首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
《Luminescence》2004,19(1):1-7
Indole‐2 and 3‐carboxamides (IDs) are proposed to be selective cyclooxygenase inhibitors. Since cyclooxygenase‐1 may be involved in reactive oxygen species (ROS) production, we hypothesize that these indole derivatives have antioxidative properties. We have employed chemiluminescence (CL) and electron spin resonance (ESR) spin trapping to examine this hypothesis. We report here the results of a study of reactivity of 10 selected indole derivatives towards ROS. The following generators of ROS were applied: potassium superoxide (KO2) as a source of superoxide radicals (O2·?), the Fenton reaction (Co‐EDTA/H2O2) for hydroxyl radicals (HO·), and a mixture of alkaline aqueous H2O2 and acetonitrile for singlet oxygen (1O2). Hydroxyl radicals were detected as 5,5‐dimethyl‐1‐pyrroline‐N‐oxide (DMPO) spin adduct, whereas 2,2,6,6‐tetramethyl‐piperidine (TEMP) was used as a detector of 1O2. Using the Fenton reaction, 0.5 mmol/L IDs were found to inhibit DMPO‐?H radical formation in the range 7–37%. Furthermore the tested compounds containing the thiazolyl group also inhibited the 1O2‐dependent TEMPO radical, generated in the acetonitrile + H2O2 system. About 20% inhibition was obtained in the presence of 0.5 mmol/L IDs. 1 mmol/L IDs caused an approximately 13–70% decrease in the CL sum from the O2·? generating system (1 mmol/L). The aim of this paper is to evaluate these indole derivatives as antioxidants and their abilities to scavenge ROS. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
The purpose of this study was to identify the antioxidant activity of 16 compounds isolated from Piper cubeba (CNCs) through the extent of their capacities to scavenge free radicals, hydroxyl radical (HO?), superoxide anion radical () and 2,2‐diphenyl‐1‐picrylhydrazyl radical (DPPH?), in different systems. Electron paramagnetic resonance (EPR) and 5,5‐dimethyl‐1‐pyrroline‐N‐oxide, DMPO, as the spin trap, and chemiluminescence techniques were applied. Using the Fenton‐like reaction [Fe(II) + H2O2], CNCs were found to inhibit DMPO? OH radical formation ranging from 5 to 57% at 1.25 mmol L?1 concentration. The examined CNCs also showed a high DPPH antiradical activity (ranging from 15 to 99% at 5 mmol L?1 concentration). Furthermore, the results indicated that seven of the 16 tested compounds may catalyse the conversion of superoxide radicals generated in the potassium superoxide/18‐crown‐6 ether system, thus showing superoxide dismutase‐like activity. The data obtained suggest that radical scavenging properties of CNCs might have potential application in many plant medicines. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
The antioxidant behavior of a series of new synthesized substituted thiazolyl‐thiazolidine‐2,4‐dione compounds (TZDs) was examined using chemiluminescence and electron paramagnetic resonance spin trapping techniques. 5,5‐Dimethyl‐1‐pyrroline‐N‐oxide (DMPO) was used as the spin trap. The reactivity of TZDs with superoxide anion radical (O) and hydroxyl radical (HO?) was evaluated using potassium superoxide/18‐crown‐6 ether dissolved in dimethylsulfoxide, and the Fenton‐like reaction (Fe2+ + H2O2), respectively. The results showed that TZDs efficiently inhibited light emission from the O generating system at a concentration of 0.05–1 mmol L?1 (5–94% reductions were found at 1 mmol L?1 concentration). The TZD compounds showed inhibition of HO?‐dependent DMPO–OH spin adduct formation from DMPO (the amplitude decrease ranged from 8 to 82% at 1 mmol L?1 concentration). The findings showed that examined TZDs had effective activities as radical scavengers. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
The antioxidant effects of chlorophyllin (CHL), a water-soluble analog of the green plant pigment chlorophyll, on different reactive oxygen species (ROS) were investigated by electron spin resonance (ESR) spectroscopy. As a standard, we have used the ability of CHL to scavenge the stable 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical. CHL inhibits the formation of 5,5-dimethyl-1-pyrroline-N-oxide adduct with hydroxyl radical (DMPO-OH adduct) generated by γ-radiation in a dose-dependent manner. At a concentration of 1 mM, CHL caused more than 90% inhibition of ESR signal intensity of this adduct. However, the results obtained with the Fenton reaction were different. We also found evidence for the inhibition of 1O2-dependent formation of the 2,2,6,6-tetramethyl-piperidine oxide (TEMPO) radical during photosensitization of methylene blue with visible light. CHL was also able to inhibit hydrogen peroxide induced oxidation of phenol red. The rate constant of the reaction of CHL with H2O2 was found to be 2.7×106 M-1s-1. In conclusion, CHL has potent antioxidant ability involving scavenging of various physiologically important ROS.  相似文献   

5.
