首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Excursion to the border area of Luxembourg and Germany The gravel ponds in the alluvial plain of the Moselle in the border area of Luxembourg and the Saarland serve as a significant breeding habitat and stopover site of water birds. Many thermophilic species of dragonflies can also be watched in the “Haff Réimech” nature reserve in Luxembourg. Some wild bees typical of floodplains have found compensatory habitats on sandy slopes. Further north, on both sides of the Sûre, there is a landscape rich in woodlands with deep chasms and great sandstone rock formations (Lower Jurassic) in the border area of Luxembourg and Rhineland‐Palatinate. A cool and humid microclimate deep in the valleys and chasms promotes plant species of the Atlantic climate region. Especially Luxembourg's Little Switzerland is characterized by a great species‐richness of mosses.  相似文献   

2.
Disturbance has long been recognized as an important determinant of community characteristics in aquatic systems. The aims of our study were to evaluate the impact of different disturbances on the macrophyte diversity and on river quality. To this end, we investigated the floristic composition for different stretches impacted by disturbances and we tested both diversity indices and the trophic index (IBMR) “Biological Index Macrophytes in Rivers” in the Moselle river (NE of France). The river was divided into four sections of different lengths based on uniformity of morphological characteristics, substrate conditions and flowing velocity: the upper, the wild, the resectioned and the downstream Moselle. Floristic composition and water chemical parameters were analysed from 1999 to 2001. The man‐made increase of nutrient concentration favoured the floristic richness in the last sites of the upper Moselle, whereas river dynamics and floods did not allow the development of vegetation in the wild Moselle. Disturbances caused by industrial sewage and eutrophication allowed the spreading of pollu‐tolerant and riparian alien species. The aquatic macrophyte approach is a useful means to detect impact of disturbances on diversity and on river quality. However, it was not effective in assessing disturbances such as flood overflow or chemical pollution. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
4.
The herbivore‐induced plant volatile (HIPV) methyl salicylate (MeSA) is widely present in the chemical profile of several plant species and is known to attract natural enemies, including predatory mites. In this study, the response of Typhlodromus pyri, a key predator of pest mites in west coast vineyards, to synthetically produced MeSA was tested using a Y‐tube olfactometer in laboratory bioassays. Six doses ranging from 0.002 to 200 μg of MeSA diluted in 0.1 ml hexane were tested. Significantly higher proportions of T. pyri preferred MeSA at doses 0.02, 0.2 and 20 μg. No differences in response to MeSA were detected at the highest (200 μg), intermediate (2 μg) and lowest (0.002 μg) doses. Mite response to MeSA was a function of dose when fitting polynomial and logistic regression models using dose and square of the log dose prediction factors. Results indicate that synthetic MeSA may be applied to attract predatory arthropod populations in vineyards to enhance biological control of pest mites.  相似文献   

5.
6.
River valleys have been subjected to human-induced changes for centuries, but they are still considered regional hotspots of biodiversity. In central Europe, some vascular plant species demonstrate confinement to the corridors of large rivers. They are termed river corridor plants (RCPs). RCPs are an important component of regional biodiversity and include a high proportion of threatened species, thus they deserve attention. Here we examine: (1) the detailed distribution pattern of RCPs within a river valley, (2) the habitat preferences of RCP species, and (3) the correlation between the richness of RCP species and selected variables. The studied variables include: river bed proximity, distance from the river mouth, floodplain coverage, richness of native, red listed and invasive species, and number of habitats considered to be of Europaean Community importance. Surveys were conducted in 10 transects running perpendicularly to the San River bed (Poland, central Europe). Each transect was divided into 14 plots (1 km × 1 km). In each plot, the site locations of RCPs as well as their habitats were recorded. The occurrence of all vascular plant species in a particular plot was also noted. The richness and abundance of RCP species depended on the distance from the river and the floodplain coverage in a plot. The plots located in the vicinity of the river were the richest in RCP species and usually harbored the largest number of native, red-listed and invasive species. They were also characterized by the largest number of habitats considered to be of importance to the European Community. RCP species differed in the degree of confinement to habitats regarded as typical for them. Some of the RCP species were recorded only within typical habitats while others were found in several different types of habitats, including anthropogenic ones. Knowledge concerning the RCP distribution pattern and its correlates can make restoration initiatives in river valleys more effective. While implementing conservation measures in river valleys, one should keep in mind that: (1) hotspots of RCP and invasive species spatially overlap and (2) anthropogenic linear elements occurring within river valleys constitute important habitats for some RCP species.  相似文献   

