首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Scaffold‐based tissue engineering is considered as a promising approach in the regenerative medicine. Graft instability of collagen, by causing poor mechanical properties and rapid degradation, and their hard handling remains major challenges to be addressed. In this research, a composite structured nano‐/microfibrous scaffold, made from a mixture of chitosan–ß‐glycerol phosphate–gelatin (chitosan–GP–gelatin) using a standard electrospinning set‐up was developed. Gelatin–acid acetic and chitosan ß‐glycerol phosphate–HCL solutions were prepared at ratios of 30/70, 50/50, 70/30 (w/w) and their mechanical and biological properties were engineered. Furthermore, the pore structure of the fabricated nanofibrous scaffolds was investigated and predicted using a theoretical model. Higher gelatin concentrations in the polymer blend resulted in significant increase in mean pore size and its distribution. Interaction between the scaffold and the contained cells was also monitored and compared in the test and control groups. Scaffolds with higher chitosan concentrations showed higher rate of cell attachment with better proliferation property, compared with gelatin‐only scaffolds. The fabricated scaffolds, unlike many other natural polymers, also exhibit non‐toxic and biodegradable properties in the grafted tissues. In conclusion, the data clearly showed that the fabricated biomaterial is a biologically compatible scaffold with potential to serve as a proper platform for retaining the cultured cells for further application in cell‐based tissue engineering, especially in wound healing practices. These results suggested the potential of using mesoporous composite chitosan–GP–gelatin fibrous scaffolds for engineering three‐dimensional tissues with different inherent cell characteristics. © 2015 Wiley Periodicals, Inc. Biopolymers 105: 163–175, 2016.  相似文献   

2.
Microfluidic technologies are highly adept at generating controllable compositional gradients in fluids, a feature that has accelerated the understanding of the importance of chemical gradients in biological processes. That said, the development of versatile methods to generate controllable compositional gradients in the solid‐state has been far more elusive. The ability to produce such gradients would provide access to extensive compositional libraries, thus enabling the high‐throughput exploration of the parametric landscape of functional solids and devices in a resource‐, time‐, and cost‐efficient manner. Herein, the synergic integration of microfluidic technologies is reported with blade coating to enable the controlled formation of compositional lateral gradients in solution. Subsequently, the transformation of liquid‐based compositional gradients into solid‐state thin films using this method is demonstrated. To demonstrate efficacy of the approach, microfluidic‐assisted blade coating is used to optimize blending ratios in organic solar cells. Importantly, this novel technology can be easily extended to other solution processable systems that require the formation of solid‐state compositional lateral gradients.  相似文献   

3.
The integration of tissue engineering strategies with microfluidic technologies has enabled the design of in vitro microfluidic culture models that better adapt to morphological changes in tissue structure and function over time. These biomimetic microfluidic scaffolds accurately mimic native 3D microenvironments, as well as permit precise and simultaneous control of chemical gradients, hydrodynamic stresses, and cellular niches within the system. The recent application of microfluidic in vitro culture models to cancer research offers enormous potential to aid in the development of improved therapeutic strategies by supporting the investigation of tumor angiogenesis and metastasis under physiologically relevant flow conditions. The intrinsic material properties and fluid mechanics of microfluidic culture models enable high‐throughput anti‐cancer drug screening, permit well‐defined and controllable input parameters to monitor tumor cell response to various hydrodynamic conditions or treatment modalities, as well as provide a platform for elucidating fundamental mechanisms of tumor physiology. This review highlights recent developments and future applications of microfluidic culture models to study tumor progression and therapeutic targeting under conditions of hydrodynamic stress relevant to the complex tumor microenvironment. Biotechnol. Biotechnol. Bioeng. 2013; 110: 2063–2072. © 2013 Wiley Periodicals, Inc.  相似文献   

