首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Retinoic acid-inducible gene I (RIG-I) is an important pattern recognition receptor that detects viral RNA and triggers the production of type-I interferons through the downstream adaptor MAVS (also called IPS-1, CARDIF, or VISA). A series of structural studies have elaborated some of the mechanisms of dsRNA recognition and activation of RIG-I. Recent studies have proposed that K63-linked ubiquitination of, or unanchored K63-linked polyubiquitin binding to RIG-I positively regulates MAVS-mediated antiviral signaling. Conversely phosphorylation of RIG-I appears to play an inhibitory role in controlling RIG-I antiviral signal transduction. Here we performed a combined structural and biochemical study to further define the regulatory features of RIG-I signaling. ATP and dsRNA binding triggered dimerization of RIG-I with conformational rearrangements of the tandem CARD domains. Full length RIG-I appeared to form a complex with dsRNA in a 2:2 molar ratio. Compared with the previously reported crystal structures of RIG-I in inactive state, our electron microscopic structure of full length RIG-I in complex with blunt-ended dsRNA, for the first time, revealed an exposed active conformation of the CARD domains. Moreover, we found that purified recombinant RIG-I proteins could bind to the CARD domain of MAVS independently of dsRNA, while S8E and T170E phosphorylation-mimicking mutants of RIG-I were defective in binding E3 ligase TRIM25, unanchored K63-linked polyubiquitin, and MAVS regardless of dsRNA. These findings suggested that phosphorylation of RIG inhibited downstream signaling by impairing RIG-I binding with polyubiquitin and its interaction with MAVS.  相似文献   

2.
Hepatitis B virus (HBV) is regarded as a stealth virus, invading and replicating efficiently in human liver undetected by host innate antiviral immunity. Here, we show that type I interferon (IFN) induction but not its downstream signaling is blocked by HBV replication in HepG2.2.15 cells. This effect may be partially due to HBV X protein (HBx), which impairs IFNβ promoter activation by both Sendai virus (SeV) and components implicated in signaling by viral sensors. As a deubiquitinating enzyme (DUB), HBx cleaves Lys63-linked polyubiquitin chains from many proteins except TANK-binding kinase 1 (TBK1). It binds and deconjugates retinoic acid-inducible gene I (RIG I) and TNF receptor-associated factor 3 (TRAF3), causing their dissociation from the downstream adaptor CARDIF or TBK1 kinase. In addition to RIG I and TRAF3, HBx also interacts with CARDIF, TRIF, NEMO, TBK1, inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase epsilon (IKKi) and interferon regulatory factor 3 (IRF3). Our data indicate that multiple points of signaling pathways can be targeted by HBx to negatively regulate production of type I IFN.  相似文献   

3.
Lysine 63 (K63)-linked ubiquitination of RIG-I plays a critical role in the activation of type I interferon pathway, yet the molecular mechanism responsible for its deubiquitination is still poorly understood. Here we report that the deubiquitination enzyme ubiquitin-specific protease 3 (USP3) negatively regulates the activation of type I interferon signaling by targeting RIG-I. Knockdown of USP3 specifically enhanced K63-linked ubiquitination of RIG-I, upregulated the phosphorylation of IRF3 and augmented the production of type I interferon cytokines and antiviral immunity. We further show that there is no interaction between USP3 and RIG-I-like receptors (RLRs) in unstimulated or uninfected cells, but upon viral infection or ligand stimulation, USP3 binds to the caspase activation recruitment domain of RLRs and then cleaves polyubiquitin chains through cooperation of its zinc-finger Ub-binding domain and USP catalytic domains. Mutation analysis reveals that binding of USP3 to polyubiquitin chains on RIG-I is a prerequisite step for its cleavage of polyubiquitin chains. Our findings identify a previously unrecognized role of USP3 in RIG-I activation and provide insights into the mechanisms by which USP3 inhibits RIG-I signaling and antiviral immunity.  相似文献   

4.
Upon detection of viral RNA, retinoic acid-inducible gene I (RIG-I) undergoes TRIM25-mediated K63-linked ubiquitination, leading to type I interferon (IFN) production. In this study, we demonstrate that the linear ubiquitin assembly complex (LUBAC), comprised of two RING-IBR-RING (RBR)-containing E3 ligases, HOIL-1L and HOIP, independently targets TRIM25 and RIG-I to effectively suppress virus-induced IFN production. RBR E3 ligase domains of HOIL-1L and HOIP bind and induce proteasomal degradation of TRIM25, whereas the NZF domain of HOIL-1L competes with TRIM25 for RIG-I binding. Consequently, both actions by the HOIL-1L/HOIP LUBAC potently inhibit RIG-I ubiquitination and antiviral activity, but in a mechanistically separate manner. Conversely, the genetic deletion or depletion of HOIL-1L and HOIP robustly enhances virus-induced type I IFN production. Taken together, the HOIL-1L/HOIP LUBAC specifically suppresses RIG-I ubiquitination and activation by inducing TRIM25 degradation and inhibiting TRIM25 interaction with RIG-I, resulting in the comprehensive suppression of the IFN-mediated antiviral signaling pathway.  相似文献   