7.
In ecological modelling, limitations in data and their applicability for predictive modelling are more rule than exception. Often modelling has to be performed on sub-optimal data, as explicit and controlled collection of (more) appropriate data would not be feasible. An example of predictive ecological modelling is given with application of generalized additive and generalized linear models fitted to presence–absence records of plant species and site condition data from four nutrient-poor Flemish lowland valleys. Standard regression procedures are used for modelling, although explanatory and response data do not meet all the assumptions implicit in these procedures. Data were non-randomly collected and are spatially autocorrelated; model residuals retain part of that correlation. The scale of most site-condition records does not match the scale of the response variable (species distribution). Hence, interpolated and up-scaled explanatory variables are used. Data are aggregated from distinct phytogeographical regions to allow for generalized models, applicable to a wider population of river valleys in the same region. Nevertheless, ecologically sound models are obtained, which predict well the distribution of most plant species for the Flemish river valleys considered.  相似文献   

8.
Questions: Plant invasions are considered one of the top threats to the biodiversity of native taxa, but clearly documenting the causal links between invasions and the decline of native species remains a major challenge of invasion biology. Most studies have focused on impacts of invaders' living biomass, rather than on mechanisms mediated by litter. However, invasive plant litter, which is often of a very different type and quantity than a system's native plant litter, can have multiple important effects on ecosystem processes – such as nitrogen cycling and soil microclimate – that may influence native plants. Location: We studied effects of litter of invasive grass species that are widespread throughout western North America on native shrubs in southern California's semi‐arid habitat of coastal sage scrub. Methods: We combined a 3‐year field manipulation of non‐native litter with structural equation modeling to understand interacting effects on non‐native grasses, native shrubs, soil nitrogen (available and total), and soil moisture. Results: Litter addition facilitated non‐native grass growth, revealing a positive feedback likely to enhance invasion success. Contrary to a major paradigm of invasion biology – that competition with invasive plant species causes declines of native plants – we found that litter also facilitated growth of the native dominant shrub, a result supported by observational trends. Structural equation models indicated that enhanced soil moisture mediated the positive effects of litter on shrub growth. Conclusions: We demonstrate that invasive plants, via their litter, can facilitate dominant native plants by altering soil moisture. Our results highlight that understanding the impacts and mechanisms of plant invasions may be enhanced by considering the role of invasive plant litter on native plants and ecosystem properties.  相似文献   

9.
The selection consequences of competition in plants have been traditionally interpreted based on a “size‐advantage” hypothesis – that is, under intense crowding/competition from neighbors, natural selection generally favors capacity for a relatively large plant body size. However, this conflicts with abundant data, showing that resident species body size distributions are usually strongly right‐skewed at virtually all scales within vegetation. Using surveys within sample plots and a neighbor‐removal experiment, we tested: (1) whether resident species that have a larger maximum potential body size (MAX) generally have more successful local individual recruitment, and thus greater local abundance/density (as predicted by the traditional size‐advantage hypothesis); and (2) whether there is a general between‐species trade‐off relationship between MAX and capacity to produce offspring when body size is severely suppressed by crowding/competition – that is, whether resident species with a larger MAX generally also need to reach a larger minimum reproductive threshold size (MIN) before they can reproduce at all. The results showed that MIN had a positive relationship with MAX across resident species, and local density – as well as local density of just reproductive individuals – was generally greater for species with smaller MIN (and hence smaller MAX). In addition, the cleared neighborhoods of larger target species (which had relatively large MIN) generally had – in the following growing season – a lower ratio of conspecific recruitment within these neighborhoods relative to recruitment of other (i.e., smaller) species (which had generally smaller MIN). These data are consistent with an alternative hypothesis based on a ‘reproductive‐economy‐advantage’ – that is, superior fitness under competition in plants generally requires not larger potential body size, but rather superior capacity to recruit offspring that are in turn capable of producing grand‐offspring – and hence transmitting genes to future generations – despite intense and persistent (cross‐generational) crowding/competition from near neighbors. Selection for the latter is expected to favor relatively small minimum reproductive threshold size and hence – as a tradeoff – relatively small (not large) potential body size.  相似文献   

