首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dysregulated long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) play key roles in the development of human cancers. The lncRNA plasmacytoma variant translocation 1 (PVT1) is reported to be an oncogene in a variety of cancers. However, the roles of PVT1-5 and its related miRNAs in lung cancer are poorly understood. In this study, we found that PVT1-5 expression was significantly increased in lung cancer tissues and cell lines. By using biotin-labeled lncRNA-PVT1-5 probe for miRNA in vivo precipitation (miRIP) in lung cancer cells and dual-luciferase reporterassays, we identified that miR-126 was associated with lncRNA-PVT1-5. Furthermore, knockdown of lncRNA-PVT1-5 in cells could down-regulate the expression of SLC7A5, the target of oncogenic miR-126, resulting in the cell proliferation. Conversely, inhibiting the expression of miR-126 markedly increased the expression of SLC7A5 and alleviated cell proliferation inhibition. Thus, our results indicated that lncRNA-PVT1-5 may function as a competing endogenous RNA (ceRNA) for miR-126 to promote cell proliferation by regulating the miR-126/SLC7A5 pathway, suggesting that lncRNA-PVT1-5 plays a crucial role in lung cancer progression and lncRNA-PVT1-5/miR-126/SLC7A5 regulatory network may shed light on tumorigenesis in lung cancer.  相似文献   

2.
Despite intensive efforts to improve therapies, small cell lung cancer (SCLC) still has a dismal median survival of 18 months. Since miR-126 is under-expressed in the majority of SCLC tumors, we investigated the effect of miR-126 overexpression on the proliferation and cell cycle distribution of H69 cells. Our results demonstrate that miR-126 inhibits proliferation of H69 cells, by delaying the cells in the G1 phase. Short interfering RNA (siRNA) mediated suppression of SLC7A5, a predicted target of mir-126, has the same effect on H69 cells. We also show for the first time that SLC7A5 is a direct target of miR-126.  相似文献   

3.
Circular RNA is a newly discovered member of non-coding RNA (ncRNA) and regulates the target gene by acting as a micro-RNA sponge. It plays vital roles in various diseases. However, the functions of circular RNA in non-small cell lung cancer (NSCLC) remain still unclear. Our data showed that circ-WHSC1 was highly expressed in NSCLC cells and tissues. Both in vitro and in vivo experiments showed that circ-WHSC1 promoted NSCLC proliferation. circ-WHSC1 also promoted the migration and invasion of lung cancer cells. Through bioinformatic analysis and functional experiments, we showed that circ-WHSC1 could act as a sponge for micro-RNA-7 (miR-7) and regulate the expression of TAB2 (TGF-beta activated kinase one binding protein two). Inhibition of the circ-WHSC1/miR-7/TAB2 pathway could effectively attenuate lung cancer progression. In summary, this study confirmed the existence and oncogenic function of circ-WHSC1 in NSCLC. The research suggests that the circ-WHSC1/miR-7/TAB2 axis might be a potential target for NSCLC therapy.  相似文献   

4.
Non–small cell lung cancer (NSCLC) is the main type of lung malignancy. Early diagnosis and treatments for NSCLC are far from satisfactory due to the limited knowledge of the molecular mechanisms regarding NSCLC progression. Long noncoding RNA (lncRNA) ZNFX1 antisense RNA1 (ZFAS1) has been implicated for its functional role in the progression of malignant tumors. This study aimed to determine the ZFAS1 expression from lung cancer clinical samples and to explore the molecular mechanisms underlying ZFAS1-modulated NSCLC progression. Experimental assays revealed that clinical samples and cell lines of lung malignant tumors showed an upregulation of ZFSA1. ZFAS1 expression was markedly upregulated in the lung tissues from patients with advanced stage of this malignancy. The loss-of-function assays showed that knockdown of ZFAS1-suppressed NSCLC cell proliferative, as well as invasive potentials, increased NSCLC cell apoptotic rates in vitro and also attenuated tumor growth of NSCLC cells in the nude mice. Further experimental evidence showed that ZFAS1 inversely affected miR-150-5p expression and positively affected high-mobility group AT-hook 2 (HMGA2) expression in NSCLC cell lines. MiR-150-5p inhibition or HMGA2 overexpression counteracted the effects of ZFAS1 knockdown on NSCLC cell proliferative, invasive potentials and apoptotic rates. In light of examining the clinical lung cancer samples, miR-150-5p expression was downregulated and the HMGA2 expression was highly expressed in the lung cancer tissues compared with normal ones; the ZFAS1 expression showed a negative correlation with miR-150-5p expression but a positive correlation with HMGA2 expression in lung cancer tissues. To summarize, we, for the first time, demonstrated the inhibitory effects of ZFAS1 knockdown on NSCLC cell progression, and the results from mechanistic studies indicated that ZFAS1-mediated NSCLC progression cells via targeting miR-150-5p/HMGA2 signaling.  相似文献   