Free radical activity towards superoxide anion radical (), hydroxyl radical (HO?) and 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH?) of a series of novel thiazolidine‐2,4‐dione derivatives (TSs) was examined using chemiluminescence, electron paramagnetic resonance (EPR) and EPR spin trapping techniques. 5,5‐Dimethyl‐1‐pyrroline‐N‐oxide (DMPO) was applied as the spin trap. Superoxide radical was produced in the potassium superoxide/18‐crown‐6 ether dissolved in dimethyl sulfoxide. Hydroxyl radical was generated in the Fenton reaction (Fe(II) + H2O2. It was found that TSs showed a slight scavenging effect (15–38% reduction at 2.5 mmol/L concentration) of the DPPH radical and a high scavenging effect of (41–88%). The tested compounds showed inhibition of HO? ‐dependent DMPO‐OH spin adduct formation (the amplitude of EPR signal decrease ranged from 20 to 76% at 2.5 mmol/L concentration. Our findings present new group compounds of relatively high reactivity towards free radicals. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Pirfenidone (Pf), a new broad-spectrum anti-fibrotic agent, is known to offer protection against lung fibrosis in vivo in laboratory animals, and against mitogenesis and collagen formation by human lung fibroblasts in vitro. Because reactive oxygen species are thought to be involved in these events, we investigated the mechanism(s) by which Pf ameliorates oxidative stress and its effects on NADPH-dependent lipid peroxidation. Pf has been shown to cause inhibit NADPH-dependent lipid peroxidation in sheep liver microsomes in a dose-dependent manner. The concentration of Pf required to cause 50% inhibition of lipid peroxidation was ~ 6 mM. Pf was found to be ineffective as a superoxide radical scavenger. Pf was also ineffective in decomposing H2O2 and chelating iron. In deoxyribose degradation assays, Pf was a potent scavenger of hydroxyl radicals with a rate constant of 5.4 × 109 M-1 sec-1. EPR spectroscopy in combination with spin trapping techniques, using a Fenton type reaction and DMPO as a spin-trapping agent, Pf scavenged hydroxyl radicals in a dose-dependent manner. The concentration of Pf required to inhibit 50% signal height was ~ 2.5 mM. Because iron was used in the Fenton reaction, the ability of Pf in chelating iron was verified in a fluorescent competitive assay using calcein as the fluorescent probe. Pf up to 10 mM concentration was ineffective in chelating either Fe2+ or Fe3+ in this system. We propose that Pf exerts its beneficial effects, at least in part, through its ability to scavenge toxic hydroxyl radicals.  相似文献   

7.