10.
Introduction – Flavonoids are important plant compounds occurring in tissues mostly in the form of glycoconjugates. Most frequently the sugar moiety is comprised of mono‐ or oligosaccharides consisting of common sugars like glucose, rhamnose or galactose. In some plant species the glycosidic moiety contains glucuronic acid and may be acylated by phenylpropenoic acids. Methodology – Flavonoid glyconjugates were extracted from leaves of Medicago truncatula ecotype R108 and submitted to analysis using high‐performance liquid chromatography combined with high‐resolution tandem (quadrupole‐time of flight, QToF) mass spectrometry. Results – The studied leaf extracts contained 26 different flavonoid glycosides among which 22 compounds were flavone (apigenin, luteolin, chrysoeriol and tricin) glucuronides and 13 were acylated with aromatic acids (p‐coumaric, ferulic or sinapic). The fragmentation pathways observed in positive and negative ion mass spectra differed substantially between each other and from these of flavonoid glycosides which did not contain acidic sugars. The application of high‐resolution MS techniques allowed unequivocal differentiation between ions with the same nominal m/z values containing different substituents (e.g. ferulic acid or glucuronic acid). Eleven of the identified flavonoids have not been reported previously in this species. Perspectives – The presented unique fragmentation pathways of flavonoid glucuronates enable detection of these compounds in tissue extracts from different plant species. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Recent studies demonstrate that by focusing on traits linked to fundamental plant life‐history trade‐offs, ecologists can begin to predict plant community structure at global scales. Yet, consumers can strongly affect plant communities, and means for linking consumer effects to key plant traits and community assembly processes are lacking. We conducted a global literature review and meta‐analysis to evaluate whether seed size, a trait representing fundamental life‐history trade‐offs in plant offspring investment, could predict post‐dispersal seed predator effects on seed removal and plant recruitment. Seed size predicted small mammal seed removal rates and their impacts on plant recruitment consistent with optimal foraging theory, with intermediate seed sizes most strongly impacted globally – for both native and exotic plants. However, differences in seed size distributions among ecosystems conditioned seed predation patterns, with relatively large‐seeded species most strongly affected in grasslands (smallest seeds), and relatively small‐seeded species most strongly affected in tropical forests (largest seeds). Such size‐dependent seed predation has profound implications for coexistence among plants because it may enhance or weaken opposing life‐history trade‐offs in an ecosystem‐specific manner. Our results suggest that seed size may serve as a key life‐history trait that can integrate consumer effects to improve understandings of plant coexistence.  相似文献   

12.
In Dutch forests the species density of vascular plants ranges from 1 to 61 species per 300 m2. The vascular plant species density is high in the coastal dunes, southern Limburg, river valleys, and fen areas. With the exception of southern Limburg, these areas constitute the Holocene part of the Netherlands. Low species densities occur in the sandy centre of the country. To a large extent, the areas of high species density of vascular plants follow the main river valleys. The bryophyte species densities range from 0 to 21 species per 300 m2. High bryophyte species densities occur mainly in the sandy centre and in the north-eastern part of the Netherlands. The highest species densities occur in fen woodlands and derelict coppices. Bryophyte species density is low in the coastal dunes and the very young woodlands in the recently reclaimed areas (polders). The species density contour maps of vascular plants and bryophytes in the Netherlands have little in common.  相似文献   