5.
Non-small cell lung cancer (NSCLC) is the most common type of lung cancer. We aimed to investigate the role of LINC00184 in NSCLC. Migration, proliferation and invasion of NSCLC cells were analysed using the wound healing assay, cell counting kit-8 assay and transwell assay, respectively. Apoptosis and cell cycle were assessed using flow cytometry. Online bioinformatics tools were utilized to predict downstream microRNAs (miRNA) or genes related to LINC00184 expression. The RNA pull-down experiment and luciferase reporter assay were performed to verify the predictions thereof. LINC00184, miR-524-5p, and high mobility group 2 protein (HMGB2) expression levels in NSCLC tissues and cell lines were detected using quantitative real-time polymerase chain reaction. An NSCLC mouse model was constructed for in vivo experiments. LINC00184 overexpression was observed in NSCLC tissues and cell lines and was found to be correlated with poor prognosis. LINC00184 knockdown inhibited cell proliferation, migration and invasion, induced cell cycle arrest and accelerated apoptosis in NSCLC cell lines. LINC00184 suppressed tumour growth and proliferation in NSCLC mouse models and directly targeted the miR-524-5p/HMGB2 axis. Moreover, the expression levels of LINC00184 and HMGB2 were negatively correlated with miR-524-5p expression, whereas LINC00184 expression was positively correlated with HMGB2 expression. LINC00184 affected the cell cycle, proliferation, apoptosis, migration and invasion in NSCLC via regulation of the miR-524-5p/HMGB2 axis.  相似文献   

6.
MicroRNAs (miRNAs) represent an abundant group of small non-coding RNAs that regulate gene expression, and have been demonstrated to play roles as tumor suppressor genes (oncogenes), and affect homeostatic processes such as development, cell proliferation, and cell death. Subsequently, epidermal growth factor-like domain 7 (EGFL7), which is confirmed to be involved in cellular responses such as cell migration and blood vessel formation, is identified as a potential miR-126 target by bioinformatics. However, there is still no evidence showing EGFL7’s relationship with miR-126 and the proliferation of lung cancer cells. The aim of this work is to investigate whether miR-126, together with EGFL7, have an effect on non-small cell lung cancer (NSCLC) cells’ proliferation. Therefore, we constructed overexpressed miR-126 plasmid to target EGFL7 and transfected them into NSCLC cell line A549 cells. Then, we used methods like quantitative RT-PCR, Western blot, flow cytometry assay, and immunohistochemistry staining to confirm our findings. The result was that overexpression of miR-126 in A549 cells could increase EGFL7 expression. Furthermore, the most notable finding by cell proliferation related assays is that miR-126 can inhibit A549 cells proliferation in vitro and inhibit tumor growth in vivo by targeting EGFL7. As a result, our study demonstrates that miR-126 can inhibit proliferation of non-small cell lung cancer cells through one of its targets, EGFL7.  相似文献   

7.
Wang  Lei  Zeng  Cimei  Chen  Zhongren  Qi  Jianxu  Huang  Sini  Liang  Haimei  Huang  Shiren  Ou  Zongxing 《Molecular and cellular biochemistry》2022,477(3):743-757

Non-small cell lung cancer remains the leading cause of cancer-related death worldwide. Circular RNA plays vital roles in NSCLC progression. This study is designed to reveal the role of circ_0025039 in NSCLC cell malignancy. The RNA expression of circ_0025039, microRNA-636 (miR-636), and coronin 1C was detected by quantitative real-time polymerase chain reaction. Protein expression was checked by Western blot analysis or immunohistochemistry assay. Cell proliferation, migration, invasion, tube formation ability, sphere formation capacity, and apoptosis were investigated by cell counting kit-8, 5-Ethynyl-29-deoxyuridine, transwell assay, tube formation assay, sphere formation assay, and flow cytometry analysis, respectively. Mouse model assay was conducted to reveal the effect of circ_0025039 silencing on tumor formation in vivo. The interaction between miR-636 and circ_0025039 or CORO1C was identified through dual-luciferase reporter and RNA pull-down assays. The expression of circ_0025039 and CORO1C was significantly increased, while miR-636 was decreased in NSCLC tissues and cells compared with controls. Circ_0025039 depletion repressed NSCLC cell proliferation, migration, invasion, tube-forming capacity, and sphere formation ability, but induced cell apoptosis. The neoplasm formation was repressed after circ_0025039 silencing. Additionally, circ_0025039 acted as a sponge for miR-636, which was found to target CORO1C. Importantly, the contribution of circ_0025039 to NSCLC progression was mediated by miR-636/CORO1C axis. Circ_0025039 silencing repressed NSCLC malignant progression by reducing CORO1C expression through miR-636, showing the possibility of circ_0025039 as a therapeutic target for NSCLC.

