首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Bacteriophages and biotechnology: vaccines, gene therapy and antibacterials   总被引:1,自引:0,他引:1  
In recent years it has been recognized that bacteriophages have several potential applications in the modern biotechnology industry: they have been proposed as delivery vehicles for protein and DNA vaccines; as gene therapy delivery vehicles; as alternatives to antibiotics; for the detection of pathogenic bacteria; and as tools for screening libraries of proteins, peptides or antibodies. This diversity, and the ease of their manipulation and production, means that they have potential uses in research, therapeutics and manufacturing in both the biotechnology and medical fields. It is hoped that the wide range of scientists, clinicians and biotechnologists currently researching or putting phages to practical use are able to pool their knowledge and expertise and thereby accelerate progress towards further development in this exciting field of biotechnology.  相似文献   

2.
Peptides that recognize specific cell types promise to be valuable tools both in research and clinical applications. Cell-specific peptides can be useful as drug delivery vehicles, diagnostic agents, affinity reagents for cell purification, gene therapy delivery agents, and research tools to probe the nature of a cell's surface. Recently, cell-specific targeting-peptides have been identified by phage-display selections against purified cell-surface markers, whole cells in tissue culture, and even tissues within live animals. These methods for identifying cell-targeting peptides will certainly increase the tools available to the scientist for cell-specific targeting.  相似文献   

3.
We utilize cell penetrating peptide functionalized QDs as specific vectors for the intracellular delivery of model fluorescent protein cargos. Multiple copies of two structurally diverse fluorescent proteins, the 27 kDa monomeric yellow fluorescent protein and the 240 kDa multichromophore b-phycoerythrin complex, were attached to QDs using either metal-affinity driven self-assembly or biotin-Streptavidin binding, respectively. Cellular uptake of these complexes was found to depend on the additional presence of cell-penetrating peptides within the QD-protein conjugates. Once inside the cells, the QD conjugates were mostly distributed within endolysosomal compartments, indicating that intracellular delivery of both QD assemblies was primarily driven by endocytotic uptake. Cellular microinjection of QD-fluorescent protein assemblies was also utilized as an alternate delivery strategy that could bypass the endocytic pathway. Simultaneous signals from both the QDs and the fluorescent proteins allowed verification of their colocalization and conjugate integrity upon delivery inside live cells. Due to their intrinsic fluorescence properties, this class of proteins provides a unique tool to test the ability of QDs functionalized with cell penetrating peptides to mediate the intracellular delivery of both small and large size protein cargos. Use of QD-peptide/fluorescent protein vectors may make powerful tools for understanding the mechanisms of nanoparticle-mediated drug delivery.  相似文献   

4.
Cell-penetrating peptides (CPPs) have been previously shown to be powerful transport vector tools for the intracellular delivery of a large variety of cargoes through the cell membrane. Intracellular delivery of plasmid DNA (pDNA), oligonucleotides, small interfering RNAs (siRNAs), proteins and peptides, contrast agents, drugs, as well as various nanoparticulate pharmaceutical carriers (e.g., liposomes, micelles) has been demonstrated both in vitro and in vivo. This review focuses on the peptide-based strategy for intracellular delivery of CPP-modified nanocarriers to deliver small molecule drugs or DNA. In addition, we discuss the rationales for the design of 'smart' pharmaceutical nanocarriers in which the cell-penetrating properties are hidden until triggered by exposure to appropriate environmental conditions (e.g., a particular pH, temperature, or enzyme level), applied local microwave, ultrasound, or radiofrequency radiation.  相似文献   

5.
Antimicrobial peptides (AMPs) are a group of peptides that are active against a diverse spectrum of microorganisms. Due to their mode of action, AMPs are a promising class of molecules that could overcome the problems of increasing resistance of bacteria to conventional antibiotics. Furthermore, AMPs are strongly membrane-active and some are able to translocate into cells without the necessity for permanent membrane permeabilization. This feature has brought them into focus for use as transport vectors in the context of drug delivery. Since the plasma membrane restricts transport of bioactive substances into cells, great research interest lies in the development of innovative ways to overcome this barrier and to increase bioavailability. In this context, peptide-based transport systems, such as cell-penetrating peptides (CPPs), have come into focus, and their efficiency has been demonstrated in many different applications. However, more recently, also some AMPs have been used as efficient vectors for intracellular translocation of various active molecules. This review summarizes recent efforts in this interesting field of drug delivery. Moreover, some examples of the application of CPPs as efficient antimicrobial substances will be discussed.  相似文献   

6.
To date, a number of antihypertensive peptides (AHPs) have been identified. Most of these are derived from proteins present in common edible consumables, including milk, egg, and plant foods. Consumption of these foods serves as means of AHP delivery and thus contributing favorable health benefits. It is hypothesized that food crops, either over-expressing AHP precursor proteins or producing particular peptides as heterologous components, may serve as viable vehicles for production and delivery of functional foods as alternative hypertension therapies. In recent years, genetic engineering efforts have been undertaken to add value to functional foods. Pioneering approaches have been pursued in several crop plants, such as rice and soybean. In this review, a summary of current tools used for discovery of new AHPs, as well as strategies and perspectives of capitalizing on these AHPs in genetic engineering efforts will be presented and discussed. The implications of these efforts on the development of functional foods for preventing and treating hypertension are also presented.  相似文献   