Phosvitin, a phosphoprotein known as an iron-carrier in egg yolk, binds almost all the yolk iron. In this study, we investigated the effect of phosvitin on Fe(II)-catalyzed hydroxyl radical (?OH) formation from H2O2 in the Fenton reaction system. Using electron spin resonance (ESR) with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) and deoxyribose degradation assays, we observed by both assays that phosvitin more effectively inhibited ?OH formation than iron-binding proteins such as ferritin and transferrin. The effectiveness of phosvitin was related to the iron concentration, indicating that phosvitin acts as an antioxidant by chelating iron ions. Phosvitin accelerates Fe(II) autoxidation and thus decreases the availability of Fe(II) for participation in the ?OH-generating Fenton reaction. Furthermore, using the plasmid DNA strand breakage assay, phosvitin protected DNA against oxidative damage induced by Fe(II) and H2O2. These results provide insight into the mechanism of protection of the developing embryo against iron-dependent oxidative damage in ovo.  相似文献   

8.
Recent reviews evidence that the naturally occurring compounds containing the chromone skeleton exhibit antiradical activities, providing protection against oxidative stress. The antioxidant activities of 13 new synthesized chromonyl‐2,4‐thiazolidinediones, chromonyl‐2,4‐imidazolidinediones and chromonyl‐2‐thioxoimidzolidine‐4‐ones were evaluated using in vitro antioxidant assays, including superoxide anion radical (), hydroxyl radical (), 2,2‐diphenyl‐1‐picryl‐hydrazyl free radical (DPPH?) scavenging capacity and total antioxidant capacity ferric ion reducing activity. Superoxide anion radical was produced using potassium superoxide/18‐crown‐6‐ether dissolved in dimethylsulfoxide, and the Fenton‐like reaction (Fe(II) + H2O2) was a generator of hydroxyl radicals. Chemiluminescence, spectrophotometry, electron paramagnetic resonance (EPR) and 5,5‐dimethyl‐1‐pyrroline‐N‐oxide (DMPO) as the spin trap were the measurement techniques. The results showed that the majority of the chromone derivatives tested showed a strong scavenging effect towards free radicals, similar to the chemiluminescence reaction with superoxide anion radical with a high activity, inhibition of the DMPO‐OOH radical EPR signal (24–58%), the DMPO‐OH radical EPR signal (4–75%) and DPPH radical EPR signal (6–100%) at 1 mmol/L. Several of the examined compounds exhibited the high reduction potentials. The results obtained show that the new synthesized chromone derivatives may directly scavenger reactive oxygen species and thus may play a protective role against oxidative damage. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
The effect of lactic acid (lactate) on Fenton based hydroxyl radical (·OH) production was studied by spin trapping, ESR, and fluorescence methods using DMPO and coumarin-3-carboxylic acid (3-CCA) as the ·OH traps respectively. The ·OH adduct formation was inhibited by lactate up to 0.4mM (lactate/iron stoichiometry = 2) in both experiments, but markedly enhanced with increasing concentrations of lactate above this critical concentration. When the H2O2 dependence was examined, the DMPO-OH signal was increased linearly with H2O2 concentration up to 1 mM and then saturated in the absence of lactate. In the presence of lactate, however, the DMPO-OH signal was increased further with higher H2O2 concentration than 1 mM, and the saturation level was also increased dependent on lactate concentration. Spectroscopic studies revealed that lactate forms a stable colored complex with Fe3+ at lactate/Fe3+ stoichiometry of 2, and the complex formation was strictly related to the DMPO-OH formation. The complex formation did not promote the H2O2 mediated Fe3+ reduction. When the Fe3+-lactate (1:2) complex was reacted with H2O2, the initial rate of hydroxylated 3-CCA formation was linearly increased with H2O2 concentrations. All the data obtained in the present experiments suggested that the Fe3+-lactate (1:2) complex formed in the Fenton reaction system reacts directly with H2O2 to produce additional ·OH in the Fenton reaction by other mechanisms than lactate or lactate/Fe3+ mediated promotion of Fe3+/Fe2+ redox cycling.  相似文献   

10.