  相似文献   

8.
9.
Growing evidence have shown the important regulation of lncRNAs (long noncoding RNAs) in non–small cell lung cancer (NSCLC). lncRNA hepatocyte nuclear factor 1 homeobox A (HNF1A)-antisense RNA 1 (AS1), an “oncogene”, was reported to regulate human tumors progression. However, the molecular mechanism of HNF1A-AS1 involved in the development of NSCLC is still under investigation. In the current study, we found that HNF1A-AS1 was relatively upregulated in both NSCLC patient tissues and cell lines. Functional studies established that overexpression of HNF1A-AS1 promoted cell proliferation, cell cycle, invasion, and migration of NSCLC cells in vitro. The promotion abilities of HNF1A-AS1 on NSCLC cell progression were suppressed via knockdown of HNF1A-AS1. miR-149-5p was then proved to be a novel target of HNF1A-AS1, whose expression was negatively correlated with HNF1A-AS1 in NSCLC patient tissues and cell lines. HNF1A-AS1 increased the expression of cyclin-dependent kinase 6 (Cdk6) via sponging with miR-149-5p. Gain- and loss-of-functional studies indicated that HNF1A-AS1 promoted NSCLC progression partially through inhibition of miR-363-3p and induction of Cdk6. Subcutaneous xenotransplanted tumor model confirmed that interference of HNF1A-AS1 suppressed the tumorigenic ability of NSCLC via upregulation of miR-149-5p and downregulation of Cdk6 in vivo. In conclusion, our findings clarified the biologic significance of the HNF1A-AS1/miR-149-5p/Cdk6 axis in NSCLC progression and provided novel evidence that HNF1A-AS1 may be a new potential therapeutic target for the treatment of NSCLC.  相似文献   

10.
Everolimus is a kind of mammalian target of rapamycin (mTOR) inhibitors. Activated mitogen-activated protein kinase interacting kinases/eukaryotic translation initiation factor 4E (MNK/eIF4E) axis plays a crucial role in resistance to Everolimus in non-small cell lung cancer (NSCLC). The eIF4E phosphorylation increased by mTOR inhibitors is mainly mediated by MNKs. However, the mechanisms are poorly understood. Recently, extensive reprogramming of miRNA profiles has also been found after long-term mTOR inhibitor exposure. Our previous studies have confirmed that tumor suppressor miR-7-5p is decreased in A549 cells after treatment with Everolimus. Exactly, MNK1 is the target of miR-7-5p. In this study, we investigated the biological functions and potential molecular mechanisms of miR-7-5p in the NSCLC undergoing treatment with Everolimus. We confirmed that Everolimus targeted mTORC1 inducing NSCLC cells to secrete miR-7-5p-loaded exosomes in Rab27A and Rab27B-dependent manners. Loss of intracellular miR-7-5p induced phosphorylation of MNK/eIF4E axis, but a supplement of extra exosomal miR-7-5p could reverse it. Of note, both low expression of miR-7-5p and elevated MNK1 protein were associated with a poor prognosis of NSCLC. Both endogenous miR-7-5p and exo-miR-7-5p enhanced the therapeutic efficacy of Everolimus by inhibiting the proliferation, migration, and metastasis of NSCLC in vitro and in vivo. The combination of miR-7-5p with Everolimus induced apoptosis to exhibit a synergistic anticancer therapeutic efficacy through dual abrogation of MNK/eIF4E and mTOR in NSCLC. In conclusion, Everolimus decreases the intracellular miR-7-5p by releasing of miR-7-5p loaded exosomes from NSCLC cells in Rab27A and Rab27B dependent manners. Either endogenous miR-7-5p or exo-miR-7-5p combined with Everolimus can enhance the anticancer efficacy by targeting MNK/eIF4E axis and mTOR. Besides, both low levels of miR-7-5p and positive expression of MNK1 act as independent poor prognostic biomarkers for NSCLC. Therefore, restoring miR-7-5p carried by exosome may be a promising novel combined therapeutic strategy with Everolimus for NSCLC.Subject terms: Drug development, Growth factor signalling, Oncogenesis  相似文献   