7.
Non-viral gene therapy uses engineered nanoparticles in the virus size range for the cell-targeted delivery of therapeutic nucleic acids. A diverse range of macromolecules are suitable for constructing such 'artificial viruses'. However, proteins, either man-made or from natural sources, are especially convenient for mimicking the viral functions critical for gene transfer. Cell penetration is a critical step for the delivery of nucleic acids in sufficient amounts and hence for reaching satisfactory transgene expression levels. Membrane-active peptides have shown great promise because of their positive role in cross-membrane transport and intracellular trafficking, and they have been incorporated into different artificial viruses. In this review, we will discuss the biological properties of these peptides together with the newest rational approaches designed to optimize their application.  相似文献   

8.
The construction of non-viral, virus-like vehicles for gene therapy involves the functionalization of multipartite constructs with nucleic acid-binding, cationic agents. Short basic peptides, alone or as fusion proteins, are appropriate DNA binding and condensing elements, whose incorporation into gene delivery vehicles results in the formation of protein–DNA complexes of appropriate size for cell internalization and intracellular trafficking. We review here the most used cationic peptides for artificial virus construction as well as the recently implemented strategies to control the architecture and biological activities of the resulting nanosized particles.  相似文献   

9.
Nanoscale vehicles for delivery have been of interest and extensively studied for two decades. However, the encapsulation stability of hydrophobic drug molecules in delivery vehicles and selective targeting these vehicles into disease cells are potential hurdles for efficient delivery systems. Here we demonstrate a simple and fast synthetic protocol of nanogels that shows high encapsulation stabilities. These nanogels can also be modified with various targeting ligands for active targeting. We show that the targeting nanogels (T-NGs), which are prepared within 2 h by a one-pot synthesis, exhibit very narrow size distributions and have the versatility of surface modification with cysteine-modified ligands including folic acid, cyclic arginine-glycine-aspartic acid (cRGD) peptide, and cell-penetrating peptide. T-NGs hold their payloads, undergo facilitated cell internalization by receptor-mediated uptake, and release their drug content inside cells due to the reducing intracellular environment. Selective cytotoxicity to cells, which have complementary receptors, is also demonstrated.  相似文献   

10.
11.
以细胞内物质为靶标的药物(大分子、蛋白质、多肽及核酸)只有穿透细胞膜才能进一步发挥其药效。细胞穿透多肽(穿膜肽)是由少于30个氨基酸残基组成的小肽,它们能够通过与细胞膜相互作用而穿透细胞膜这一天然屏障。穿膜肽大致分为宿主防御肽、基于信号序列的穿膜肽和富含精氨酸的穿膜肽;穿膜肽进入细胞的机制尚未完全阐明,存在倒置微团模型、地毯式模型及打孔模型等假说。穿膜肽能够携带各种物质进入细胞的特性受到人们的关注。我们就穿膜肽的种类、穿膜机制,及其在生物影像学和生物递送系统中的应用做一综述。  相似文献   

12.
A variety of organic and inorganic nanomaterials with dimensions below several hundred nanometers are recently emerging as promising tools for cancer therapeutic and diagnostic applications due to their unique characteristics of passive tumor targeting. A wide range of nanomedicine platforms such as polymeric micelles, liposomes, dendrimers, and polymeric nanoparticles have been extensively explored for targeted delivery of anti-cancer agents, because they can accumulate in the solid tumor site via leaky tumor vascular structures, thereby selectively delivering therapeutic payloads into the desired tumor tissue. In recent years, nanoscale delivery vehicles for small interfering RNA (siRNA) have been also developed as effective therapeutic approaches to treat cancer. Furthermore, rationally designed multi-functional surface modification of these nanomaterials with cancer targeting moieties, protective polymers, and imaging agents can lead to fabrication versatile theragnostic nanosystems that allow simultaneous cancer therapy and diagnosis. This review highlights the current state and future prospects of diverse biomedical nanomaterials for cancer therapy and imaging.  相似文献   

13.
Nanomedicines have gained more and more attention in cancer therapy thanks to their ability to enhance the tumour accumulation and the intracellular uptake of drugs while reducing their inactivation and toxicity. In parallel, nanocarriers have been successfully employed as diagnostic tools increasing imaging resolution holding great promises both in preclinical research and in clinical settings. Lipid-based nanocarriers are a class of biocompatible and biodegradable vehicles that provide advanced delivery of therapeutic and imaging agents, improving pharmacokinetic profile and safety. One of most promising engineering challenges is the design of innovative and versatile multifunctional targeted nanotechnologies for cancer treatment and diagnosis. This review aims to highlight rational approaches to design multifunctional non liposomal lipid-based nanocarriers providing an update of literature in this field.  相似文献   