The oxygen free radical scavenging activities of 15 chromonyl‐thiazolidine‐2,4‐dione compounds (CTDs) were examined in chemical systems producing superoxide anion radicals, O (potasium superoxide–18‐crown‐6 ether–DMSO), and hydroxyl radicals, HO? (a Fenton reaction: Fe(II)–H2O2–sodium trifluoroacetate, pH 6.15). Chemiluminescence and electron spin resonance (ESR) spectroscopy using 5,5‐dimethyl‐1‐pyrroline‐1‐oxide (DMPO) as spin trap were applied to evaluate antioxidant behaviour of CTDs towards the oxygen radicals. The results indicated that 11 of the 15 tested compounds showed a significant inhibitory effect on the chemiluminescence generated from the O‐generating system, ranging from 41 to 86%, and 13 CTDs quenched the ESR signal of the DMPO–OH spin adduct by 33–86%, at a concentration of 1 mmol L?1. Our findings demonstrate that CTDs could be good free radical scavengers. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
Deferiprone (L1) is an effective iron-chelating drug that is widely used for the treatment of iron-overload diseases. It is known that in aqueous solutions Fe2+ and Fe3+ ions can produce hydroxyl radicals via Fenton and photo-Fenton reactions. Although previous studies with Fe2+ have reported ferroxidase activity by L1 followed by the formation of Fe3+ chelate complexes and potential inhibition of Fenton reaction, no detailed data are available on the molecular antioxidant mechanisms involved. Similarly, in vitro studies have also shown that L1–Fe3+ complexes exhibit intense absorption bands up to 800 nm and might be potential sources of phototoxicity. In this study we have applied an EPR spin trapping technique to answer two questions: (1) does L1 inhibit the Fenton reaction catalyzed by Fe2+ and Fe3+ ions and (2) does UV–Vis irradiation of the L1–Fe3+ complex result in the formation of reactive oxygen species. PBN and TMIO spin traps were used for detection of oxygen free radicals, and TEMP was used to trap singlet oxygen if it was formed via energy transfer from L1 in the triplet excited state. It was demonstrated that irradiation of Fe3+ aqua complexes by UV and visible light in the presence of spin traps results in the appearance of an EPR signal of the OH spin adduct (TMIO–OH, a(N)=14.15 G, a(H)=16.25 G; PBN–OH, a(N)=16.0 G, a(H)=2.7 G). The presence of L1 completely inhibited the OH radical production. The mechanism of OH spin adduct formation was confirmed by the detection of methyl radicals in the presence of dimethyl sulfoxide. No formation of singlet oxygen was detected under irradiation of L1 or its iron complexes. Furthermore, the interaction of L1 with Fe2+ ions completely inhibited hydroxyl radical production in the presence of hydrogen peroxide. These findings confirm an antioxidant targeting potential of L1 in diseases related to oxidative damage.  相似文献   

12.
To clarify the effect of superoxide dismutase (SOD) on the formation of hydroxyl radical in a standard reaction mixture containing 15 μM of xanthone, 0.1 M of 5,5-dimethyl-1-pyrroline N-oxide (DMPO), and 45 mM of phosphate buffer (pH 7.4) under UVA irradiation, electron paramagnetic resonance (EPR) measurements were performed. SOD enhanced the formation of hydroxyl radicals. The formation of hydroxyl radicals was inhibited on the addition of catalase. The rate of hydroxyl radical formation also slowed down under a reduced oxygen concentration, whereas it was stimulated by disodium ethylenediaminetetraacetate (EDTA) and diethyleneaminepentaacetic acid (DETAPAC). Above findings suggest that O2, H2O2, and iron ions participate in the reaction. SOD possibly enhances the formation of the hydroxyl radical in reaction mixtures of photosensitizers that can produce O2 .  相似文献   

13.
