首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microalgae are discussed as an alternative source for the production of biofuels. The lipid content compared to cultivation time of used species is the main reason for any choice of a special strain. This paper reviews more analytical data of 38 screened microalgae strains. After the cultivation period, total content of lipids was analysed. The extracted fatty acids were quantified as fatty acid methyl esters by GC analysis. The amino acids were analysed by HPLC. Chlorella sp., Chlorella saccharophila, Chlorella minutissima and Chlorella vulgaris were identified as species with the highest productivity of fatty acids relevant to transesterification reactions. The components were mainly linoleic acid, palmitic acid and oleic acid. To increase productivity of highly saturated fatty acids, cultivation parameters light intensity and temperature were varied. In this manner, the ideal conditions for biodiesel production were defined in this publication.  相似文献   

2.
Microalgae are an alternative and sustainable source of lipids that can be used as a feedstock for biodiesel production. Nitrate is a good nitrogen source for many microalgae and affects biomass and lipid yields of microalgae. In this study, the effect of nitrate on cell growth and lipid production and composition in Monoraphidium contortum, Tetraselmis suecica, and Chlorella minutissima was investigated. Nitrate affected the production of biomass and the production and composition of lipids of the three microalgae tested. Increasing the nitrate concentration in the culture medium resulted in increased biomass production and higher biomass productivity. Furthermore, increasing the nitrate concentration resulted in a reduction in lipid content and productivity in M. contortum; however, the opposite effect was observed in T. suecica and C. minutissima cultures. C. minutissima and M. contortum lipids contain high levels of oleic acid, with values ranging from 26 to 45.7% and 36.4 to 40.1%, respectively. The data suggest that because of its high lipid productivity (13.79 mg L?1 d?1) and high oleic acid productivity (3.78 mg L?1 d?1), Chlorella minutissima is a potential candidate for the production of high quality biodiesel.  相似文献   

3.
The presence of high levels of free fatty acids (FFA) in oil is a barrier to one‐step biodiesel production. Undesirable soaps are formed during conventional chemical methods, and enzyme deactivation occurs when enzymatic methods are used. This work investigates an efficient technique to simultaneously convert a mixture of free fatty acids and triglycerides (TAG). A partial soybean hydrolysate containing 73.04% free fatty acids and 24.81% triglycerides was used as a substrate for the enzymatic production of fatty acid methyl ester (FAME). Whole‐cell Candida antarctica lipase B‐expressing Aspergillus oryzae, and Novozym 435 produced only 75.2 and 73.5% FAME, respectively. Fusarium heterosporum lipase‐expressing A. oryzae produced more than 93% FAME in 72 h using three molar equivalents of methanol. FFA and TAG were converted simultaneously in the presence of increasing water content that resulted from esterification. Therefore, F. heterosporum lipase with a noted high level of tolerance of water could be useful in the industrial production of biodiesel from feedstock that has high proportion of free fatty acids.  相似文献   

4.
As a potential source of biomass supplies, cassava (Manihot esculenta Crantz) has been studied for bioethanol production, but not for the production of biodiesel. In this study, we used cassava hydrolysate as an alternative carbon source for the growth of microalgae (Chlorella protothecoides) which accumulated oil in vivo, with high oil content up to 53% by dry mass under a 5-L scale fermentation condition. The oils were extracted and converted into biodiesel by transesterification. The biodiesel obtained consisted of mainly unsaturated fatty acids methyl ester (over 82%), cetane acid methyl ester, linoleic acid methyl ester, and oleic acid methyl ester. This work suggests the feasibility of an alternative choice for producing biodiesel from cassava by microalgae fermentation. We report herewith the optimized condition for the fermentation and for the hydrolysis of cassava as the carbon source.  相似文献   