14.
15.
在当前药物研发中,蛋白/多肽类药物占据着重要地位。然而,此类药物大多需进入细胞内才能发挥作用,故细胞摄取率低的问 题成为制约其发展的关键因素。细胞穿膜肽是一类富含精氨酸的短肽,自身具有较强的生物膜穿透能力,可携带多种大分子甚至是纳米 粒入胞。因此,穿膜肽被广泛应用于药物输送,且基于穿膜肽介导药物胞内输送,成为解决蛋白/多肽类药物入胞问题的优选策略。主 要综述穿膜肽介导蛋白/多肽类药物输送用于不同疾病治疗的研究进展。  相似文献   

16.
In the era of nucleic acid therapeutics, there is an urgent need for non-viral delivery vehicles that can cross the extracellular and intracellular barriers and deliver nucleic acids to specific intracellular regions. This paper reviews the development of a subclass of polymer-based delivery vehicles termed poly(glycoamidoamine)s (PGAAs). The general design of this family consists of carbohydrate residues copolymerized with oligoethyleneamine units, which have proven to be an effective motif that promotes polyplex formation, efficient cellular internalization, high gene expression and low cytotoxicity with cultured cell lines and primary cell types. We then discuss the structure-property relationships of the PGAA class of delivery vehicles and studies aimed at understanding the mechanisms involved in cellular internalization and trafficking.  相似文献   

17.
细胞膜的选择通透性对维持细胞内环境的稳定起着非常重要的作用,但细胞膜的这种特性限制了一些生物大分子和药物进入细胞内,不利于对一些细胞内疾病的诊断和药物靶向治疗的应用。如何将一些具有诊断和治疗潜力的生物大分子、药物通过细胞膜进入细胞内一直是医学界研究的热点和难点。细胞穿透肽是一类能够携带多肽、蛋白质、核酸、纳米颗粒、病毒颗粒及药物等穿过细胞膜进入细胞,导致完整载物内化的短肽,为生物大分子和药物进入细胞内部提供了有力的运载工具,其作为载体具有的高转导效率和低毒性特点,已经得到了广泛关注和大量研究。目前,细胞穿透肽作为生物分子和药物细胞内化的运载体已经在荧光成像,肿瘤治疗,抗炎治疗及药物靶向治疗中发挥了潜在的诊断和治疗作用,显示出其诱人的应用前景。  相似文献   

18.
Nociceptin and nocistatin are endogenous ligands of G protein coupled receptor family. Numerous techniques have been used to study the diverse parameters including, localization, distribution and ultrastructure of these peptides. The majority of the study parameters are based on their physiological roles in different organ systems. The present study presents an overview of the different methods used for the study of nociceptin, nocistatin and their receptors. Nociceptin has been implicated in many physiological functions including, nociception, locomotion, stressed-induced analgesia, learning and memory, neurotransmitter and hormone release, renal function, neuronal differentiation, sexual and reproductive behavior, uterine contraction, feeding, anxiety, gastrointestinal motility, cardiovascular function, micturition, cough, hypoxic–ischemic brain injury, diuresis and sodium balance, temperature regulation, vestibular function, and mucosal transport. It has been noted that the use of light and electron microscopy was less frequent, though it may be one of the most promising tools to study the intracellular localization of these neuropeptides. In addition, more studies on the level of circulating nociceptin and nocistatin are also necessary for investigating their clinical roles in health and disease. A variety of modern tools including physiological, light and electron microscopy (EM) are needed to decipher the extent of intracellular localization, tissue distribution and function of these peptides. The intracellular localization of nociceptin and nocistatin will require a high resolution transmission EM capable of identifying these peptides and other supporting molecules that co-localize with them. A tracing technique could also elucidate a possible migratory ability of nociceptin and nocistatin from one cellular compartment to the other.  相似文献   

19.
Plasma membranes of plant or animal cells are generally impermeable to peptides or proteins. Many basic peptides have previously been investigated and covalently cross-linked with cargoes for cellular internalization. In the current study, we demonstrate that arginine-rich intracellular delivery (AID) peptides are able to deliver fluorescent proteins or beta-galactosidase enzyme into animal and plant cells, as well as animal tissue. Cellular internalization and transdermal delivery of protein could be mediated by effective and nontoxic AID peptides in a neither fusion protein nor conjugation fashion. Therefore, noncovalent AID peptides may provide a useful strategy to have active proteins function in living cells and tissues in vivo.  相似文献   

20.
Nucleolar targeting peptides (NrTPs), a recently developed family of cell-penetrating peptides, have been shown to be very efficient in entering cells and accumulating in their nucleoli. In this work, we have used conjugates of NrTP6 (YKQSHKKGGKKGSG) covalently linked to β-galactosidase in order to demonstrate the capacity of NrTP for intracellular delivery of large molecules. NrTP6/β-galactosidase conjugates, prepared by maleimide-based chemistry, were stable and enzymatically active on the standard 4-methylumbelliferyl β-d-galactopyranoside substrate. Their translocation into HeLa cells, monitored by β-galactosidase activity as a readout of the uptake, showed efficient cellular entry and thus demonstrated the potential of NrTPs for intracellular delivery of large-size cargos with preservation of biological activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号