N-Nitrosodialkylamines are known to be potent indirect-acting mutagens/carcinogens, which are activated by cytochrome P450. The reaction product of N-nitroso-N-methylbutylamine (NMB) with modified Fenton’s reagent supplemented with copper salt (Fe2+–Cu2+–H2O2) was reported to be mutagenic in Salmonella typhimurium TA1535 without S9 mix. In this study, the NMB activation mechanism was investigated by ESR spectroscopy with radical trapping agents to detect radical species and also by observing changes in mutagenic potency with a Salmonella strain in the Ames assay in the presence of radical trapping agents. In ESR spectroscopy experiments, the hydroxyl radical generated from the modified Fenton’s reagent was detected using the hydroxyl radical trapping agent 5,5-dimethyl-1-pyrroline N-oxide (DMPO). Since the amount of the DMPO–OH adduct decreased with the addition of NMB, hydroxyl radical was presumed to react with NMB followed by the generation of nitric oxide (NO), which was detected as CarboxyPTI through reaction with 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (CarboxyPTIO). The mutagenicity of the reaction extract decreased following the addition of DMPO or CarboxyPTIO. Furthermore, the mutagenicity of the reaction product in the presence of DMPO was enhanced by the addition of NO. The reaction product from NMB with Fe2+–Cu2+–NO in the absence of H2O2 was mutagenic, and this activity increased with the introduction of additional NO. These findings suggest that hydroxyl radical takes part in the generation of NO from NMB and that NO plays an important role in NMB activation in the presence of Fe2+ and Cu2+.  相似文献   

14.
The chemiluminescence (CL) of lucigenin (Luc2+) can be enhanced by different alcohols in alkaline solution. The effect of different fatty alcohols on the CL of lucigenin was related to the carbon chain length and the number of hydroxyl groups. Glycerol provides the greatest enhancement. UV/Vis absorption spectra and fluorescence spectra showed that N‐methylacridone (NMA) was produced in the CL reaction in the presence of different alcohols. The peak of the CL spectrum was located at 470 nm in all cases, indicating that the luminophore was always the excited‐state NMA. The quenching of lucigenin CL by superoxide dismutase (SOD) and the electron spin resonance (ESR) results with the spin trap of 5,5‐dimethyl‐1‐pyrroline N‐oxide (DMPO) demonstrated that superoxide anions (O2?–) were generated from dissolved oxygen in the CL reaction and that glycerol and dihydroxyacetone (DHA) can promote O2?? production by the reduction of dissolved oxygen in alkaline solution. It was assumed that the enhancement provided by different alcohols was related to the solvent effect and reducing capacity. Glycerol and DHA can also reduce Luc2+ into lucigenin cation radicals (Luc?+), which react with O2?? to produce CL, and glycerol can slowly transform into DHA, which is oxidized quickly in alkaline solution. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
《Free radical research》2013,47(5-6):395-407
Spin trapping of short-lived R. radicals is done by use of N-tert-butylhydroxylamine (1) and H2O2. The hydroxylamine is oxidized to the radical t-BuN(O)H (2) which is converted into the spin trap 2-methyl-2-nitrosopropane (3). Simultaneously, hydroxyl radicals. OH are formed from H2O2. The latter radical species abstracts hydrogen atoms from suitable molecules HR to give R. radicals, which are trapped with the formation of aminooxyl radicals, i. e., t-BuN(O)R (4) detectable by EPR spectroscopy. The reaction is enhanced by the presence of iron ions. The cleavage of H2O2 into. OH radicals is considered to involve both a radical-driven (t-BuN(O)H 2) and an iron-driven Fenton reaction.  相似文献   

16.