5.
New biomass sources for alternative fuels has become a subject of increasing importance as the nation strives to resolve the economic and strategic impacts of limited fossil fuel resources on our national security, environment, and global climate. Algae are among the most promising non‐food‐crop‐based biomass feedstocks. However, there are currently no commercially viable microalgae‐based production systems for biofuel production that have been developed, as limitations include less‐than optimal oil content, growth rates, and cultivation techniques. While batch studies are critical for determining basic growth phases and characteristics of the algal species, steady‐state studies are necessary to better understand and measure the specific growth parameters. This study evaluated the effects of dilution rate on microalgal biomass productivity, lipid content, and fatty acid profile under steady‐state conditions with continuous illumination and carbon dioxide supplemention for two types of algae. Continuous cultures were conducted for more that 3 months. Our results show that the productivity of Chlorella minutissima varied from 39 to 137 mg/L/day (dry mass) when the dilution rate varied from 0.08 to 0.64 day?1. The biomass productivity of C. minutissima reached a maximum value (137 mg/L/day) at a dilution rate of 0.33 day?1, while the productivity of Dunaliella tertiolecta varied from 46 to 91 mg/L/day at a dilution rate of 0.17 to 0.74 day?1. The biomass productivity of D. tertiolecta reached a maximum value of 91 mg/L/day at a dilution rate of 0.42 day?1. Moreover, the lipid content had no significant change with various dilution rates. Biotechnol. Bioeng. 2012; 109: 2468–2474. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
Microalgal biomass seems to be a promising feedstock for biofuel generation. Microalgae have relative high photosynthetic efficiencies, high growth rates, and some species can thrive in brackish water or seawater and wastewater from the food- and agro-industrial sector. Today, the main interest in research is the cultivation of microalgae for lipids production to generate biodiesel. However, there are several other biological or thermochemical conversion technologies, in which microalgal biomass could be used as substrate. However, the high protein content or the low carbohydrate content of the majority of the microalgal species might be a constraint for their possible use in these technologies. Moreover, in the majority of biomass conversion technologies, carbohydrates are the main substrate for production of biofuels. Nevertheless, microalgae biomass composition could be manipulated by several cultivation techniques, such as nutrient starvation or other stressed environmental conditions, which cause the microalgae to accumulate carbohydrates. This paper attempts to give a general overview of techniques that can be used for increasing the microalgal biomass carbohydrate content. In addition, biomass conversion technologies, related to the conversion of carbohydrates into biofuels are discussed.  相似文献   

7.
Microalgae have the ability to mitigate CO2 emission and produce oil with a high productivity, thereby having the potential for applications in producing the third-generation of biofuels. The key technologies for producing microalgal biofuels include identification of preferable culture conditions for high oil productivity, development of effective and economical microalgae cultivation systems, as well as separation and harvesting of microalgal biomass and oil. This review presents recent advances in microalgal cultivation, photobioreactor design, and harvesting technologies with a focus on microalgal oil (mainly triglycerides) production. The effects of different microalgal metabolisms (i.e., phototrophic, heterotrophic, mixotrophic, and photoheterotrophic growth), cultivation systems (emphasizing the effect of light sources), and biomass harvesting methods (chemical/physical methods) on microalgal biomass and oil production are compared and critically discussed. This review aims to provide useful information to help future development of efficient and commercially viable technology for microalgae-based biodiesel production.  相似文献   

8.
The aim of this study was to investigate the potential of the green microalga Chlorella saccharophila as a source of oil for biodiesel production. We evaluated for the first time, the effect of salinity and/or nitrogen depletion (ND) on cell growth, lipid accumulation and lipid profile in this microalga. The fatty acid methyl esters (FAME) identified for C. saccharophila in this study consisted of C-16:0, C-18:0, C-18:1 cis, and C-18:1 trans. Among these, C-18:1 (indicator of biodiesel quality) was the main FAME found, representing approximately 76 and 80% of total FAME under normal and ND growing conditions, respectively. Under a normal growing condition this microalga showed 154.63 mg l−1 d−1, 63.33 mg l−1 d−1, and 103.73 mg l−1 of biomass productivity, lipid productivity, and FAME yield, respectively. The higher biomass productivity (159.58 mg l−1 d−1), lipid productivity (99.33 mg l−1 d−1), and FAME yield (315.53 mg l−1) were obtained under the ND treatment. In comparison to other related studies, our results suggest that C. saccharophila can be considered as a suitable source of oil for biodiesel production.  相似文献   

9.
Li Y  Zhou W  Hu B  Min M  Chen P  Ruan RR 《Bioresource technology》2011,102(23):10861-10867
The objectives of this study are to find the robust strains for the centrate cultivation system and to evaluate the effect of environmental factors including light intensity, light–dark cycle, and exogenous CO2 concentration on biomass accumulation, wastewater nutrient removal and biodiesel production. The results showed that all 14 algae strains from the genus of Chlorella, Haematococcus, Scenedesmus, Chlamydomonas, and Chloroccum were able to grow on centrate. The highest net biomass accumulation (2.01 g/L) was observed with Chlorella kessleri followed by Chlorella protothecoides (1.31 g/L), and both of them were proved to be capable of mixotrophic growth when cultivated on centrate. Environmental factors had significant effect on algal biomass accumulation, wastewater nutrients removal and biodiesel production. Higher light intensity and exogenous CO2 concentration with longer lighting period promote biomass accumulation, biodiesel production, as well as the removal of chemical oxygen demand and nitrogen, while, lower exogenous CO2 concentration promotes phosphorus removal.  相似文献   

