首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bile acid composition and content in the intestine and gallbladder of newborn and fetal rabbits were investigated. Unlike the circumstances in adult rabbits, the bile acids were conjugated with both taurine and glycine. The major bile acids of the fetus and newborn rabbit were cholic acid, chenodeoxycholic acid, and deoxycholic acid. This is different from the known bile acid composition of adult rabbits, in which deoxycholic acid is the major bile acid (> 80%). The proportion of chenodeoxycholic acid was higher in the fetal than in the newborn tissues. The total bile acid pool in the newborn was higher than in the fetus. In the fetus, large proportions of bile acids (60.9%) were associated with the gallbladder fraction, whereas in the newborn the bulk of the bile acids were found with the intestinal fraction (64.4%),  相似文献   

2.
There is considerable evidence suggesting that compartmentalized functional pools of cholesterol in the liver contribute differently to the formation of bile acids as the precursor. The present paper deals with the incorporation of [1-14C]acetate and of [1,2-3H]cholesterol carried on lipoproteins (LDL and HDL) into biliary bile acids in perfused rat livers and bile-fistula rats. The results showed that endogenous cholesterol synthesized newly from [1-14C]acetate in the liver was incorporated into both cholic acid and chenodeoxycholic acid in a similar way, while exogenous lipoprotein-[1,2-3H]cholesterol delivered to hepatocytes from hepatic circulation was incorporated into chenodeoxycholic acid at a higher rate.  相似文献   

3.
The aim of the present study was to identify the enzymes in human liver catalyzing hydroxylations of bile acids. Fourteen recombinant expressed cytochrome P450 (CYP) enzymes, human liver microsomes from different donors, and selective cytochrome P450 inhibitors were used to study the hydroxylation of taurochenodeoxycholic acid and lithocholic acid. Recombinant expressed CYP3A4 was the only enzyme that was active towards these bile acids and the enzyme catalyzed an efficient 6α-hydroxylation of both taurochenodeoxycholic acid and lithocholic acid. The Vmax for 6α-hydroxylation of taurochenodeoxycholic acid by CYP3A4 was 18.2 nmol/nmol P450/min and the apparent Km was 90 μM. Cytochrome b5 was required for maximal activity. Human liver microsomes from 10 different donors, in which different P450 marker activities had been determined, were separately incubated with taurochenodeoxycholic acid and lithocholic acid. A strong correlation was found between 6α-hydroxylation of taurochenodeoxycholic acid, CYP3A levels (r2=0.97) and testosterone 6β-hydroxylation (r2=0.9). There was also a strong correlation between 6α-hydroxylation of lithocholic acid, CYP3A levels and testosterone 6β-hydroxylation (r2=0.7). Troleandomycin, a selective inhibitor of CYP3A enzymes, inhibited 6α-hydroxylation of taurochenodeoxycholic acid almost completely at a 10 μM concentration. Other inhibitors, such as α-naphthoflavone, sulfaphenazole and tranylcypromine had very little or no effect on the activity. The apparent Km for 6α-hydroxylation of taurochenodeoxycholic by human liver microsomes was high (716 μM). This might give an explanation for the limited formation of 6α-hydroxylated bile acids in healthy humans. From the present results, it can be concluded that CYP3A4 is active in the 6α-hydroxylation of both taurochenodeoxycholic acid and lithocholic acid in human liver.  相似文献   

4.
K Kihira  T Kuramoto  T Hoshita 《Steroids》1976,27(3):383-393
The synthesis of (22R)- and (22S)-5beta-cholestane-3alpha,7alpha,12alpha,22,25-pentols is described. Bisnorcholyl aldehyde was prepared from cholic acid and converted into the cholestane-pentols by a Grignard reaction with 3-methyl-3-(tetrahydropyran-2-yloxy)-butynylmagnesium bromide followed by hydrogenation and acid hydrolysis. One of the synthetic pentols, the 22R-isomer was identical with a metabolite of 5beta-cholestane-3alpha,7alpha,25-triol formed in the rabbit.  相似文献   

5.
Cholesterol catabolism to bile acids was stimulated in neonatal guinea pigs by feeding 1,11% cholestyramine (CT)-containing diet for 8 weeks. The animals were then switched to standard laboratory diet for an additional 4 weeks. At the end of the laboratory diet period: a) CT-pre-treated guinea pigs continued to excrete significantly higher (p<0.05) amounts of bile acids, b) the activity of hepatic 7α-hydroxylase was significantly elevated (p<0.01) in CT-pre-treated animals, and c) isolated hepatocytes from CT-pre-treated guinea pigs secreted significantly higher (p<0.05) amounts of bile acid when compared to controls during a 4-hour incubation. These data provide biochemical support for our contention that stimulation of cholesterol catabolism during neonatal life can have effects that persist into adult life.  相似文献   