The direct effects of the four catecholamines (CATs), adrenaline (A), noradrenaline (NA), dopamine (D) and isoproterenol (I), on free radicals were investigated using the free radical 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH?) and hydroxyl radial (HO?). The CATs examined were found to inhibit the ESR signal intensity of DPPH? in a dose‐dependent manner over the range 0.1–2.5 mmol/L in the following order: NA > A > I > D, with IC50 = 0.30 ± 0.03 for noradrenaline and IC50 = 0.86 ± 0.02 for dopamine. Hydroxyl radicals were produced using a Fenton reaction in the presence of the spin trap 5,5‐dimethyl‐1‐pyrroline N‐oxide (DMPO), and ESR technique was applied to detect the CATs reactivity toward the radicals. The reaction rates constant (kr) of CATs with HO? were found to be in the order of 109 L/mol/s, and the kr value for noradrenaline was the highest (kr = 8.4 × 109 L/mol/s). The CATs examined exhibited also a strong decrease in the light emission (62–73% at 1 mmol/L concentration and 79–89% at 2 mmol/L concentration) from a Fenton‐like reaction. These reactions may be relevant to the biological action of these important polyphenolic compounds. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Incubation of MC-1010 cells with the spin-trapping agent 5,5-dimethyl-1-pyrroline 1-oxide (DMPO) followed by brief treatment with the solid oxidant lead dioxide (PbO2) yielded, after filtration, a cell-free solution that contained two nitroxyl adducts. The first was the hydroxyl radical adduct, 5,5-dimethyl-2-hydroxypyrrolidine-1-oxyl (DMPO-OH), which formed immediately upon PbO2 oxidation. The second had a 6-line EPR spectrum typical of a carbon-centered radical (AN=15.9 G; AH=22.4 G) and formed more slowly. No radical signals were detected in the absence of either cells or PbO2 treatment. The 6-line spectrum could be duplicated in model systems that contained ascorbate, DMPO and DMPO-OH, where the latter was formed from hydroxyl radicals generated by sonolysis or the cleavage of hydrogen peroxide with Fe2+ (Fenton reaction). In addition, enrichment of MC-1010 cells with ascorbate prior to spin trapping yielded the 6-line EPR spectrum as the principal adduct following PbO2 oxidation and filtration. These results suggest that ascorbate reacted with DMPO-OH to form a carbon-centered ascorbyl radical that was subsequently trapped by DMPO. The requirement for mild oxidation to detect the hydroxyl radical adduct suggests that DMPO-OH formed in the cells was reduced to an EPR-silent form (i.e., the hydroxylamine derivative). Alternatively, the hydroxylamine derivative was the species initially formed. The evidence for endogenous hydroxyl radical formation in unstimulated leukocytes may be relevant to the leukemic nature of the MC-1010 cell line. The spin trapping of the ascorbyl radical is the first report of formation of the carbon-centered ascorbyl radical by means other than pulse radiolysis. Unless it is spin trapped, the carbon-centered ascorbyl radical immediately rearranges to the more stable oxygen-centered species that is passive to spin trapping and characterized by the well-known EPR doublet of AH4=1.8 G.Abbreviation EPR Electron Paramagnetic Resonance  相似文献   

18.
The aim of this study was to characterize the antioxidant activity of penicillin G (PG), ampicillin (AMP), oxacillin (OX) and dicloxacillin (DOX) through their reactivity towards reactive oxygen species (superoxide anion radical, ; hydroxyl radical, HO?; peroxyl radical, ROO?; hydrogen peroxide, H2O2; DPPH?) using various in vitro antioxidant assays with chemiluminescence (CL) and spectrophotometry as measurement techniques. In hydroxyl radical assays , PG, OX and AMP were found to inhibit the CL signal arising from the Fenton‐like reaction in a dose‐dependent manner with IC50 = 0.480 ± 0.020 mM, IC50 = 0.569 ± 0.021 mM, and IC50 = 0.630 ± 0.019 mM, respectively. The highest reactivity of PG among the tested penicillins towards the HO radical was confirmed in the deoxyribose degradation assay. In the ABAP‐derived ROO radical assay, the radical‐scavenging ability of the test penicillins was in the following order: AMP > PG > DOX > OX. The number of reduced DPPH radicals by the drugs tested was <1 being the biggest for PG. The weak antioxidant capacity of the test penicillins was confirmed in the trolox antioxidant capacity assay (0.075 ± 0.004; 0.093 ± 0.006; 0.123 ± 0.005; 0.126 ± 0.004) for OX, AMP, DOX, PG, respectively. Use of luminol as a CL probe for estimation of penicillin reactivity towards H2O2 showed that only AMP was able to quench light emission; the remaining antibiotics demonstrated a strong enhancing effect. All the examined compounds showed a weak antioxidant potential when estimated using the ferric‐ferrozine assay. This study is the first to report the evaluation of test penicillins as antioxidants under the same reaction conditions.  相似文献   

19.