10.
We investigated the potential of seaweeds as feedstock for oil‐based products, and our results support macroalgae (seaweeds) as a biomass source for oil‐based bioproducts including biodiesel. Not only do several seaweeds have high total lipid content above 10% dry weight, but in the brown alga Spatoglossum macrodontum 50% of these lipids are in the form of extractable fatty acids. S. macrodontum had the highest fatty acid content (57.40 mg g?1 dw) and a fatty acid profile rich in saturated fatty acids with a high content of C18:1, which is suitable as a biofuel feedstock. Similarly, the green seaweed Derbesia tenuissima has high levels of fatty acids (39.58 mg g?1 dw), however, with a high proportion of PUFA (n‐3) (31% of total lipid) which are suitable as nutraceuticals or fish oil replacements. Across all species of algae the critical parameter of fatty acid content (measured as fatty acid methyl esters, FAME) was positively correlated (R2 = 0.67) with total lipid content. However, the proportion of fatty acids to total lipid decreased markedly with total lipid content, generally between 30% and 50%, making it an inaccurate measure of the potential to identify seaweeds suitable for oil‐based bioproducts. Finally, we quantified within species variation of fatty acids across locations and sampling periods supporting either environmental effects on quantitative fatty acid profiles, or genotypes with specific quantitative fatty acid profiles, thereby opening the possibility to optimize the fatty acid content and quality for oil production through specific culture conditions and selective breeding.  相似文献   

11.
An actinomycete producing oil‐like mixtures was isolated and characterized. The strain was isolated from sheep faeces and identified as Streptomyces sp. S161 based on 16S rRNA gene sequence analysis. The strain showed cellulase and xylanase activities. The 1H nuclear magnetic resonance (NMR) spectra of the mixtures showed that the mixtures were composed of fatty acid methyl esters (52·5), triglycerides (13·7) and monoglycerides (9·1) (mol.%). Based on the gas chromatography–mass spectrometry (GC‐MS) analysis, the fatty acid methyl esters were mainly composed of C14‐C16 long‐chain fatty acids. The results indicated that Streptomyces sp. S161 could produce fatty acid methyl esters (FAME) directly from starch. To our knowledge, this is the first isolated strain that can produce biodiesel (FAME) directly from starch.

Significance and Impact of the Study

Nowadays, production of biodiesel is based on plant oils, animal fats, algal oils and microbial oils. Lipid mostly consists of triacylglycerols (TAG), and conversion of these lipids into fatty acid short‐chain alcohol esters (methanol or ethanol) is the final step in biodiesel production. In this study, an oil‐producing Streptomyces strain was isolated from sheep faeces. The oil was composed of C14‐C16 long‐chain fatty acid methyl esters, triglycerides and monoglycerides. This is the first isolated strain‐producing biodiesel (FAME) directly from starch. Due to showing cellulase and xylanase activities, the strain would be helpful for converting renewable lignocellulose into biodiesel directly.  相似文献   

12.
Multi-parameter flow cytometry was used to monitor cell intrinsic light scatter, viability, and lipid content of Chlorella protothecoides cells grown in shake flasks. Changes in the right angle light scatter (RALS) and forward angle light scatter (FALS) were detected during the microalgal growth, which were attributed to the different microalgal cell cycle stages. The proportion of cells not stained with PI (cells with intact cytoplasmic membrane) was high (> 90%) during the microalgal growth, even in the latter stationary phase, suggesting that the microalgal cells built-up storage materials which allowed them to survive under nutrient starvation, maintaining their cytoplasmic membranes intact. A high correlation between the Nile Red fluorescence intensity measured by flow cytometry and total lipid content assayed by the traditional lipid extraction method was found for this microalga, making this method a suitable and quick technique for the screening of microalgal strains for lipid production, optimization of biofuel production bioprocesses, and scale-up studies. The highest oil content (∼28% w/w dry cell weight, estimated by flow cytometry) was observed in the latter stationary phase. In addition, C. protothecoides oil also depicted the adequate fatty acid methyl ester composition for biodiesel purposes at this growth phase, suggesting that the microalgal oil produced during the latter stationary phase could be an adequate substitute for diesel fuel. Medium growth optimization for enhancement of microalgal oil production is now in progress, using the multi-parameter approach.  相似文献   