4.
The fabrication and operation of a gradient-generating microfluidic device for studying cellular behavior is described. A microfluidic platform is an enabling experimental tool, because it can precisely manipulate fluid flows, enable high-throughput experiments, and generate stable soluble concentration gradients. Compared to conventional gradient generators, poly(dimethylsiloxane) (PDMS)-based microfluidic devices can generate stable concentration gradients of growth factors with well-defined profiles. Here, we developed simple gradient-generating microfluidic devices with three separate inlets. Three microchannels combined into one microchannel to generate concentration gradients. The stability and shape of growth factor gradients were confirmed by fluorescein isothyiocyanate (FITC)-dextran with a molecular weight similar to epidermal growth factor (EGF). Using this microfluidic device, we demonstrated that fibroblasts exposed to concentration gradients of EGF migrated toward higher concentrations. The directional orientation of cell migration and motility of migrating cells were quantitatively assessed by cell tracking analysis. Thus, this gradient-generating microfluidic device might be useful for studying and analyzing the behavior of migrating cells.  相似文献   

5.
Hepatic in vitro platforms ranging from multi-well cultures to bioreactors and microscale systems have been developed as tools to recapitulate cellular function and responses to aid in drug screening and disease model development. Recent developments in microfabrication techniques and cellular materials enabled fabrication of next-generation, advanced microphysiological systems (MPSs) that aim to capture the cellular complexity and dynamic nature of the organ presenting highly controlled extracellular cues to cells in a physiologically relevant context. Historically, MPSs have heavily relied on elastomeric materials in their manufacture, with unfavorable material characteristics (such as lack of structural rigidity) limiting their use in high-throughput systems. Herein, we aim to create a microfluidic bilayer model (microfluidic MPS) using thermoplastic materials to allow hepatic cell stabilization and culture, retaining hepatic functional phenotype and capturing cellular interactions. The microfluidic MPS consists of two overlapping microfluidic channels separated by a porous tissue-culture membrane that acts as a surface for cellular attachment and nutrient exchange; and an oxygen permeable material to stabilize and sustain primary human hepatocyte (PHH) culture. Within the microfluidic MPS, PHHs are cultured in the top channel in a collagen sandwich gel format with media exchange accomplished through the bottom channel. We demonstrate PHH culture for 7 days, exhibiting measures of hepatocyte stabilization, secretory and metabolic functions. In addition, the microfluidic MPS dimensions provide a reduced media-to-cell ratio in comparison with multi-well tissue culture systems, minimizing dilution and enabling capture of cellular interactions and responses in a hepatocyte-Kupffer coculture model under an inflammatory stimulus. Utilization of thermoplastic materials in the model and ability to incorporate multiple hepatic cells within the system is our initial step towards the development of a thermoplastic-based high-throughput microfluidic MPS platform for hepatic culture. We envision the platform to find utility in development and interrogation of disease models of the liver, multi-cellular interactions and therapeutic responses.  相似文献   

6.
Efficient delivery of therapeutics across the neuroprotective blood–brain barrier (BBB) remains a formidable challenge for central nervous system drug development. High‐fidelity in vitro models of the BBB could facilitate effective early screening of drug candidates targeting the brain. In this study, we developed a microfluidic BBB model that is capable of mimicking in vivo BBB characteristics for a prolonged period and allows for reliable in vitro drug permeability studies under recirculating perfusion. We derived brain microvascular endothelial cells (BMECs) from human induced pluripotent stem cells (hiPSCs) and cocultured them with rat primary astrocytes on the two sides of a porous membrane on a pumpless microfluidic platform for up to 10 days. The microfluidic system was designed based on the blood residence time in human brain tissues, allowing for medium recirculation at physiologically relevant perfusion rates with no pumps or external tubing, meanwhile minimizing wall shear stress to test whether shear stress is required for in vivo‐like barrier properties in a microfluidic BBB model. This BBB‐on‐a‐chip model achieved significant barrier integrity as evident by continuous tight junction formation and in vivo‐like values of trans‐endothelial electrical resistance (TEER). The TEER levels peaked above 4000 Ω · cm2 on day 3 on chip and were sustained above 2000 Ω · cm2 up to 10 days, which are the highest sustained TEER values reported in a microfluidic model. We evaluated the capacity of our microfluidic BBB model to be used for drug permeability studies using large molecules (FITC‐dextrans) and model drugs (caffeine, cimetidine, and doxorubicin). Our analyses demonstrated that the permeability coefficients measured using our model were comparable to in vivo values. Our BBB‐on‐a‐chip model closely mimics physiological BBB barrier functions and will be a valuable tool for screening of drug candidates. The residence time‐based design of a microfluidic platform will enable integration with other organ modules to simulate multi‐organ interactions on drug response. Biotechnol. Bioeng. 2017;114: 184–194. © 2016 Wiley Periodicals, Inc.  相似文献   