11.
Identification of novel molecular signaling targets for non-small cell lung cancer (NSCLC) is important. The present study examined expression, functions and possible underlying mechanisms of the sodium/myo-inositol co-transporter SLC5A3 in NSCLC. The Cancer Genome Atlas (TCGA) database and local NSCLC tissue results demonstrated that SLC5A3 expression in NSCLC tissues (including patient-derived primary NSCLC cells) was significantly higher than that in normal lung tissues and lung epithelial cells. In primary NSCLC cells and immortalized lines, SLC5A3 depletion, using small hairpin RNA (shRNA) and CRSIRP/Cas9 methods, robustly impeded cell proliferation and migration, simultaneously provoking cell cycle arrest and apoptosis. Conversely, ectopic overexpression of SLC5A3 further enhanced proliferation and migration in primary NSCLC cells. The intracellular myo-inositol contents and Akt-mTOR activation were largely inhibited by SLC5A3 silencing or knockout (KO), but were augmented following SLC5A3 overexpression in primary NSCLC cells. Significantly, SLC5A3 KO-induced anti-NSCLC cell activity was largely ameliorated by exogenously adding myo-inositol or by a constitutively-active Akt construct. By employing the patient-derived xenograft (PDX) model, we found that the growth of subcutaneous NSCLC xenografts in nude mice was largely inhibited by intratumoral injection SLC5A3 shRNA adeno-associated virus (AAV). SLC5A3 silencing, myo-inositol depletion, Akt-mTOR inactivation and apoptosis induction were detected in SLC5A3 shRNA virus-injected NSCLC xenograft tissues. Together, elevated SLC5A3 promotes NSCLC cell growth possibly by maintaining myo-inositol contents and promoting Akt-mTOR activation.Subject terms: Non-small-cell lung cancer, Targeted therapies  相似文献   

12.
Long noncoding RNAs (lncRNAs) are key players in the development and progression of human cancers. The lncRNA PCAT-1 has been shown to be upregulated in human non–small cell lung cancer (NSCLC); however, its role and molecular mechanisms in NSCLC cell progression remain unclear. Here, we found that the higher expression of PCAT-1 led to a significantly poorer survival time, and multivariate analysis revealed that PCAT-1 was an independent risk factor of prognosis in NSCLC. Furthermore, we also found that the knockdown of PCAT-1 remarkably suppressed cell growth by inducing cell cycle arrest and apoptosis promotion in NSCLC cells. Moreover, the bioinformatics analysis and luciferase reporter assay revealed that PCAT-1 directly bound to the miR-149-5p, which has been reported to act as a tumor suppressor in diverse cancers. In addition, our results confirmed that the tumor-promoting effects of PCAT-1 in NSCLC cells are at least partly through negative modulation of miR-149-5p. Finally, mechanistic investigations showed that PCAT-1 upregulated the expression of miR-149-5p target gene leucine-rich repeats and immunoglobulin (Ig)-like domains 2 (LRIG2) through competitively “spongeing” miR-149-5p. Therefore, we concluded that PCAT-1 may promote the development of NSCLC through the miR-149-5p/LRIG2 axis.  相似文献   

13.
Lung cancer, predominantly non-small cell lung cancer (NSCLC), remains the leading cause of cancer-related deaths worldwide. Although epidermal growth factor receptor (EGFR) signaling is important and well studied with respect to NSCLC progression, little is known about how miRNAs mediate EGFR signaling to modulate tumorigenesis. To identify miRNAs that target EGFR, we performed a bioinformatics analysis and found that miR-542-5p down-regulates EGFR mRNA and protein expression in human lung cancer cells (H3255, A549, Hcc827). We observed increases in EGFR association with Ago2 in miR-542-5p-transfected cells. Interestingly, we observed an inverse correlation of miR-542-5p expression and EGFR protein levels in human lung cancer tissue samples, suggesting that miR-542-5p directly targets EGFR mRNA. Furthermore, we found that miR-542-5p inhibited the growth of human lung cancer cells. Our findings suggest that miR-542-5p may act as an important modulator of EGFR-mediated oncogenesis, with potential applications as a novel therapeutic target in lung cancer.  相似文献   

