by spectrophotometry. The use of the proposed system for the determination of diazepam in urine and plasma samples was also tested. The possible mechanism of the chemiluminescence reaction is discussed briefly. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Quantification of uranium in drinking water has great significance considering its effects on human health. Drinking water samples collected from different sources, viz., hand pumps, tube-wells, and public water supply from Sonipat and Panipat districts of Haryana, India have been analyzed for uranium and other physico-chemical parameters. Uranium concentration in water samples was measured using Pulsed LED Fluorimeter. Uranium concentration in collected water samples ranges from 9.1 to 155.1 µg/L in Sonipat district and 14.9 to 123.3 µg/L in Panipat district. It was inferred from the data that uranium concentration in some water samples was higher than WHO &; USEPA recommended limit of 30 µg/L. The mean cancer risk due to uranium in drinking water in Sonipat and Panipat districts was found to be 1.40 × 10?4 and 1.63 × 10?4, respectively, which is lower than the maximum permissible limit (<10?3). Total Dissolve Salts (TDS) in water samples of some villages in Sonipat district was higher than permissible limits for drinking prescribed by WHO &; BIS.  相似文献   

6.
Chemiluminescence (CL) of the rhodamine 6‐G‐diperiodatonickelate (IV) (Rh6‐G‐Ni(IV) complex) in the presence of Brij‐35 was examined in an alkaline medium and implemented using flow‐injection analysis to analyze Mn(II) in natural waters. Brij‐35 was identified as the surfactant of choice that enhanced CL intensity by about 62% of the reaction. The calibration curves were linear in the range 1.7 × 10?3 – 0.2 (0.9990, n = 7) and 8.0 × 10?4 – 0.1 μg ml?1 (0.9990, n = 7) with limits of detection (LODs) (S:N = 3) of 5.0 × 10?4 and 2.4 × 10?4 μg ml?1 without and with using an in‐line 8‐hydroxyquinoline (8‐HQ) resin mini‐column, respectively. The sample throughput and relative standard deviation were 200 h?1 and 1.7–2.2% in the range studied respectively. Mn(II) concentrations in certified reference materials and natural water samples was successfully determined. A brief discussion about the possible CL reaction mechanism is also given. In addition, analysis of V(III), Cr(III) and Fe(II) was also performed without and with using an in‐line 8–HQ column and selective elution of each metal ion was achieved by adjusting the pH of the sample carrier stream with aqueous HCl solution.  相似文献   

7.
By taking advantage of microflow injection chemiluminescence analysis, we developed a distinctive microfluidic bioassay method based on G‐Quadruplex DNAzyme‐enhanced chemiluminescence for the determination of K+ in human serum. AGRO100, the G‐rich oligonucleotide with high hemin binding affinity was primarily selected as a K+ recognition element. In the presence of K+, AGRO100 folded into G‐quadruplex and bound hemin to form DNAzyme, which catalyzed the oxidation of luminol by H2O2 to produce chemiluminescence. The intensity of chemiluminescence increased with the K+ concentration. In the study, the DNAzyme showed both long‐term stability and high catalytic activity; other common cations at their physiological concentration did not cause notable interference. With only 6.7 × 10?13 mol of AGRO100 consumption per sample, a linear response of K+ ranged from 1 to 300 µmol/L, the concentration detection limit 0.69 µmol/L (S/N = 3) and the absolute detection limit 1.38 × 10?12 mol were obtained. The precision of 10 replicate measurements of 60 µmol/L K+ was found to be 1.72% (relative standard deviation). The accuracy of the method was demonstrated by analyzing real human serum samples. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
《Luminescence》2004,19(1):26-30
A ?ow injection method is reported for the determination of sulphite‐based on chemiluminescent detection. Hydro‐gen peroxide is produced from sulphite using on‐line covalently bound immobilized sulphite oxidase packed in a mini‐column, which was mixed downstream and detected via cobalt(II)‐catalysed chemiluminescent oxidation of luminol. The limit of detection (2 × standard deviation of the blank) was 1 × 10?3 mmol/L with sample throughput 60 h?1. The calibration data was linear over the range of 0.2–1.0 mmol/L with relative standard deviation (n = 4) in the range 0.9–2.0%. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