Addition of nifurtimox (a nitrofuran derivative used for the treatment of Chagas' disease) to rat liver microsomes produced an increase of (a) electron flow from NADPH to molecular oxygen, (b) generation of both superoxide anion radical (O2?) and hydrogen peroxide, and (c) lipid peroxidation. The nifurtimox-stimulated NADPH oxidation was greatly inhibited by NADP+ and p-chloromercuribenzoate, and to a lesser extent by SKF-525-A and metyrapone. These inhibitions reveal the function of both the NADPH-cytochrome P-450 (c) reductase and cytochrome P-450 in nifurtimox reduction. Superoxide dismutase, catalase (in the presence of superoxide dismutase), and hydroxyl radical scavengers (mannitol, 5,5-dimethyl-1-pyrroline-1-oxide) inhibited the nifurtimox-stimulated NADPH oxidation, in accordance with the additional operation of a reaction chain including the hydroxyl radical. Further evidence supporting the role of superoxide anion and hydroxyl radicals in the nifurtimox-induced NADPH oxidation resulted from the effect of specific inhibitors on NADPH oxidation by O2? (generated by the xanthine oxidase reaction) and by OH. (generated by an iron chelate or the Fenton reaction). Production of O2? by rat kidney, testes and brain microsomes was significantly stimulated by nifurtimox in the presence of NADPH. It is postulated that enhanced formation of free radicals is the basis for nifurtimox toxicity in mammals, in good agreement with the postulated mechanism of the trypanocide effect of nifurtimox on Trypanosoma cruzi.  相似文献   

20.
Evidence presented in this report suggests that the hydroxyl radical (OH.), which is generated from liver microsomes is an initiator of NADPH-dependent lipid peroxidation. The conclusions are based on the following observations: 1) hydroxyl radical production in liver microsomes as measured by esr spin-trapping correlates with the extent of NADPH induced microsomal lipid peroxidation as measured by malondialdehyde formation; 2) peroxidative degradation of arachidonic acid in a model OH · generating system, namely, the Fenton reaction takes place readily and is inhibited by thiourea, a potent OH · scavenger, indicating that the hydroxyl radical is capable of initiating lipid peroxidation; 3) trapping of the hydroxyl radical by the spin trap, 5,5-dimethyl-1-pyrroline-1-oxide prevents lipid peroxidation in liver microsomes during NADPH oxidation, and in the model system in the presence of linolenic acid. The possibility that cytochrome P-450 reductase is involved in NADPH-dependent lipid peroxidation is discussed. The optimal pH for the production of the hydroxyl radical in liver microsomes is 7.2. The generation of the hydroxyl radical is correlated with the amount of microsomal protein, possibly NADPH cytochrome P-450 reductase. A critical concentration of EDTA (5 × 10?5m) is required for maximal production of the hydroxyl radical in microsomal lipid peroxidation during NADPH oxidation. High concentrations of Fe2+-EDTA complex equimolar in iron and chelator do not inhibit the production of the hydroxyl radical. The production of the hydroxyl radical in liver microsomes is also promoted by high salt concentrations. Evidence is also presented that OH radical production in microsomes during induced lipid peroxidation occurs primarily via the classic Fenton reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号