5.
The primary role of the innate immune response is to limit the spread of infectious pathogens, with activation of Toll-like receptor (TLR) and RIG-like receptor (RLR) pathways resulting in a pro-inflammatory response required to combat infection. Limiting the activation of these signaling pathways is likewise essential to prevent tissue injury in the host. Triad3A is an E3 ubiquitin ligase that interacts with several components of TLR signaling and modulates TLR activity. In the present study, we demonstrate that Triad3A negatively regulates the RIG-I RNA sensing pathway through Lys48-linked, ubiquitin-mediated degradation of the tumor necrosis factor receptor-associated factor 3 (TRAF3) adapter. Triad3A was induced following dsRNA exposure or virus infection and decreased TRAF3 levels in a dose-dependent manner; moreover, Triad3A expression blocked IRF-3 activation by Ser-396 phosphorylation and inhibited the expression of type 1 interferon and antiviral genes. Lys48-linked ubiquitination of TRAF3 by Triad3A increased TRAF3 turnover, whereas reduction of Triad3A expression by stable shRNA expression correlated with an increase in TRAF3 protein expression and enhancement of the antiviral response following VSV or Sendai virus infection. Triad3A and TRAF3 physically interacted together, and TRAF3 residues Y440 and Q442—previously shown to be important for association with the MAVS adapter—were also critical for Triad3A. Point mutation of the TRAF-Interacting-Motif (TIM) of Triad3A abrogated its ability to interact with TRAF3 and modulate RIG-I signaling. TRAF3 appears to undergo sequential ubiquitin “immuno-editing” following virus infection that is crucial for regulation of RIG-I-dependent signaling to the antiviral response. Thus, Triad3A represents a versatile E3 ubiquitin ligase that negatively regulates RIG-like receptor signaling by targeting TRAF3 for degradation following RNA virus infection.  相似文献   

6.
RIG-I (retinoic acid-inducible gene I) and TRIM25 (tripartite motif protein 25) have emerged as key regulatory factors to induce interferon (IFN)-mediated innate immune responses to limit viral replication. Upon recognition of viral RNA, TRIM25 E3 ligase binds the first caspase recruitment domain (CARD) of RIG-I and subsequently induces lysine 172 ubiquitination of the second CARD of RIG-I, which is essential for the interaction with downstream MAVS/IPS-1/CARDIF/VISA and, thereby, IFN-β mRNA production. Although ubiquitination has emerged as a major factor involved in RIG-I activation, the potential contribution of other post-translational modifications, such as phosphorylation, to the regulation of RIG-I activity has not been addressed. Here, we report the identification of serine 8 phosphorylation at the first CARD of RIG-I as a negative regulatory mechanism of RIG-I-mediated IFN-β production. Immunoblot analysis with a phosphospecific antibody showed that RIG-I serine 8 phosphorylation steady-state levels were decreased upon stimulation of cells with IFN-β or virus infection. Substitution of serine 8 in the CARD RIG-I functional domain with phosphomimetic aspartate or glutamate results in decreased TRIM25 binding, RIG-I ubiquitination, MAVS binding, and downstream signaling. Finally, sequence comparison reveals that only primate species carry serine 8, whereas other animal species carry an asparagine, indicating that serine 8 phosphorylation may represent a primate-specific regulation of RIG-I activation. Collectively, these data suggest that the phosphorylation of RIG-I serine 8 operates as a negative switch of RIG-I activation by suppressing TRIM25 interaction, further underscoring the importance of RIG-I and TRIM25 connection in type I IFN signal transduction.  相似文献   