The water‐soluble luminescent CdSe quantum dots were prepared by ligand exchange with triethanolamine (TEA). Oxygen can reversibly enhance the fluorescence of the synthesized quantum dots (TEA‐CdSe‐QDs) in aqueous solution. Nitric oxide radical (NO) can react easily with dissolved oxygen in water and was found to have a significant quenching effect on the fluorescence of the TEA‐CdSe‐QDs. The fluorescence responses were concentration‐dependent and can be well described by the typical Stern–Volmer equation. A good linear relationship (R= 0.9963) was observed over the range 5.92 × 10?7 to 1.85 × 10?5 mol/L nitric oxide. Above this concentration was a second linear region ranging from 2.12 × 10?5 to 1.12 × 10?4 mol/L NO with a gentler slope. The detection limit, calculated following the 3σ IUPAC criteria, was 3.02 × 10?7 mol/L. The interference effect of some common interferents such as nitrite (NO2?), nitrate (NO3?), glucose and l ‐ascorbic acid on the detection of NO was negligible for the proposed system, demonstrating the potential utility of this probe for the detection of NO in biological systems. The possible mechanism was also discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
This method is based on the enhancing effect of codeine (COD) and paracetamol (PAR) on the chemiluminescence (CL) reaction of Ru(phen)32+ with Ce(IV). In the batch mode, COD gives a relatively sharp peak with the highest CL intensity at 4.0 s, whereas the maximum CL intensity of the PAR appears at ~60 s after injection of Ce(IV) solution. Whole CL time profiles allowed use of the time‐resolved CL data in combination with multiway calibration techniques, as multiway partial least squares (N‐PLS), for the quantitative determination of both COD and PAR in binary mixtures. In this work, we found that the impact of Ce(IV) concentration on the CL intensity was different for COD and PAR. Therefore, a Ce(IV) concentration mode was added to the time and sample modes to obtain 3D data. The percent relative standard deviation (%RSD) values for 10 determinations of 1.0 × 10?5 mol/L of COD and 1.0 × 10?4 mol/L of PAR were 6.1% and 8.7%, respectively. The limit of detection (LOD) values (S/N = 3) were 0.9 × 10?8 mol/L and 1.0 × 10?6 mol/L for COD and PAR, respectively. The proposed method was successfully applied to the determination of PAR and COD in commercial pharmaceutical formulations. Acceptable recoveries (90–110%) were obtained for the quantification of these drugs in the real samples. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
A novel flow‐injection chemiluminescence method was developed for the selective determination of human immunoglobulin G (IgG) in the presence of thiomersal by changing the flow rates of peristaltic pump. The study was based on the independence and additivity of the CL signals of human IgG and thiomersal in the galangin–potassium permanganate–polyphosphoric acid system. In meantime, two equations relating to the concentrations of mixing solutions of human IgG and thiomersal vs the CL intensity were established and solved, on the basis of which the content of thiomersal included in samples was simultaneously determined too. The enhanced CL intensity was in proportion to concerntrations in the range 8.0 × 10?7 to 8.0 × 10?5 g/mL for human IgG and 1.0 × 10?7 to 2.0 × 10?6 g/mL for thiomersal with the detection limits of 5.0 × 10?7 g/mL for human IgG and 6.0 × 10?8 g/mL for thiomersal, respectively. The relative standard deviation for 1.0 × 10?5 g/mL human IgG was 0.8% and for 2.0 × 10?7 g/mL thiomersal it was 2.0% (n = 10). The proposed method was applied to determine three synthetic samples with recoveries of 91.5–109.5%. In addition, the possible chemiluminescence mechanisms are discussed as well. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