13.
Phytogeographical relations of the Andean dry valleys of Bolivia   总被引:1,自引:0,他引:1  
Aim The objective of this study is to examine the phytogeographical affinities of the Andean dry valleys of Bolivia in order to contribute to a better understanding of the Andean dry flora's distribution, origin and diversity. Particular emphasis is given to the analysis of the floristic connections of this flora with more austral parts of South America. Location The dry valleys of Bolivia are located in the Andes of the southern half of the country, at elevations between 1300 and 3200 m. Methods An extensive floristic list compiled by the author to evaluate plant diversity in these Andean regions was used as the base for this study. To accomplish this, all recorded genera and species were assigned, respectively, to 11 and 12 phytogeographical elements established previously by the author. Two phytogeographical spectra were thus obtained and analysed. Results At the genus level, the Andean dry valleys of Bolivia are clearly dominated by genera that have widespread distributions (cosmoplitan and subtropical genera). Many of these reached the Andes from the lowland region of the Chaco. At species level, Andean elements constitute more than 60% of the species total, most of which are restricted to the central‐southern Andes. This suggests that Chaco‐related and Andean genera had considerable levels of speciation in these valleys. Many genera and more than half the species have their northernmost distribution in the dry valleys of Bolivia, thereby underlining strong relationships with central‐southern South America (mainly Argentina, Paraguay and southern Brazil). The data supports the belief of the existence, in central‐southern Peru, of a floristic disjunction in dry to arid environments that separates a tropical dry flora north of this limit from a dry subtropical/warm temperate flora south of it. Main conclusions The Andean dry valleys of Bolivia are diverse plant communities with high levels of endemism (c. 18% of the species). The species of this region are more related to those present in central‐southern South America than to the flora of northern South America that ranges southwards to Peru. Many of the species have restricted distributions in the dry Andes of Bolivia and Argentina, and many genera of these dry valleys have their northernmost distribution in Bolivia/southern Peru, too. The data point to high levels of speciation also in the central Andes.  相似文献   

14.
Introduction – A variety of sample preparation protocols for plant proteomic analysis using two‐dimensional gel electrophoresis (2‐DE) have been reported. However, they usually have to be adapted and further optimised for the analysis of plant species not previously studied. Objective – This work aimed to evaluate different sample preparation protocols for analysing Carica papaya L. leaf proteins through 2‐DE. Methodology – Four sample preparation methods were tested: (1) phenol extraction and methanol–ammonium acetate precipitation; (2) no precipitation fractionation; and the traditional trichloroacetic acid–acetone precipitation either (3) with or (4) without protein fractionation. The samples were analysed for their compatibility with SDS–PAGE (1‐DE) and 2‐DE. Fifteen selected protein spots were trypsinised and analysed by matrix‐assisted laser desorption/ionisation time‐of‐flight tandem mass spectrometry (MALDI‐TOF‐MS/MS), followed by a protein search using the NCBInr database to accurately identify all proteins. Results – Methods number 3 and 4 resulted in large quantities of protein with good 1‐DE separation and were chosen for 2‐DE analysis. However, only the TCA method without fractionation (no. 4) proved to be useful. Spot number and resolution advances were achieved, which included having an additional solubilisation step in the conventional TCA method. Moreover, most of the theoretical and experimental protein molecular weight and pI data had similar values, suggesting good focusing and, most importantly, limited protein degradation. Conclusion – The described sample preparation method allows the proteomic analysis of papaya leaves by 2‐DE and mass spectrometry (MALDI‐TOF‐MS/MS). The methods presented can be a starting point for the optimisation of sample preparation protocols for other plant species. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
The hyporheic zone and its interactions with coarse surface sediments is increasingly reported by aquatic ecologists because the water exchanges between surface and subsurface are important factors for the understanding of the ecosystem functioning. However, the hyproheic oligochaete assemblages have received less attention than other assemblages such as crustaceans. In addition, studies investigating the incidence of pollution in watercourses have mostly focused on the benthic zone and have neglected the hyporheic zone. Some examples are given from an unpolluted glacial river (Roseg), polluted plains rivers (Moselle, Rhône) and a protected wetland in an urbanized environment. The hyporheic zone kept the memory of past and present incidences of pollution, in particular when downwellings of polluted surface waters to the hyporheic zone predominated. The Active hydrologic Exchange Describers between surface and subsurface (AED oligochaete species) were the same in the glacial river Roseg, the rivers Rhône and Moselle and the urbanized wetland. The predominance of pollution-tolerant species like Limnodrilus hoffmeisteri was observed in polluted groundwater as well as in polluted surface coarse sediments. Moreover, the urbanized wetland exhibited a high species richness, suggesting that the hyporheic zone is a reservoir of species. The oligochaete communities enable biologists to simultaneously assess the pollution incidence, the permeability of coarse habitats, the water exchanges between surface and subsurface, and give an approximate measure of the metabolic activities in the sediments. Consequently, the simultaneous study of surface and hyporheic oligochaete assemblages is of great interest when considering the ecological functioning of watercourses and the incidence of pollution inputs.  相似文献   