7.
Hepatitis B virus (HBV) encodes the regulatory HBx protein, which is required for virus replication, although its specific role(s) in the replication cycle remains under investigation. An immunoprecipitation/mass spectrometry approach was used to identify four novel HBx binding proteins from the cytoplasmic fraction of HBx transgenic mouse livers. One of these HBx binding partners is beta interferon promoter stimulator 1 (IPS-1), an adaptor protein that plays a critical role in mediating retinoic acid-inducible gene I (RIG-I) signaling, which leads to the activation of beta interferon (IFN-β). The HBx-IPS-1 protein interaction was confirmed in plasmid-transfected HepG2 cells by reciprocal coimmunoprecipitation and Western blotting. We hypothesized that HBx might alter IPS-1 function since proteins of hepatitis C virus and hepatitis A virus similarly bind IPS-1 and target it for inactivation. The effect of HBx on IPS-1-mediated IFN-β signaling was tested in transfected 293T and HepG2 cells, and we show that HBx inhibits double-stranded DNA (dsDNA)-mediated IFN-β activation in a dose-dependent manner when expressed either alone or within the context of HBV replication. However, HBx does not inhibit poly(I:C)-activated IFN-β signaling. These results demonstrate that HBx interferes with the RIG-I pathway of innate immunity. Hepatitis B virus now joins hepatitis C virus and hepatitis A virus in targeting the same innate immune response pathway, presumably as a shared strategy to benefit replication of these viruses in the liver.  相似文献   

8.
Influenza A viruses (IAVs) continuously challenge the poultry industry and human health. Elucidation of the host factors that modulate the IAV lifecycle is vital for developing antiviral drugs and vaccines. In this study, we infected A549 cells with IAVs and found that host protein contactin-1 (CNTN1), a member of the immunoglobulin superfamily, enhanced viral replication. Bioinformatic prediction and experimental validation indicated that the expression of CNTN1 was reduced by microRNA-200c (miR-200c) through directly targeting. We further showed that CNTN1-modulated viral replication in A549 cells is dependent on type I interferon signaling. Co-immunoprecipitation experiments revealed that CNTN1 specifically interacts with MAVS and promotes its proteasomal degradation by removing its K63-linked ubiquitination. Moreover, we discovered that the deubiquitinase USP25 is recruited by CNTN1 to catalyze the deubiquitination of K63-linked MAVS. Consequently, the CNTN1-induced degradation cascade of MAVS blocked RIG-I-MAVS-mediated interferon signaling, leading to enhanced viral replication. Taken together, our data reveal novel roles of CNTN1 in the type I interferon pathway and regulatory mechanism of IAV replication.  相似文献   

9.
Under RNA virus infection, retinoic acid-inducible gene I (RIG-I) in host cells recognizes viral RNA and activates the expression of type I IFN. To investigate the roles of protein methyltransferases and demethylases in RIG-I antiviral signaling pathway, we screened all the known related enzymes with a siRNA library and identified LSD1 as a positive regulator for RIG-I signaling. Exogenous expression of LSD1 enhances RIG-I signaling activated by virus stimulation, whereas its deficiency restricts it. LSD1 interacts with RIG-I, promotes its K63-linked polyubiquitination and interaction with VISA/MAVS. Interestingly, LSD1 exerts its function in antiviral response not dependent on its demethylase activity but through enhancing the interaction between RIG-I with E3 ligases, especially TRIM25. Furthermore, we provide in vivo evidence that LSD1 increases antiviral gene expression and inhibits viral replication. Taken together, our findings demonstrate that LSD1 is a positive regulator of signaling pathway triggered by RNA-virus through mediating RIG-I polyubiquitination.  相似文献   

10.
Retinoic acid-inducible gene I (RIG-I) recognizes RNA virus-derived nucleic acids, which leads to the production of type I interferon (IFN) in most cell types. Tight regulation of RIG-I activity is important to prevent ultra-immune responses. In this study, we identified an ARF-like (ARL) family member, ARL16, as a protein that interacts with RIG-I. Overexpression of ARL16, but not its homologous proteins ARL1 and ARF1, inhibited RIG-I-mediated downstream signaling and antiviral activity. Knockdown of endogenous ARL16 by RNAi potentiated Sendai virus-induced IFN-β expression and vesicular stomatitis virus replication. ARL16 interacted with the C-terminal domain (CTD) of RIG-I to suppress the association between RIG-I and RNA. ARL16 (T37N) and ARL16Δ45-54, which were restricted to the GTP-disassociated form, did not interact with RIG-I and also lost the inhibitory function. Furthermore, we suggest that endogenous ARL16 changes to GTP binding status upon viral infection and binds with the RIG-I CTD to negatively control its signaling activity. These findings suggested a novel innate immune function for an ARL family member, and a GTP-dependent model in which RIG-I is regulated.  相似文献   