7.
The directed migration of cells towards chemical stimuli incorporates simultaneous changes in both the concentration of a chemotactic agent and its concentration gradient, each of which may influence cell migratory response. In this study, we utilized a microfluidic system to examine the interactions between epidermal growth factor (EGF) concentration and EGF gradient in stimulating the chemotaxis of connective tissue-derived fibroblast cells. Cells seeded within microfluidic devices were exposed to concentration gradients established by EGF concentrations that matched or exceeded those required for maximum chemotactic responses seen in transfilter migration assays. The migration of individual cells within the device was measured optically after steady-state gradients had been experimentally established. Results illustrate that motility was maximal at EGF concentration gradients between .01- and 0.1-ng/(mL.mm) for all concentrations used. In contrast, the number of motile cells continually increased with increasing gradient steepness for all concentrations examined. Microfluidics-based experiments exposed cells to minute changes in EGF concentration and gradient that were in line with the acute EGFR phosphorylation measured. Correlation of experimental data with established mathematical models illustrated that the fibroblasts studied exhibit an unreported chemosensitivity to minute changes in EGF concentration, similar to that reported for highly motile cells, such as macrophages. Our results demonstrate that shallow chemotactic gradients, while previously unexplored, are necessary to induce the rate of directed cellular migration and the number of motile cells in the connective tissue-derived cells examined.  相似文献   

8.
壳聚糖是一种广泛应用的生物可降解材料,该论文研究了几种与壳聚糖相关的材料对骨髓基质细胞生长和分化的作用,主要实验方法是在材料表面培养骨髓基质细胞并对其进行诱导促使其向成骨细胞方向分化。通过对细胞生长和分化情况的观察和测定,对几种材料与骨髓基质细胞的亲和性作出了评价。另外,通过ELISA法测定了细胞外基质分子在材料上的吸附量,测量了各材料的表面接触角以研究细胞在材料表面的铺展和增殖。结果表明尽管壳聚糖本身与骨髓基质细胞并不具有很好的亲和性,但通过与明胶混合,壳聚糖的生物相容性得到了明显提高,是很有应用前景的骨修复材料。  相似文献   

9.
The changes in plant–plant interactions along environmental gradients have been a focus of recent ecological research. It has been suggested that both above‐ and below‐ground competition and their interplay vary along gradients, but few studies have investigated this idea, and in most cases, the role of facilitation has not been considered, despite its importance in high stress environments. Here we used two‐layer ‘zone‐of‐influence’ models to simulate the effects of facilitation, size‐asymmetry of competition, abiotic stress, resource availability and the balance of root–shoot growth on shoot and root interactions and their interplay along an environmental gradient. In the absence of facilitation, shoot and total competition became weaker, while root competition and the interplay between shoot and root competition were unchanged under increasing stress when root competition was completely symmetric. In contrast, shoot, root, total interactions and the interplay between shoot and root interactions were all negative, and they increased with increasing stress when root competition was size‐symmetric. When facilitation was included in the models, net effects of shoot, root, total interactions and the interplay of root–shoot interactions were very different from those without facilitation, and many were positive under highly stressful conditions. The type of stress (non‐resource or resource) did not significantly influence the simulation results. Our study provides an alternative interpretation of the interplay between above‐ and below‐ground plant–plant interactions across an environmental gradient.  相似文献   