16.
Leaf samples were taken from 34 (1998) and 10 (1999) vineyards in five valleys in western Oregon to assess spider mite pests and biological control by predaceous phytoseiid mites. A leaf at a coordinate of every 10 m of border, 5 m into a vineyard, was taken to minimize edge effects; 20 leaves were taken at regular intervals from vineyard centers. Variables recorded at each site included grape variety and plant age, chemicals used, and vegetation next to vineyards. Sites were rated as occurring in agricultural versus riparian settings based on surrounding vegetation types. Multiple linear regressions and a computer genetic algorithm with an information content criterion were used to assess variables that may explain mite abundances. Typhlodromus pyri Scheuten was the dominant phytoseiid mite species and Tetranychus urticae Koch the dominant tetranychid mite species. High levels of T. urticae occurred when phytoseiid levels were low, and low levels of T. urticae were present when phytoseiid levels were high to moderate. T. urticae densities were higher in vineyards surrounded by agriculture, but phytoseiid levels did not differ between agricultural and riparian sites. Phytoseiids had higher densities on vineyard edges; T. urticae densities were higher in centers. Biological control success of pest mites was rated excellent in 11 of 44 vineyards, good in 27, and poor in only six sites. Predaceous mites appeared to be the principal agents regulating spider mites at low levels in sites where pesticides nontoxic to predators were used. Effects of surrounding vegetation, grape variety, growing region, and other factors on mites are discussed.  相似文献   

17.
Aim Urban environments around the world share many features in common, including the local extinction of native plant species. We tested the hypothesis that similarity in environmental conditions among urban areas should select for plant species with a particular suite of traits suited to those conditions, and lead to the selective extinction of species lacking those traits. Location Eleven cities with data on the plant species that persisted and those that went locally extinct within at least the last 100 years following urbanization. Methods We compiled data on 11 plant traits for 8269 native species in the 11 cities and used hierarchical logistic regression models to identify the degree to which traits could distinguish species that persisted from those that went locally extinct in each city. The trait effects from each city were then combined in a meta‐analysis. Results The cities fell into two groups: those with relatively low rates of extinction (less than 0.05% species per year – Adelaide, Hong Kong, Los Angeles, San Diego and San Francisco), for which no traits reliably predicted the pattern of extinction, and those with higher rates of extinction (> 0.08% species per year – Auckland, Chicago, Melbourne, New York, Singapore and Worcester, MA), where short‐statured, small‐seeded plants were more likely to go extinct. Main conclusions Our analysis reveals patterns in trait selectivity consistent with local studies, suggesting some consistency in trait selection by urbanization. Overall, however, few traits reliably predicted the pattern of plant extinction across cities, making it difficult to identify a priori the extinction‐prone species most likely to be affected by urban expansion.  相似文献   