6.
Y Ayaki  Y Ogura  S Kitayama  S Endo  M Ogura 《Steroids》1983,41(4):509-520
Some difference in functional pool of cholesterol acting as the precursor of bile acids is pointed out between cholic acid and chenodeoxycholic acid. In order to elucidate this problem further, some experiments were performed with rats equilibrated with [7(n)-3H, 4-(14)C] cholesterol by subcutaneous implantation. The bile duct was cannulated in one series of experiments and ligated in another. After the operation 14C-specific radioactivity of serum cholesterol fell, but reached practically a new equilibrium within three days. 14C-Specific radioactivity of serum cholesterol as well as of biliary bile acids in bile-fistula rats and urinary bile acids in bile duct-ligated rats was determined during a three days-period in the new equilibrated state. The results were as follows: (1) 14C-Specific radioactivity of cholic acid and chenodeoxycholic acid in bile was lower than that of serum cholesterol, and 14C-specific radioactivity of cholic acid was clearly lower than that of chenodeoxycholic acid. (2) 14C-Specific radioactivity of cholic acid and beta-muricholic acid in urine was lower than that of serum cholesterol, and 14C-specific radioactivity of cholic acid was lower than that of beta-muricholic acid. (3) Biliary as well as urinary beta-muricholic acid lost tritium label at 7-position entirely during the course of formation from [7(n)-3H, 4-(14)C]cholesterol.  相似文献   

7.
E Lacroix  W Eechaute  I Leusen 《Steroids》1975,25(5):649-661
Testes from rats of different ages were indubated with or without tritiated testosterone. The exogenously-added or endogenously-produced testosterone is mainly metabolized to 7alpha-hydroxylated testosterone in adult animals, and to 5alpha-reduced metabolites (especially 5alpha-androstanediol) in immature animals.  相似文献   

8.
In order to find an artificial internal standard compound for quantitative determination of bile acids by gas chromatography, 7α,12α-,7α, 12β-, 7β,12α- and 7β,12β-dihydroxy-5β-cholan-24-oic acids were chemically synthesized with cholic acid (1) as the first starting material. The gas chromatographie retention time of 7β,12β-dihydroxy-5β-cholan-24-oic acid (ββ-isomer) was more different from that of natural bile acids than the other isomers. Moreover, ββ-isomer was extracted in the same fraction as the bile acids from urine, and no urinary substance had the same retention time as ββ-isomer. No artifact was produced from ββ-isomer during the analysis procedure. It was concluded that the ββ-isomer is an internal standard compound with certain advantages for the quantitative determination of bile acids in urine by gas chromatography, irrespective of the recovery rate during the analysis procedure.  相似文献   

9.
An intercross between C57BL/6J and CASA/Rk mice was used to study the genetics of biliary bile acid composition. In parental strains, male C57BL/6J mice had significantly higher cholic acid (CA; 14%) and lower beta-muricholic acid (betaMC; 27%) than CASA/Rk mice, whereas females did not differ. However, quantitative trait locus analysis of F2 mice revealed no significant chromosome 9 loci in males but loci in females on chromosome 9 for percentage CA (%CA) at 72 centimorgan (cM) [logarithm of the odds (LOD) 5.89] and %betaMC at 54 cM (LOD 4.09). Chromosome 9 congenic and subcongenic strains representing CASA/Rk intervals 38-73 cM (9KK) and 68-73 cM (9DKK) on the C57BL/6J background were made. In 9KK and 9DKK males, %CA was increased and %betaMC was unchanged, whereas in 9KK but not 9DKK females, %CA was increased and %betaMC was decreased. Sterol 12alpha-hydroxylase (Cyp8b1) channels bile acid precursors into CA and maps at chromosome 9 (73 cM). However, there was no significant difference in Cyp8b1 mRNA or enzymatic activity between parental mice, parental-congenic-subcongenic mice, or high-low biliary %CA F2 mice. In summary, two chromosome 9 loci control sexually dimorphic effects on biliary bile acid composition: a distal (68-73 cM) major determinant in males, and a more proximal (38-68 cM) major determinant in females. In this intercross, Cyp8b1, a strong candidate, does not appear to be responsible.  相似文献   