14.
Circular RNA (circRNA) is a key regulator in the development and progression of human cancers. Previous studies confirmed circRNA-0008717 (circABCB10) as an oncogene in osteosarcoma, but the regulatory effect of circABCB10 in nonsmall cell lung cancer (NSCLC) is still unclear. In the current study, we examined the expression of circABCB10 in different NSCLC cell lines. Bioinformatics analysis, Cell Counting Kit-8 assays, Transwell migration, fluorescein reporting experiments, and xenografts in mice were used to detect the effect of circABCB10 on NSCLC cell proliferation and migration in vitro and tumor growth in vivo. The results showed that the expression of circABCB10 in NSCLC cell lines was increased. Downregulation of circABCB10 suppressed NSCLC cell proliferation and migration by promoting microRNA miR-1252 expression and suppressing Forkhead box 2 (FOXR2). Fluorescein reporting experiments confirmed that circABCB10 expression increased FOXR2 levels by sponging miR-1252, and in vivo experiments found that knockdown of circABCB10 decreased tumor growth. These data suggested that circABCB10 acted as a tumor promoter through a novel miR-1252/FOXR2 axis, providing potential biomarkers and therapeutic targets for the management of NSCLC.  相似文献   

15.
Angiogenesis is a critical event in the development, progression, and spread of various human cancers, including lung cancer. Molecular mechanisms that underlie the complex regulation of angiogenic processes are poorly understood. However, an increasing body of evidence indicates miRNAs as important regulators of tumor angiogenesis. Forceps biopsies were collected from tumor tissue, surrounding tissue, and non-tumor tissue from 50 NSCLC patients. Lung tissue samples from individuals with no clinical evidence of a cancerous disease served as controls. Immunohistochemical staining for Factor VIII was used to evaluate microvessel density (MVD). TaqMan® primer-probe sets were used in quantitative real-time RT-PCR reactions to determine expression levels of let-7b, miR-126, miR-9, and miR-19a. We demonstrated significantly higher MVD and decreased expression levels of let-7b and miR-126 in tumor tissue and surrounding tissue in comparison to corresponding non-tumor tissue or lung tissue from the control group. In addition, no differences in MVD and expression levels of both miRNAs between tumor tissue and surrounding tissue from NSCLC patients were observed. Low expression of both miRNAs correlated with high MVD and worse progression-free survival and overall survival. These observations strongly suggest similar molecular alternations within tumor tissue and surrounding tissue that comprise a specific microenvironment. Low expression of let-7b and miR-126 seems to have a possible anti-angiogenic role in lung tumor tissue and significantly correlates with worse survival outcomes for lung cancer patients. Moreover, the regulation of let-7b and miR-126 expression could have therapeutic potential because it could reduce tumor angiogenesis and therefore suppress tumor growth in lung cancer patients.  相似文献   

16.
Long noncoding RNA KCNQ1OT1 participates in the regulation of imprinted genes within the kcnq1 domain. But its roles in carcinogenesis and metastasis remain largely elusive. Herein, we evaluated its potential in non-small-cell lung cancer (NSCLC) progression. We demonstrated that the KCNQ1OT1 level was upregulated in NSCLC tissues and cell lines. High KCNQ1OT1 level correlated with poor overall and progression-free survival in NSCLC patients. KCNQ1OT1 facilitated proliferation, migration, and invasion in H460 cells. Furthermore, knockdown of KCNQ1OT1 reduced the expression of HSP90AA1. KCNQ1OT1 presented a positive correlation with HSP90AA1 which predicted the tumor progression in NSCLC from The Cancer Genome Atlas database. Intriguingly, KCNQ1OT1 modulated HSP90AA1 expression by sponging miR-27b-3p. MiR-27b-3p counteracted the effect of KCNQ1OT1 on HSP90AA1 expression, H460 cell migration, and invasion. These data revealed a role for KCNQ1OT1 as an oncogene through miR-27b-3p/HSP90AA1 axis during NSCLC progression.  相似文献   