13.
Singh M  Reynolds DL  Das KC 《Bioresource technology》2011,102(23):10841-10848
The potential of mixotrophic microalgae to utilize poultry litter anaerobic digester (AD) effluent (PLDE) as nutritional growth medium was evaluated. Three algal strains viz. Chlorella minutissima, Chlorella sorokiniana and Scenedesmus bijuga and their consortium showed significant biomass productivity in 6% (v/v) concentration of PLDE in deionized water. Multiple booster dosage of PLDE supported better growth relative to a single dose PLDE. The maximum biomass productivity of 76 mg L−1 d−1 was recorded. The biomass was rich in protein (39% w/w) and carbohydrates (22%) while lipids (<10%) were low, making it most suitable as an animal feed supplement. The mixotrophic algae showed sustainable growth against variations in PLDE composition in different AD batches, thus proving to be a suitable candidate for large scale wastewater treatment with concomitant production of renewable biomass feedstock for animal feed and bioenergy applications.  相似文献   

14.
Enzymatic transesterification of waste cooking oil, comprising fats, oil and grease (FOG), to produce fatty acid methyl esters (FAME) i.e. biodiesel, was investigated using a novel strain of the fungus Aspergillus niger, immobilized as a whole‐cell biocatalyst. Response surface methodology (RSM), with a five‐level‐three‐factor central composite rotatable design, was used to optimize the reaction and analyze the relationship of reaction variables and their coinfluent on the response i.e. FAME yield. Independent variables that affect the transesterification reaction include temperature, feedstock water content and enzyme amount. Using RSM, a second‐order polynomial equation was derived for FAME yield using multiple regression analysis. The second‐order polynomial regression model was highly significant (P<0.001) in predicting the actual relationship between the response and the variables, where a linear relationship was apparent between observed and predicted values (R2=0.9651). In addition, the predicted determination coefficient q2 i.e. 0.7723, also proved that the model has a high predictive ability. The validation experiments, under optimized conditions, showed that the predicted value of maximum FAME yield (i.e. 91.3%) was in close agreement with the experimental value (i.e. 91.8%).  相似文献   

15.
A strain of Aspergillus niger isolated from atmospherically exposed bread and Jatropha curcas seed was utilized as a whole‐cell biocatalyst for palm oil methanolysis to produce fatty acid methyl esters (FAME), or biodiesel. The A. niger strain had a lipase activity of 212.58 mU mL?1 after 144 h incubation at 25 °C with an initial pH value of 6.5, using 7% polypeptone (w/w on basal medium) as the nitrogen source and 3% olive oil (w/w on basal medium) as a carbon source. The A. niger cells spontaneously immobilized within polyurethane biomass support particles (BSPs) during submerged fermentation. Thereafter, the methanolysis of palm oil was achieved via a three‐step addition of methanol in the presence of BSPs‐immobilized with A. niger cells. The influence of water content, reaction temperature and enzyme concentration on reaction rate was investigated. An 8% water content and a temperature of 40 °C in the presence of 30 immobilized BSPs, resulted in an 87% FAME yield after 72 h.  相似文献   

16.
A mixed trophic state production process for algal lipids for use as feedstock for renewable biofuel production was developed and deployed at subpilot scale using a green microalga, Auxenochlorella (Chlorella) protothecoides. The process is composed of two separate stages: (1) the photoautotrophic stage, focused on biomass production in open ponds, and (2) the heterotrophic stage focused on lipid production and accumulation in aerobic bioreactors using fixed carbon substrates (e.g., sugar). The process achieved biomass and lipid productivities of 0.5 and 0.27 g/L/h that were, respectively, over 250 and 670 times higher than those obtained from the photoautotrophic cultivation stage. The biomass oil content (over 60 % w/DCW) following the two-stage process was predominantly monounsaturated fatty acids (~82 %) and largely free of contaminating pigments that is more suitable for biodiesel production than photosynthetically generated lipid. Similar process performances were obtained using cassava hydrolysate as an alternative feedstock to glucose.  相似文献   