A novel chemiluminescence method for the determination of 6‐mercaptopurine was established based on 6‐mercaptopurine inhibition of the chemiluminescence emission of potassium permanganate–thioacetamide–sodium hexametaphosphate system. The peak height was proportional to log 6‐mercaptopurine concentration in the range 7.0 × 10?10 to 1.0 × 10?7 g/mL and the detection limit was 1.9 × 10?11 g/mL (S/N = 3). The relative standard deviation was 1.5% for the determination of 8.0 × 10?8 g/mL 6‐mercaptopurine (n = 11). The proposed sensor was successfully applied to the analysis of 6‐mercaptopurine in human serum samples. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
A new chemiluminescence (CL) reaction was observed when cerium(IV) solution was injected into bromhexine hydrochloride–morin solution. Based on this, a flow‐injection CL method for the determination of bromhexine hydrochloride was established. A possible mechanism of the CL reaction was proposed via the investigation of the CL kinetic characteristics, the CL spectrum and the fluorescence spectra of some related substances. Under optimum conditions, the CL signal was correlated linearly with concentration of bromhexine hydrochloride over the range 2.0 × 10–9–2.0 × 10–7 g/mL, with a linear correlation of 0.9995. The detection limit was 9 × 10–10 g/mL bromhexine hydrochloride and the relative standard deviation was 1.0% (c = 2.0 × 10–8 g/mL bromhexine hydrochloride, n = 11). The method was applied to the determination of bromhexine hydrochloride in pharmaceutical preparations and human urine samples with satisfactory results. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
Tanshinol borneol ester (DBZ), a chemical combination of danshensu and borneol, is an experimental drug that exhibits efficacious anti‐ischemic activity in animal models. In this work, an ultrasensitive chemiluminescence (CL) method for the determination of DBZ was established based on the inhibitory effect of DBZ on the CL signal produced from the reaction between potassium permanganate and luminol in alkaline solution. The CL intensity responded linearly to the concentration of DBZ in the range 2.0 × 10‐10 to 4.0 × 10‐8 g/mL with a detection limit of 7 × 10?11 g/mL. The relative standard deviation (RSD) was 3.8% for 4.0 × 10?9 g DBZ (n = 11). The proposed method showed characteristics of high sensitivity, simple device and quick. In addition, this proposed method had been applied satisfactorily to the analysis of DBZ in blood. The pharmacokinetics of DBZ in rat has also been studied using the CL method. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
The hybridoma 192 was used to produce a monoclonal antibody (MAb) against 17‐hydroxyprogesterone (17‐OHP), for possible use in screening for congenital adrenal hyperplasia (CAH). The factors influencing the MAb production were screened and optimized in a 2 L stirred bioreactor. The production was then scaled up to a 20 L bioreactor. All of the screened factors (aeration rate, stirring speed, dissolved oxygen concentration, pH, and temperature) were found to significantly affect production. Optimization using the response surface methodology identified the following optimal production conditions: 36.8°C, pH 7.4, stirring speed of 100 rpm, 30% dissolved oxygen concentration, and an aeration rate of 0.09 vvm. Under these conditions, the maximum viable cell density achieved was 1.34 ± 0.21 × 106 cells mL?1 and the specific growth rate was 0.036 ± 0.004 h?1. The maximum MAb titer was 11.94 ± 4.81 μg mL?1 with an average specific MAb production rate of 0.273 ± 0.135 pg cell?1 h?1. A constant impeller tip speed criterion was used for the scale‐up. The specific growth rate (0.040 h?1) and the maximum viable cell density (1.89 × 106 cells mL?1) at the larger scale were better than the values achieved at the small scale, but the MAb titer in the 20 L bioreactor was 18% lower than in the smaller bioreactor. A change in the culture environment from the static conditions of a T‐flask to the stirred bioreactor culture did not affect the specificity of the MAb toward its antigen (17‐OHP) and did not compromise the structural integrity of the MAb. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2013  相似文献   

16.