17.
The dysregulation of circular RNA (circRNA) expression is involved in the progression of several cancers, including non-small cell lung cancer (NSCLC). However, the role and underlying molecular mechanisms of circRNA FGFR3 (circFGFR3) in NSCLC progression remains unknown. Here, we used quantitative real-time polymerase chain reaction to validate that circFGFR3 expression was higher in NSCLC tissues than in the paratumor tissues. Furthermore, our study indicated that the forced circFGFR3 expression promoted NSCLC cell invasion and proliferation. Mechanistically, we found that circFGFR3 promoted NSCLC cell invasion and proliferation via competitively combining with miR-22-3p to facilitate the galectin-1 (Gal-1), p-AKT, and p-ERK1/2 expressions. Clinically, we revealed that the high circFGFR3 expression correlates with the poor clinical outcomes in patients with NSCLC. Together, these data provide mechanistic insights into the circFGFR3-mediated regulation of both the AKT and ERK1/2 signaling pathways by sponging miR-22-3p and increasing Gal-1 expression.  相似文献   

18.
The long noncoding RNA component of mitochondrial RNA-processing endoribonuclease (lncRNA RMRP) plays an important role in tumor development. In the present study, we determined the regulatory function of RMRP in non–small-cell lung cancer (NSCLC). The NSCLC tissues and the adjacent nontumor tissues were collected for the study. The RMRP expression was detected by quantitative real time-PCR in NSCLC and lung cancer cell lines. The functional validation experiments were performed to determine the role of RMRP on NSCLC progression. In addition, we identified the downstream target miRNAs for RMRP. The results showed that RMRP was elevated in NSCLC tissues and cell lines. High RMRP expression was closely associated with advanced stage for the clinical features and low overall survival in NSCLC patients. Functional assay showed that loss of RMRP markedly inhibited cell proliferation, migration, and invasion. Flow cytometry assay demonstrated that the inhibition of RMRP dramatically induced cell cycle arrest in the G0/G1 phase. Moreover, we found that the role of RMRP on NSCLC cell progression was modulated by the inhibition of miR-1-3p. Collectively, our results demonstrated that the “RMRP-miR-1-3p” axis might promote NSCLC progression. Hence, these investigations will provide a therapeutic target and strategy for the treatment of NSCLC progression.  相似文献   

19.
Increasing evidence suggests that hsa-miR-126 (miR-126) is down-regulated in non-small cell lung cancer (NSCLC) cell lines and the restoration of miR-126 impairs tumor cell proliferation, migration, invasion, and survival by targeting specific molecules. Here, we reported for the first time that miR-126 was involved in regulating the response of NSCLC cells to cancer chemotherapy. After transfected A549 cells with miR-126 mimic or inhibitor, we found that an elevated level of miR-126 was significantly associated with a decreased half maximal inhibitory concentration of adriamycin (ADM) and vincristine, an increased accumulation of ADM, down-regulation of vascular endothelial growth factor A (VEGFA) and multidrug resistance-associated protein 1 (MRP1), and inactivation of the Akt signaling pathway. Furthermore, enhanced expression of miR-126 suppressed the growth of A549 xenograft and inhibited the expression of VEGFA and MRP1. miR-126 could efficiently down-regulate VEGFA expression through the interaction with the VEGFA 3'-untranslated region, whereas restoration of VEGFA could partially attenuate the suppression of MRP1 by miR-126. However, LY294002, an inhibitor of the PI3K/Akt signaling pathway, diminished this effect, suggesting that enhanced expression of miR-126 increased the sensitivity of NSCLC cells to anticancer agents through negative regulation of a VEGF/PI3K/Akt/MRP1 signaling pathway.  相似文献   

20.
KH-type splicing regulatory protein (KSRP) is a single-strand RNA binding protein which regulates mRNA stability either by binding to AU-rich elements (AREs) of mRNA 3′UTR or by facilitating miRNA biogenesis to target mRNA. Unlike its well-characterized function at the molecular level in maintaining RNA homeostasis, the role of KSRP in cancer progression remains largely unknown. Here we investigate the role of KSRP in non-small cell lung cancer (NSCLC). We first examined KSRP expression by immunohistochemistry in a cohort containing 196 NSCLC patients and observed a strong positive correlation between KSRP expression and survival of NSCLC patients. Multivariate analysis further identified KSRP as an independent prognostic factor. Manipulating KSRP expression significantly affected in vitro cell mobility and in vivo metastatic ability of NSCLC cells. Microarray analysis identified an ARE-containing gene, EGR3, as a downstream effector of KSRP in NSCLC. Interestingly, we found that KSRP decreased EGR3 mRNA stability in an ARE-independent manner. By screening KSRP-regulated miRNAs in NSCLC cells, we further found that miR-23a directly binds to EGR3 3′UTR, reducing EGR3 expression and thereby inhibiting NSCLC cell mobility. Our findings implicate a targetable KSRP/miR-23a/EGR3 signaling axis in advanced tumor phenotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号