17.
Microalgae are a promising feedstock for renewable biodiesel production. High productivity of biodiesel production from microalgae is directly related to growth rate as well as lipid content of cells. In the present study, an enrichment process in a continuous cultivation system was developed to screen a high-growth-rate microalga from a mixed culture of microalgal species; Chlorella vulgaris, Chlorella protothecoides, and Chlamydomonas reinhardtii were used as test organisms for our experiments. The time-dependent washout of mixed microalgal pool was executed to successfully enrich the C. reinhardtii, which exhibits the higher growth rate than C. vulgaris and C. protothecoides under turbidostat conditions within 75 h. The domination of C. reinhardtii in the mixed culture was validated by on-line monitoring of growth rate and flowcytometric analysis. For the time-efficient production of microalgal biomass, this screening process has a high potential to segregate the fast-growing microalgal strains from the pool of various uncharacterized microalgal species and random mutants.  相似文献   

18.
Microalgal lipids may be a more sustainable biodiesel feedstock than crop oils. We have investigated the potential for using the crude glycerol as a carbon substrate. In batch mode, the biomass and lipid concentration of Chlorella protothecoides cultivated in a crude glycerol medium were, respectively, 23.5 and 14.6 g/l in a 6-day cultivation. In the fed-batch mode, the biomass and lipid concentration improved to 45.2 and 24.6 g/l after 8.2 days of cultivation, respectively. The maximum lipid productivity of 3 g/l day in the fed-batch mode was higher than that produced by batch cultivation. This work demonstrates the feasibility of crude biodiesel glycerol as an alternative carbon substrate to glucose for microalgal cultivation and a cost reduction of carbon substrate feed in microalgal lipid production may be expected.  相似文献   

19.
Microalgal biotechnology could generate substantial amounts of biofuels with minimal environmental impact if the economics can be improved by increasing the rate of biomass production. Chlorella kessleri was grown in a small‐scale raceway pond and in flask cultures with the entire volume, 1% (v/v) at any instant, periodically exposed to static magnetic fields to demonstrate increased biomass production and investigate physiological changes, respectively. The growth rate in flasks was maximal at a field strength of 10 mT, increasing from 0.39 ± 0.06 per day for the control to 0.88 ± 0.06 per day. In the raceway pond the 10 mT field increased the growth rate from 0.24 ± 0.03 to 0.45 ± 0.05 per day, final biomass from 0.88 ± 0.11 to 1.56 ± 0.18 g/L per day, and maximum biomass production from 0.11 ± 0.02 to 0.38 ± 0.04 g/L per day. Increased pigment, protein, Ca, and Zn content made the biomass produced with magnetic stimulation nutritionally superior. An increase in oxidative stress was measured indirectly as a decrease in antioxidant capacity from 26 ± 2 to 17 ± 1 µmol antioxidant/g biomass. Net photosynthetic capacity (NPC) and respiratory rate were increased by factors of 2.1 and 3.1, respectively. Loss of NPC enhancement after the removal of magnetic field fit a first‐order model well (R2 = 0.99) with a half‐life of 3.3 days. Transmission electron microscopy showed enlarged chloroplasts and decreased thylakoid order with 10 mT treatment. By increasing daily biomass production about fourfold, 10 mT magnetic field exposure could make algal oil cost competitive with other biodiesel feedstocks. Bioelectromagnetics 33:298–308, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

20.
Li Y  Chen YF  Chen P  Min M  Zhou W  Martinez B  Zhu J  Ruan R 《Bioresource technology》2011,102(8):5138-5144
The feasibility of growing Chlorella sp. in the centrate, a highly concentrated municipal wastewater stream generated from activated sludge thickening process, for simultaneous wastewater treatment and energy production was tested. The characteristics of algal growth, biodiesel production, wastewater nutrient removal and the viability of scale-up and the stability of continuous operation were examined. Two culture media, namely autoclaved centrate (AC) and raw centrate (RC) were used for comparison. The results showed that by the end of a 14-day batch culture, algae could remove ammonia, total nitrogen, total phosphorus, and chemical oxygen demand (COD) by 93.9%, 89.1%, 80.9%, and 90.8%, respectively from raw centrate, and the fatty acid methyl ester (FAME) content was 11.04% of dry biomass providing a biodiesel yield of 0.12 g-biodiesel/L-algae culture solution. The system could be successfully scaled up, and continuously operated at 50% daily harvesting rate, providing a net biomass productivity of 0.92 g-algae/(L day).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号