10.
Injectable shear‐thinning biomaterials (iSTBs) have great potential for in situ tissue regeneration through minimally invasive therapeutics. Previously, an iSTB was developed by combining gelatin with synthetic silicate nanoplatelets (SNPs) for potential application to hemostasis and endovascular embolization. Hence, iSTBs are synthesized by varying compositions of gelatin and SNPs to navigate their material, mechanical, rheological, and bioactive properties. All compositions (each component percentage; 1.5–4.5%/total solid ranges; 3–9%) tested are injectable through both 5 Fr general catheter and 2.4 Fr microcatheter by manual pressure. In the results, an increase in gelatin contents causes decrease in swellability, increase in freeze‐dried hydrogel scaffold porosity, increase in degradability and injection force during iSTB fabrication. Meanwhile, the amount of SNPs in composite hydrogels is mainly required to decrease degradability and increase shear thinning properties of iSTB. Finally, in vitro and in vivo biocompatibility tests show that the 1.5–4.5% range gelatin–SNP iSTBs are not toxic to the cells and animals. All results demonstrate that the iSTB can be modulated with specific properties for unmet clinical needs. Understanding of mechanical and biological consequences of the changing gelatin–SNP ratios through this study will shed light on the biomedical applications of iSTB on specific diseases.  相似文献   

11.
用于药物筛选的微流控细胞阵列芯片   总被引:1,自引:0,他引:1  
细胞区域分布培养以及如何有效地对微流体进行操控是微流控阵列芯片在细胞药物研究中的关键技术。本研究介绍了一种利用SU-8负性光刻胶模具和PDMS制作双层结构的微流控细胞阵列芯片的方法,该芯片通过C型的坝结构将进样细胞拦截在芯片的细胞培养的固定区域,键合双层PDMS构成阀控制层,阀网络的开关作用成功实现了芯片通道内微流体的操控,同时芯片设计了药物浓度梯度网络,产生6个不同浓度的药物刺激细胞。通过对芯片3种共培养细胞活性的检测和药物伊立替康(CTP-11)对肝癌细胞的浓度梯度刺激等实验结果验证该芯片在细胞研究和药物筛选等方面的可行性。  相似文献   

12.
We are developing a rapid, time‐resolved method using laser‐activated cross‐linking to capture protein‐peptide interactions as a means to interrogate the interaction of serum proteins as delivery systems for peptides and other molecules. A model system was established to investigate the interactions between bovine serum albumin (BSA) and 2 peptides, the tridecapeptide budding‐yeast mating pheromone (α‐factor) and the decapeptide human gonadotropin‐releasing hormone (GnRH). Cross‐linking of α‐factor, using a biotinylated, photoactivatable p‐benzoyl‐L‐phenylalanine (Bpa)–modified analog, was energy‐dependent and achieved within seconds of laser irradiation. Protein blotting with an avidin probe was used to detect biotinylated species in the BSA‐peptide complex. The cross‐linked complex was trypsinized and then interrogated with nano‐LC–MS/MS to identify the peptide cross‐links. Cross‐linking was greatly facilitated by Bpa in the peptide, but some cross‐linking occurred at higher laser powers and high concentrations of a non‐Bpa–modified α‐factor. This was supported by experiments using GnRH, a peptide with sequence homology to α‐factor, which was likewise found to be cross‐linked to BSA by laser irradiation. Analysis of peptides in the mass spectra showed that the binding site for both α‐factor and GnRH was in the BSA pocket defined previously as the site for fatty acid binding. This model system validates the use of laser‐activation to facilitate cross‐linking of Bpa‐containing molecules to proteins. The rapid cross‐linking procedure and high performance of MS/MS to identify cross‐links provides a method to interrogate protein‐peptide interactions in a living cell in a time‐resolved manner.  相似文献   

13.
Many biotic interactions influence community structure, yet most distribution models for plants have focused on plant competition or used only abiotic variables to predict plant abundance. Furthermore, biotic interactions are commonly context‐dependent across abiotic gradients. For example, plant–plant interactions can grade from competition to facilitation over temperature gradients. We used a hierarchical Bayesian framework to predict the abundances of 12 plant species across a mountain landscape and test hypotheses on the context‐dependency of biotic interactions over abiotic gradients. We combined field‐based estimates of six biotic interactions (foliar herbivory and pathogen damage, fungal root colonization, fossorial mammal disturbance, plant cover and plant diversity) with abiotic data on climate and soil depth, nutrients and moisture. All biotic interactions were significantly context‐dependent along temperature gradients. Results supported the stress gradient hypothesis: as abiotic stress increased, the strength or direction of the relationship between biotic variables and plant abundance generally switched from negative (suggesting suppressed plant abundance) to positive (suggesting facilitation/mutualism). For half of the species, plant cover was the best predictor of abundance, suggesting that the prior focus on plant–plant interactions is well‐justified. Explicitly incorporating the context‐dependency of biotic interactions generated novel hypotheses about drivers of plant abundance across abiotic gradients and may improve the accuracy of niche models.  相似文献   