10.
Chenooxazoline3 (50–100 μM) inhibited (>50%) both 7α and 7β-dehydroxylase activities in whole cells and cell extracts of Eubacterium sp. V.P.I. 12708. Chenooxazoline (>50 μM) and methylchenooxazoline (>25 μM) but not lithooxazoline (≤100 μM) inhibited growing cultures of Eubacterium sp. V.P.I. 12708. Chenooxazoline (100 μM) also inhibited the growth of certain members of the genera Eubacterium, Clostridium, Bacteroides and Staphylococcus but not Pseudomonas, Escherichia, Salmonella or the eucaryotic microorganism, Saccharomyces cerevisiae (_< 400 μM).  相似文献   

11.
By the conventional methods of gas liquid chromatography (GLC) as well as mass spectrometry, 3β,7α-dihydroxychol-5-en-24-oic acid (Δ5-acid), a key intermediate of chenodeoxycholic acid biogenesis and its metabolic by-product, 3α,7α-dihydroxychol-4-en-24-oic acid (Δ4-acid) have not yet been identified as such probably due to thermal decomposition. However, taking advantage of the observation that they are readily methoxylated in methanoi containing a trace of acids, their individual methoxy-compounds were easily prepared and proved to be useful for their identification, even though they are present in minimal amounts as was the case with the human or hen bile. The present paper reported physical as well as spectral properties of the methoxy-compounds derived from methyl 3α,7α-dihydroxychol-4-en-24-oate, compared with those of its 3β-epimer  相似文献   

12.
Incubations of testes of adult rats with testosterone yield rather important amounts of a very polar metabolite which is identified as 7α-hydroxytestosterone. The identification of the metabolite is based on chromatography, spectrophotometry, fluorimetry, counter current distribution and NMR spectrometry.  相似文献   

13.
The conventional methods of gas liquid chromatography or mass spectrometry failed to be useful for the identification of the biliary 3β, 7α-hydroxychol--en-24-oic acid, a key intermediate of chenodeoxycholic acid biogenesis. It has been preliminarily reported that this acid in human bile was successfully identified by gas chromatography-mass spectrometry, after the methoxylation of its allyl alcohol group. Physical as well as spectral properties of the methoxylation products derived from the acid were reported, compared with those from its 7β-epimer.  相似文献   

14.
Role of cytochrome b5 in NADPH-supported 5β-cholestane-3α,7α,12α-triol 25-hydroxylation and taurodeoxycholate 7α-hydroxylation of rat liver microsomes was investigated using highly purified antibodies against cytochrome b5. Anti-b5 antibody strongly inhibited both hydroxylation reactions indicating that cytochrome b5 is a functional component in these steroid hydroxylation systems. It was shown that the involvement of cytochrome b5 in these systems could be altered by the conditions of the reaction systems.  相似文献   

15.
16.
The ability of bovine liver and fat to metabolize progesterone and also to form glucuronide conjugates with these progestins in vitro was investigated. Tissue supernatants were incubated with [4-14C] progesterone, UDP-glucuronic acid, and a NADPH generating system for 5 hr, at 37°C. Steroids were identified by thin-layer chromatography, high performance liquid chromatography, and recrystallization to a constant specific activity. The total original radioactivity which could not be removed by exhaustive ether extraction (presumptive conjugates) was 44.7 ± 14.2% in liver, 5.0 ± 3.6% in subcutaneous fat, and 3.7 ± 2.2% in kidney fat samples. Progestins identified in liver samples include 5β-pregnane-3α, 20α-diol (free and conjugate), 5β-pregnane-3α, 20β-diol (free and conjugate), 3α-hydroxy-5sB-pregnan-20-one (free and conjugate), 3β-hydroxy-5β-pregnan-20-one (free), 5β-pregnane-3, 20-dione (free), and progesterone (conjugate). Progestins identified in both the free and conjugate fractions of subcutaneous fat and kidney fat samples include progesterone, 3α-hydroxy-5β-pregnan-20-one, 20β-hydroxy-4-pregnen-3-one, and 20α-hydroxy-4-pregnen-3-one. Differences due to sex of bovine used were noted. These results confirm the ability of bovine liver to readily metabolize progesterone and form glucuronide conjugates of these compounds and suggest that adipose tissues take an active role in these actions in cattle.  相似文献   