11.
B cells play a critical role in the initialization and development of the systemic lupus erythematosus that is dependent on the expression of the endosomal ssRNA receptor TLR7. Previous studies have established that B cell expression of TLR7 is controlled by the type I IFN secreted by plasmacytoid dendritic cells. In this article, we report that VISA, also known as MAVS, IPS-1, and CardIf, essential for RIG-I/MDA5-mediated signaling following sensing of cytosolic RNA, regulate B cell expression of TLR7 and CD23. We found that B cells from a VISA(-/-) mouse express reduced TLR7 but normal basal levels of type I IFN. We also show that although IFN-β and TLR7 agonists synergize to promote TLR7 expression in VISA(-/-) B cells, they do not fully complement the defect seen in VISA(-/-) cells. Cell transfer experiments revealed that the observed effects of VISA(-/-) are B cell intrinsic. The reduced TLR7 expression in B cells is correlated with impaired TLR7 agonist-induced upregulation of activation markers CD69 and CD86, cell proliferation, production of IFN-α, TNF, and IL-12, and NF-κB activation. Finally, studies indicate that genetic background may influence the observed phenotype of our VISA(-/-) mice, because VISA(-/-) B cells differ in CD23 and TLR7 expression when on C57BL/6 versus 129Sv-C57BL/6 background. Thus, our findings suggest an unexpected link between VISA-mediated cytosolic RLR signaling and autoimmunity.  相似文献   

12.
Retinoic acid-inducible gene I (RIG-I) is a key sensor for viral RNA in the cytosol, and it initiates a signaling cascade that leads to the establishment of an interferon (IFN)-mediated antiviral state. Because of its integral role in immune signaling, RIG-I activity must be precisely controlled. Recent studies have shown that RIG-I CARD-dependent signaling function is regulated by the dynamic balance between phosphorylation and TRIM25-induced K63-linked ubiquitination. While ubiquitination of RIG-I is critical for RIG-I''s ability to induce an antiviral IFN response, phosphorylation of RIG-I at S8 or T170 suppresses RIG-I signal-transducing activity under normal conditions. Here, we not only further define the roles of S8 and T170 phosphorylation for controlling RIG-I activity but also identify conventional protein kinase C-α (PKC-α) and PKC-β as important negative regulators of the RIG-I signaling pathway. Mutational analysis indicated that while the phosphorylation of S8 or T170 potently inhibits RIG-I downstream signaling, the dephosphorylation of RIG-I at both residues is necessary for optimal TRIM25 binding and ubiquitination-mediated RIG-I activation. Furthermore, exogenous expression, gene silencing, and specific inhibitor treatment demonstrated that PKC-α/β are the primary kinases responsible for RIG-I S8 and T170 phosphorylation. Coimmunoprecipitation showed that PKC-α/β interact with RIG-I under normal conditions, leading to its phosphorylation, which suppresses TRIM25 binding, RIG-I CARD ubiquitination, and thereby RIG-I-mediated IFN induction. PKC-α/β double-knockdown cells exhibited markedly decreased S8/T170 phosphorylation levels of RIG-I and resistance to infection by vesicular stomatitis virus. Thus, these findings demonstrate that PKC-α/β-induced RIG-I phosphorylation is a critical regulatory mechanism for controlling RIG-I antiviral signal transduction under normal conditions.  相似文献   

13.
The interferon (IFN)-mediated antiviral response is a major defense of the host immune system. In order to complete their life cycle, viruses must modulate host IFN-mediated immune responses. Herpes simplex virus 1 (HSV-1) is a large DNA virus containing more than 80 genes, many of which encode proteins that are involved in virus-host interactions and show immune modulatory capabilities. In this study, we demonstrate that the US11 protein, an RNA binding tegument protein of HSV-1, is a novel antagonist of the beta IFN (IFN-β) pathway. US11 significantly inhibited Sendai virus (SeV)-induced IFN-β production, and its double-stranded RNA (dsRNA) binding domain was indispensable for this inhibition activity. Additionally, wild-type HSV-1 coinfection showed stronger inhibition than US11 mutant HSV-1 in SeV-induced IFN-β production. Coimmunoprecipitation analysis demonstrated that the US11 protein in HSV-1-infected cells interacts with endogenous RIG-I and MDA-5 through its C-terminal RNA-binding domain, which was RNA independent. Expression of US11 in both transfected and HSV-1-infected cells interferes with the interaction between MAVS and RIG-I or MDA-5. Finally, US11 dampens SeV-mediated IRF3 activation. Taken together, the combined data indicate that HSV-1 US11 binds to RIG-I and MDA-5 and inhibits their downstream signaling pathway, preventing the production of IFN-β, which may contribute to the pathogenesis of HSV-1 infection.  相似文献   