Three recently reported chemiluminescence methods (based on reactions with alkaline luminol and hexacyanoferrate(III); acidic cerium(IV) and rhodamine B; and acidic permanganate with polyphosphates) for the determination of synephrine were re‐evaluated in terms of their selectivity towards this analyte in comparison to other phenolic compounds. A fourth reagent system, acidic soluble manganese(IV) and formaldehyde, was also examined. Each set of reagents was sensitive towards synephrine (limits of detection were 3 × 10?9, 5 × 10?8, 1 × 10?8 and 1 × 10?8 mol/L, respectively) but also responded with numerous other phenolic compounds, including some that are present in citrus fruit extracts, dietary supplements and/or biological fluids. It is therefore recommended that the determination of synephrine in these matrices should incorporate physical separation of sample components (e.g. chromatography or electrophoresis). In more general terms, this study illustrates that accurate percentage recoveries for an analyte in spiked samples (without validation against another analytical method) are insufficient to confirm the analytical utility of new flow‐injection analysis (FIA) procedures. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
《Luminescence》2004,19(1):21-25
The electrogenerated chemiluminescence (ECL) reaction of lucigenin with isatin was investigated at a platinum electrode in a neutral aqueous solution. The ECL intensity of lucigenin at ?0.65 V was greatly enhanced by isatin, and the ECL intensity was about 50 times higher than that of lucigenin without isatin. The enhanced ECL was believed to be produced by the chemiluminescence reaction between reduced lucigenin and superoxide anion that was generated by the reaction of electrochemically reduced isatin with dissolved oxygen. The conditions for the determination of isatin were optimized. Under the optimized condition, the enhanced ECL intensity vs. isatin concentration was linear in the range 4.8 × 10?7?1.9 × 10?5 g/mL; with a detection limit of 3.3 × 10?8 g/mL, and the relative standard derivation 1.0 × 10?6 g/mL isatin was 3.8%. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
A post‐chemiluminescence (PCL) phenomenon was observed when chloramphenicol was injected into a mixture of luminol and potassium periodate after the chemiluminescence (CL) reaction of luminol–potassium periodate had finished. The possible reaction mechanism was proposed based on studies of the CL kinetic characteristics, the CL spectra, the fluorescence spectra and the UV‐vis absorption spectra of the related substances. Based on the PCL reaction, a rapid and sensitive method for the determination of chloramphenicol was established. The linear response range was 6.0 × 10?7–1.0 × 10?5 mol/L, with a correlation coefficient of 0.9986. The relative standard deviation (RSD) for 5.0 × 10?6 mol/L chloramphenicol was 2.3% (n = 11). The detection limit was 1.6 × 10?7 mol/L. The method has been applied to the determination of chloramphenicol in pharmaceutical samples with satisfactory results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
We describe the development and validation of a new, simple, sensitive and cost‐effective method for the determination of ceftriaxone in commercial formulations and spiked human plasma. The method proposes the conversion of ceftriaxone into a fluorescent product by reacting with ortho‐phthalaldehyde (OPA) in the presence of sulfite at room temperature. The reaction medium is buffered to pH 10 using borate buffer. The derivatized reaction product is highly fluorescent and exhibits maximum fluorescence intensity at λem = 386 nm after excitation at λex = 324 nm. The experimental parameters affecting progress of the derivatization reaction were carefully studied and optimized. Under optimum experimental conditions, the method has an excellent correlation coefficient of 0.9984 with a broad linear range of 0.4?20 µg/mL. The limit of detection (LOD) and limit of quantification (LOQ) were found to be 1.30 × 10?3 and 3.90 × 10?3 µg/mL, respectively. The interference effects of common excipients on the quantification of drug were investigated and no interference effect was observed. The proposed method has been successfully applied to the determination of ceftriaxone in pharmaceutical formulations and spiked human plasma samples. The method has been validated statistically through percent recovery studies using standard addition and by comparison with a reference HPLC method. The developed method exhibits excellent inter‐ and intraday precision. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Drinking water contaminated with arsenic poses serious threat to the human health. The present study was aimed for quality assessment of the groundwater of Khairpur Mir's in respect with arsenic and other elemental contamination like Fe, Cu, Co, and Ni. The presence of the trace elements in groundwater from different sources in the study area was measured by using atomic absorption spectroscopy. For arsenic analysis hydride generation technique (MHS-15) was used with detection limit of 0.02 µg l?1. Elevated level of arsenic was observed in most of the samples as compared to recommended value of World Health Organization (WHO) guidelines (10 µg l?1). However, levels of Fe, Cu, Co, and Ni in hand pump (HP) water samples was found in the range of 4–1610 µg l?1, 0–556 µg l?1, 0–230 µg l?1, and 0–700 µg l?1, respectively. Whereas in tube well (TW) water samples the observed values are 5–1620 µg l?1, 0–50 µg l?1, 4–110 µg l?1, and 0–360 µg l?1 for Fe, Cu, Co, and Ni, respectively. Significant difference was observed between TW and HP water samples. It was concluded that the level of arsenic found was very high up to 13 fold more than the WHO recommended limit in study area. While the levels of other elements was noted within the safe limit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号