14.
Influence of mechanical characteristics and matrix architecture of substrates used in cell culture is an important issue to tissue engineering. Chitosan‐based materials have been processed into porous structures, injectable gels and membranes, and are investigated to regenerate various tissues. However, the effect of these structures on cell growth and matrix production in accordance with each of the differing scaffolds has not been examined. We investigated the influence of porous structures, hydrogels, and membranes on the growth of normal human fibroblasts and their matrix production in a serum‐free system. We used chitosan alone and in combination with gelatin. Injectable hydrogels were prepared using 2‐glycerol phosphate. From the same solution, porous scaffolds and membranes were formed using controlled rate freezing and lyophilization, and air‐drying, respectively. Fibroblast growth was evaluated on the 4th and 10th days using flow cytometry and CFDA‐SE pre‐staining. Cell morphology was assessed using actin and nucleus staining. Total protein content, collagen, tropoelastin, and MMP2/MMP‐9 activity in the media supernatant were assessed by BCA, Sircol?, Fastin Elastin, and fluorogeneic peptide assays. Collagen accumulated in the matrix was assessed by Sircol? assay after pepsin/acetic acid digestion and by Masson's Trichrome staining. These results showed increased viability of fibroblasts on chitosan–gelatin porous scaffold with decreased proliferation relative to tissue culture plastic (TCP) surface despite the cells showing spindle shape. The total protein, collagen, and tropoelastin contents were higher in the spent media from chitosan–gelatin porous scaffolds compared to other conditions. MMP2/MMP9 activity was comparable to TCP. An increase in collagen content was also observed in the matrix, suggesting increased matrix deposition. In summary, matrix production is influenced by the form of chitosan structures, which significantly affects the regenerative process. Biotechnol. Bioeng. 2012; 109:1314–1325. © 2011 Wiley Periodicals, Inc.  相似文献   

15.
This protocol describes a simple but robust microfluidic assay combining three-dimensional (3D) and two-dimensional (2D) cell culture. The microfluidic platform comprises hydrogel-incorporating chambers between surface-accessible microchannels. By using this platform, well-defined biochemical and biophysical stimuli can be applied to multiple cell types interacting over distances of <1 mm, thereby replicating many aspects of the in vivo microenvironment. Capabilities exist for time-dependent manipulation of flow and concentration gradients as well as high-resolution real-time imaging for observing spatial-temporal single-cell behavior, cell-cell communication, cell-matrix interactions and cell population dynamics. These heterotypic cell type assays can be used to study cell survival, proliferation, migration, morphogenesis and differentiation under controlled conditions. Applications include the study of previously unexplored cellular interactions, and they have already provided new insights into how biochemical and biophysical factors regulate interactions between populations of different cell types. It takes 3 d to fabricate the system and experiments can run for up to several weeks.  相似文献   

16.
Microfluidic technology – the manipulation of fluids at micrometer scales – has revolutionized many areas of synthetic biology. The bottom‐up synthesis of “minimal” cell models has traditionally suffered from poor control of assembly conditions. Giant unilamellar vesicles (GUVs) are good models of living cells on account of their size and unilamellar membrane structure. In recent years, a number of microfluidic approaches for constructing GUVs has emerged. These provide control over traditionally elusive parameters of vesicular structure, such as size, lamellarity, membrane composition, and internal contents. They also address sophisticated cellular functions such as division and protein synthesis. Microfluidic techniques for GUV synthesis can broadly be categorized as continuous‐flow based approaches and droplet‐based approaches. This review presents the state‐of‐the‐art of microfluidic technology, a robust platform for recapitulating complex cellular structure and function in synthetic models of biological cells.  相似文献   