14.
15.
Understanding the mechanisms of hepatitis C virus (HCV) pathogenesis and persistence has been hampered by the lack of small, convenient animal models. GB virus B (GBV-B) is phylogenetically the closest related virus to HCV. It causes generally acute and occasionally chronic hepatitis in small primates and is used as a surrogate model for HCV. It is not known, however, whether GBV-B has evolved strategies to circumvent host innate defenses similar to those of HCV, a property that may contribute to HCV persistence in vivo. We show here in cultured tamarin hepatocytes that GBV-B NS3/4A protease, but not a related catalytically inactive mutant, effectively blocks innate intracellular antiviral responses signaled through the RNA helicase, retinoic acid-inducible gene I (RIG-I), an essential sensor molecule that initiates host defenses against many RNA viruses, including HCV. GBV-B NS3/4A protease specifically cleaves mitochondrial antiviral signaling protein (MAVS; also known as IPS-1/Cardif/VISA) and dislodges it from mitochondria, thereby disrupting its function as a RIG-I adaptor and blocking downstream activation of both interferon regulatory factor 3 and nuclear factor kappa B. MAVS cleavage and abrogation of virus-induced interferon responses were also observed in Huh7 cells supporting autonomous replication of subgenomic GBV-B RNAs. Our data indicate that, as in the case of HCV, GBV-B has evolved to utilize its major protease to disrupt RIG-I signaling and impede innate antiviral defenses. These data provide further support for the use of GBV-B infection in small primates as an accurate surrogate model for deciphering virus-host interactions in hepacivirus pathogenesis.  相似文献   

16.
RLR[retinoic acid-inducible gene Ⅰ(RIG-Ⅰ)-like Receptors]是一类表达在胞浆中的模式识别受体, 在识别细胞质中经病毒复制产生的病毒RNA后, 启动一系列信号级联反应, 以诱导机体Ⅰ型干扰素及干扰素诱导的抗病毒基因的表达, 最后达到清除机体病毒感染的目的。由于在病毒感染时机体干扰素反应必须迅速启动, 当病毒清除后干扰素反应又需要立即恢复到正常本底水平, 因此RLR激活的信号转导途径受到了严格的调控, 其中就包括由E3泛素连接酶参与的泛素化修饰调控和由去泛素化酶参与的去泛素化修饰调控。自2003年成功鉴定出鱼类干扰素基因以来, 鱼类也被发现具有保守的RLR信号转导途径诱导干扰素抗病毒免疫反应, 该信号途径同样受到泛素化修饰的调控。文章总结了近年来泛素化修饰在哺乳类和鱼类RLR介导的抗病毒免疫应答通路中的调节机制。  相似文献   

17.
18.
Retinoic acid inducible gene I (RIG-I) is a viral RNA sensor crucial in defense against several viruses including measles, influenza A and hepatitis C. RIG-I activates type-I interferon signalling through the adaptor for mitochondrial antiviral signaling (MAVS). The E3 ubiquitin ligase, tripartite motif containing protein 25 (TRIM25), activates human RIG-I through generation of anchored K63-linked polyubiquitin chains attached to lysine 172, or alternatively, through the generation of unanchored K63-linked polyubiquitin chains that interact non-covalently with RIG-I CARD domains. Previously, we identified RIG-I of ducks, of interest because ducks are the host and natural reservoir of influenza viruses, and showed it initiates innate immune signaling leading to production of interferon-beta (IFN-β). We noted that K172 is not conserved in RIG-I of ducks and other avian species, or mouse. Because K172 is important for both mechanisms of activation of human RIG-I, we investigated whether duck RIG-I was activated by TRIM25, and if other residues were the sites for attachment of ubiquitin. Here we show duck RIG-I CARD domains are ubiquitinated for activation, and ubiquitination depends on interaction with TRIM25, as a splice variant that cannot interact with TRIM25 is not ubiquitinated, and cannot be activated. We expressed GST-fusion proteins of duck CARD domains and characterized TRIM25 modifications of CARD domains by mass spectrometry. We identified two sites that are ubiquitinated in duck CARD domains, K167 and K193, and detected K63 linked polyubiquitin chains. Site directed mutagenesis of each site alone, does not alter the ubiquitination profile of the duck CARD domains. However, mutation of both sites resulted in loss of all attached ubiquitin and polyubiquitin chains. Remarkably, the double mutant duck RIG-I CARD still interacts with TRIM25, and can still be activated. Our results demonstrate that anchored ubiquitin chains are not necessary for TRIM25 activation of duck RIG-I.  相似文献   

19.
20.
VISA is an adapter protein required for virus-triggered IFN-beta signaling   总被引:14,自引:0,他引:14  
Xu LG  Wang YY  Han KJ  Li LY  Zhai Z  Shu HB 《Molecular cell》2005,19(6):727-740
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号