18.
A multidisciplinary approach, based on field surveys, molecular biology techniques, and spatial data analyses, was utilised to investigate the Bois noir (BN) epidemiology in north‐eastern Italian vineyards during the years 2010–12. Symptomatic grapevines, weeds and specimens of the insect vector Hyalesthes obsoletus were monitored and mapped. Leaf samples from symptomatic grapevines and weeds, and captured insect specimens were analyzed by real‐time PCR to identify BN phytoplasma (BNp; ‘Candidatus Phytoplasma solani’ species), the etiological agent of BN. Data spatial distribution was analyzed using SADIE (Spatial Analysis by Distance IndicEs). Bois noir phytoplasma strains identified in weed candidates for an epidemiological role were characterised by RFLP‐based analyses of tuf gene amplicons. Results highlighted that, in the examined areas, the host systems Convolvulus arvensis – H. obsoletus and Urtica dioica – H. obsoletus play the main role in BN diffusion. It was also evidenced that other weeds (i.e. Chenopodium album and Malva sylvestris) spatially associated with symptomatic grapevines and/or insect vectors and infected by the same tuf type identified in grapevines and insects, could play a role in BN diffusion. On the other hand, some weeds (i.e. Trifolium repens) were uninfected and not associated with symptomatic grapevines and/or insect vectors. The synergic application of our multidisciplinary approach improved the knowledge of BN epidemiology, and provided helpful indication for designing experimental plans to contain BN spreading in vineyards through weed management. The approach described in the present work could be used to investigate the complex epidemiology of other phytoplasma diseases.  相似文献   

19.
Leaf‐cutting ants (LCA) are polyphagous and dominant herbivores throughout the Neotropics that carefully select plant individuals or plant parts to feed their symbiotic fungus. Although many species‐specific leaf traits have been identified as criteria for the choice of food plants, the factors driving intraspecific herbivory patterns in LCA are less well studied. Herein, we evaluate whether or not drought‐stressed native plants are a preferred food source using free‐living colonies of two leaf‐cutting ants, Atta sexdens L. (Hymenoptera: Formicidae: Attini), in combination with five plant species, Ocotea glomerata Nees (Lauraceae), Lecythis lurida S. A. Mori (Lecythidaceae), Miconia prasina DC (Melastomataceae), Tovomita brevistaminea Engl. (Clusiaceae), and Tapirira guianensis Aubl. (Anacardiaceae), and Atta cephalotes L., in combination with two plant species, O. glomerata and Licania tomentosa Benth. (Chrysobalanaceae). In dual‐choice bioassays, ants removed about three times more leaf area from drought‐stressed plants compared to control plants. Both leaf‐cutting ant species consistently preferred drought‐stressed plants for all species tested, except T. guianensis. The mean acceptability index – expressing the preference for one of two options on a scale of 0 to 1 – of drought‐stressed plants ranged from 0.65 to 0.86 across plant species, and the preference did not differ significantly among the tested plant species. Our results suggest that selection of drought‐stressed individuals is a general feature of food plant choice by leaf‐cutting ants irrespective of ant or plant species. As human‐modified forest assemblages across the Neotropics are increasingly prone to drought stress, the documented preference of Atta for drought‐stressed plants may have tangible ecological implications.  相似文献   

20.
Natural ecosystems provide services to agriculture such as pest control, soil nutrients, and key microbial components. These services and others in turn provide essential elements that fuel biomass productivity. Responsible agricultural management and conservation of natural habitats can enhance these ecosystem services. Vineyards are currently driving land‐use changes in many Mediterranean ecosystems. These land‐use changes could have important effects on the supporting ecosystems services related to the soil properties and the microbial communities associated with forests and vineyard soils. Here, we explore soil bacterial and fungal communities present in sclerophyllous forests and organic vineyards from three different wine growing areas in central Chile. We employed terminal restriction fragment length polymorphisms (T‐RFLP) to describe the soil microbial communities inhabiting native forests and vineyards in central Chile. We found that the bacterial community changed between the sampled growing areas; however, the fungal community did not differ. At the local scale, our findings show that fungal communities differed between habitats because fungi species might be more sensitive to land‐use change compared to bacterial species, as bacterial communities did not change between forests and vineyards. We discuss these findings based on the sensitivity of microbial communities to soil properties and land‐use change. Finally, we focus our conclusions on the importance of naturally derived ecosystem services to vineyards.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号