17.
目的:研究蚕丝蛋白-明胶三维材料支架对人永生化肝细胞系QZG贴附及增殖的影响。方法:采用四氮唑盐比色法(MTT)、细胞计数法检测QZG细胞在纯蚕丝生物材料上与在蚕丝蛋白-明胶复合材料上的增殖情况,用扫描电镜观察QZG细胞在两种三维生物材料上的贴附与增殖情况。结果:QZG细胞可以在蚕丝蛋白生物材料贴附及增殖,在引入明胶的蚕丝蛋白材料上细胞贴附更紧密,增殖更明显。结论:蚕丝蛋白与明胶复合材料支架具有良好的细胞贴附性能,通过改进在肝组织工程应用方面将具有一定应用前景。  相似文献   

18.

Background

Microfluidics is an enabling technology with a number of advantages over traditional tissue culture methods when precise control of cellular microenvironment is required. However, there are a number of practical and technical limitations that impede wider implementation in routine biomedical research. Specialized equipment and protocols required for fabrication and setting up microfluidic experiments present hurdles for routine use by most biology laboratories.

Results

We have developed and validated a novel microfluidic device that can directly interface with conventional tissue culture methods to generate and maintain controlled soluble environments in a Petri dish. It incorporates separate sets of fluidic channels and vacuum networks on a single device that allows reversible application of microfluidic gradients onto wet cell culture surfaces. Stable, precise concentration gradients of soluble factors were generated using simple microfluidic channels that were attached to a perfusion system. We successfully demonstrated real-time optical live/dead cell imaging of neural stem cells exposed to a hydrogen peroxide gradient and chemotaxis of metastatic breast cancer cells in a growth factor gradient.

Conclusion

This paper describes the design and application of a versatile microfluidic device that can directly interface with conventional cell culture methods. This platform provides a simple yet versatile tool for incorporating the advantages of a microfluidic approach to biological assays without changing established tissue culture protocols.  相似文献   

19.
Designing materials that regulate cell function in a desired manner is a major goal of biomaterials engineering. Challenges include the vast material property space to be explored, the complexity of cell-surface interactions, and the empirical nature of research in this field. To address these challenges, combinatorial methods have been developed in recent years for screening cell responses to material surfaces. Previous work using gradient libraries of biodegradable polymers poly(epsilon-caprolactone) and poly(D,L-lactide) showed qualitatively that alkaline phosphatase activity of MC3T3-E1 osteoblasts was dramatically enhanced at specific blend compositions and temperatures. In this study, we expand the combinatorial screening to measure quantitatively early events in the osteoblast life cycle: attachment, spreading, and proliferation. In addition, this work relates these cell assays to quantitative measures of polymer surface microstructure and topography. In general, cell attachment was favored on the more hydrophilic PDLA domains. However, cell spreading was strongly influenced by phase-separated microstructures on the polymer surfaces. Regions of enhanced cell proliferation shifted from one microstructural region to others as the culture progressed from 3 to 8 days. Viability showed no response to the surface features of the libraries. These screening results indicate the precise preparatory conditions and microstructure/topography ranges that should be used to design future confirmatory studies of the fundamental mechanisms of cell response to these heterogeneous patterned surfaces. Given the complex nature and breadth of these parameters, the simplification of the parameter space to be explored is an important advance.  相似文献   

20.
Directed evolution is a powerful strategy for protein engineering; however, evolution of pharmaceutical proteins has been limited by the reliance of current screens on binding interactions. Here, we present a method that identifies protein mutants with improved overall cellular efficacy, an objective not feasible with previous approaches. Mutated protein libraries were produced in soluble, active form by means of cell-free protein synthesis. The efficacy of each individual protein was determined at a uniform dosage with a high-throughput protein product assay followed by a cell-based functional assay without requiring protein purification. We validated our platform by first screening mock libraries of epidermal growth factor (EGF) for stimulation of cell proliferation. We then demonstrated its effectiveness by identifying EGF mutants with significantly enhanced mitogenic activity at low concentrations compared to that of wild-type EGF. This is the first report of EGF mutants with improved biological efficacy despite much previous effort. Our platform can be extended to engineer a broad range of proteins, offering a general method to evolve proteins for improved biological efficacy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号