17.
We report a novel conjugate, bile acid acyl galactosides, which exist in the urine of healthy volunteers. To identify the two unknown peaks obtained in urine specimens from healthy subjects, the specimens were subjected to solid phase extraction and then to liquid chromatographic separation. The eluate corresponding to the unknown peaks on the chromatogram was collected. Following alkaline hydrolysis and liquid chromatography (LC)/electrospray ionization (ESI)-mass spectrometric (MS) analysis, cholic acid (CA) and deoxycholic acid (DCA) were identified as liberated bile acids. When a portion of the alkaline hydrolyzate was subjected to a derivatization reaction with 1-phenyl-3-methyl-5-pyrazolone, a derivative of galactose was detected by LC/ESI-MS. Finally, the liquid chromatographic and mass spectrometric properties of these unknown compounds in urine specimens were compared to those of authentic specimens and the structures were confirmed as CA 24-galactoside and DCA 24-galactoside. These results strongly imply that bile acid 24-galactosides, a novel conjugate, were synthesized in the human body.  相似文献   

18.
STARD5 is a member of the STARD4 sub-family of START domain containing proteins specialized in the non-vesicular transport of lipids and sterols. We recently reported that STARD5 binds primary bile acids. Herein, we report on the biophysical and structural characterization of the binding of secondary and conjugated bile acids by STARD5 at physiological concentrations. We found that the absence of the 7α-OH group and its epimerization increase the affinity of secondary bile acids for STARD5. According to NMR titration and molecular modeling, the affinity depends mainly on the number and positions of the steroid ring hydroxyl groups and to a lesser extent on the presence or type of bile acid side-chain conjugation. Primary and secondary bile acids have different binding modes and display different positioning within the STARD5 binding pocket. The relative STARD5 affinity for the different bile acids studied is: DCA > LCA > CDCA > GDCA > TDCA > CA > UDCA. TCA and GCA do not bind significantly to STARD5. The impact of the ligand chemical structure on the thermodynamics of binding is discussed. The discovery of these new ligands suggests that STARD5 is involved in the cellular response elicited by bile acids and offers many entry points to decipher its physiological role.  相似文献   

19.
Crystal structures of p-xylene-crystallized deoxycholic acid (3alpha,12alpha-dihydroxy-5beta-cholan-24-oic acid) and its three epimers (3beta,12alpha-; 3alpha,12beta-; and 3beta,12beta-) have been solved. Deoxycholic acid forms a crystalline (P21) complex with the solvent with a 2:1 stoichiometry whereas crystals of the three epimers do not form inclusion compounds. Crystals of the 3beta,12beta-epimer are hexagonal, whereas the 3alpha,12beta-and 3beta,12alpha-epimers crystallize in the P2(1)2(1)2(1) orthorhombic space group. The three hydrogen bond sites (two hydroxy groups, i. e. O3-H, and O12-H, and the carboxylic acid group of the side chain, O24bO24a-H) simultaneously act as hydrogen bond donors and acceptors. The hydrogen bond network in the crystals was analyzed and the following sequences have been observed: two chains (abcabc... or acbacb... ) and two rings (abc or acb), which constitute a complete set of all the possible sequences which can be drawn for an intermolecular hydrogen bond network formed by three hydrogen bond donor/acceptor sites forming crossing hydrogen bonds. The orientation of O3-H (alpha or beta) determines the sequence of the acceptor and the donor groups involved in the pattern: O24a --> O12 --> O3 --> O24b when it is alpha and O24a --> O3 --> O12--> O24B when it is beta. These observations were used to predict the hydrogen bond network of p-xylene-crystallized 3-oxo,12alpha-hydroxy-5beta-cholan-24-oic acid. This compound has two hydrogen bond donor and three potential hydrogen bond acceptor sites. According to the previous sequence set, this compound should crystallize in the monoclinic P21 system, should form a complex with the solvent, O24b should not participate in the hydrogen bond network, and the chain sequence O24a --> O12 --> O3 would be followed. All predictions were confirmed experimentally.  相似文献   

20.
Five-month-old Datura meteloides plants were fed via the roots with 3-hydroxy-2-methylbutanoic acid-[1-14C] and isoleucine-[U-14C] as a positive control. After 5 days the plants were collected and in each case the root alkaloids 3α,6β-ditigloyloxytropane, 3α,6β-ditigloyloxytropan-7β-ol, meteloidine, hyoscine and hyoscyamine were isolated. Whereas isoleucine served as a precursor for the tiglic acid moieties 3-hydroxy-2-methylbutanoic acid did not.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号