首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly‐γ‐glutamate (γ‐PGA) has applications in food, medical, cosmetic, animal feed, and wastewater industries. Bacillus subtilis DB430, which possesses the γ‐PGA synthesis ywsC‐ywtAB genes in its chromosome, cannot produce γ‐PGA. An efficient synthetic expression control sequence (SECS) was introduced into the upstream region of the ywtABC genes, and this resulted in γ‐PGA‐producing B. subtilis mutant strains. Mutant B. subtilis PGA6‐2 stably produces high levels of γ‐PGA in medium A without supplementation of extra glutamic acid or ammonium chloride. The mutant B. subtilis PGA 6‐2 is not only a γ‐PGA producer, but it is also a candidate for the genetic and metabolic engineering of γ‐PGA production. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

2.
One of the emerging biopolymers that are currently under active investigation is bacterial poly(γ‐glutamic acid) (γ‐PGA). However, before its full industrial exploitation, a substantial increase in microbial productivity is required. γ‐PGA obtained from the Bacillus subtilis laboratory strain 168 offers the advantage of a producer characterized by a well defined genetic framework and simple manipulation techniques. In this strain, the knockout of genes for the major γ‐PGA degrading enzymes, pgdS and ggt, leads to a considerable improvement in polymer yield, which attains levels analogous to the top wild γ‐PGA producer strains. This study highlights the convenience of using the laboratory strain of B. subtilis over wild isolates in designing strain improvement strategies aimed at increasing γ‐PGA productivity. Biotechnol. Bioeng. 2013; 110: 2006–2012. © 2013 Wiley Periodicals, Inc.  相似文献   

3.
3‐Fucosyllactose (3‐FL), one of the major oligosaccharides in human breast milk, is produced in engineered Escherichia coli. In order to search for a good α‐1,3‐fucosyltransferase, three bacterial α‐1,3‐fucosyltransferases are expressed in engineered E. coli deficient in β‐galactosidase activity and expressing the essential enzymes for the production of guanosine 5′‐diphosphate‐l ‐fucose, the donor of fucose for 3‐FL biosynthesis. Among the three enzymes tested, the fucT gene from Helicobacter pylori National Collection of Type Cultures 11637 gives the best 3‐FL production in a simple batch fermentation process using glycerol as a carbon source and lactose as an acceptor. In order to use glucose as a carbon source, the chromosomal ptsG gene, considered the main regulator of the glucose repression mechanism, is disrupted. The resulting E. coli strain of ?LP‐YA+FT shows a much lower performance of 3‐FL production (4.50 g L?1) than the ?L‐YA+FT strain grown in a glycerol medium (10.7 g L?1), suggesting that glycerol is a better carbon source than glucose. Finally, the engineered E. coli ?LW‐YA+FT expressing the essential genes for 3‐FL production and blocking the colanic acid biosynthetic pathway (?wcaJ) exhibits the highest concentration (11.5 g L?1), yield (0.39 mol mol?1), and productivity (0.22 g L?1 h) of 3‐FL in glycerol‐limited fed‐batch fermentation.  相似文献   

4.
As an environmentally friendly and industrially useful biopolymer, poly‐γ‐glutamic acid (γ‐PGA) from Bacillus licheniformis CGMCC 2876 was characterized by the high‐resolution mass spectrometry and 1H NMR. A flocculating activity of 11,474.47 U mL?1 obtained with γ‐PGA, and the effects of carbon sources, ions, and chemical properties (D‐/L‐composition and molecular weight) on the production and flocculating activity of γ‐PGA were discussed. Being a bioflocculant in the sugar refinery process, the color and turbidity of the sugarcane juice was IU 1,877.36 and IU 341.41 with 0.8 ppm of γ‐PGA, respectively, which was as good as the most widely used chemically synthesized flocculant in the sugarcane industry—polyacrylamide with 1 ppm. The γ‐PGA produced from B. licheniformis CGMCC 2876 could be a promising alternate of chemically synthesized flocculants in the sugarcane industry. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1287–1294, 2015  相似文献   

5.
6.
N‐acetylneuraminic acid (NeuAc) is a common sialic acid that has a wide range of applications in nutraceuticals and pharmaceuticals. However, low production efficiency and high environmental pollution associated with traditional extraction and chemical synthesis methods constrain the supply of NeuAc. Here, a biological approach is developed for food‐grade NeuAc production via whole‐cell biocatalysis by the generally regarded as safe (GRAS) bacterium Bacillus subtilis (B. subtilis). Promoters for controlling N‐acetylglucosamine 2‐epimerase (AGE) and NeuAc adolase (NanA) are optimized, yielding 32.84 g L?1 NeuAc production with a molar conversion rate of 26.55% from N‐acetylglucosamine (GlcNAc). Next, NeuAc production is further enhanced to 46.04 g L?1, which is 40.2% higher than that of the strain with promoter optimization, by expressing NanA from Staphylococcus hominis instead of NanA from Escherichia coli. To enhance the expression level of ShNanA, the N‐terminal coding sequences of genes with high expression levels are fused to the 5′‐end of the ShNanA gene, resulting in 56.82 g L?1 NeuAc production. Finally, formation of the by‐product acetoin from pyruvate is blocked by deleting the alsS and alsD genes, resulting in 68.75 g L?1 NeuAc production with a molar conversion rate of 55.57% from GlcNAc. Overall, a GRAS B. subtilis strain is demonstrated as a whole‐cell biocatalyst for efficient NeuAc production.  相似文献   

7.
N‐acetylneuraminic acid (NeuAc) is widely used as a nutraceutical for facilitating infant brain development, maintaining brain health, and enhancing immunity. Currently, NeuAc is mainly produced by extraction from egg yolk and milk, or via chemical synthesis. However, its low concentration in natural resources and its non‐ecofriendly chemical synthesis result in insufficient NeuAc production and environmental pollution, respectively. In this study, improved NeuAc production was attained via modular pathway engineering of the supply pathways of two key precursors—N‐acetylglucosamine (GlcNAc) and phosphoenolpyruvate (PEP)—and by balancing NeuAc biosynthesis and cell growth in engineered Bacillus subtilis. Specifically, we used a previously constructed GlcNAc‐producing B. subtilis as the initial host for NeuAc biosynthesis. First, we constructed a de novo NeuAc biosynthetic pathway utilizing glucose by coexpressing glucosamine‐6‐phosphate acetyl‐transferase (GNA1), N‐acetylglucosamine 2‐epimerase (AGE), and N‐acetylneuraminic acid synthase (NeuB), resulting in 0.33 g/l NeuAc production. Next, to balance the supply of the two key precursors for NeuAc biosynthesis, modular pathway engineering was performed. The optimal strategy for balancing the GlcNAc module and PEP supply module involved the use of an engineered, unique glucose and malate coutilization pathway in B. subtilis, supplied with both glucose (for the GlcNAc moiety) and malate (for the PEP moiety) at high strength. This led to 1.65 g/L NeuAc production, representing a 5.0‐fold improvement over the existing methods. Furthermore, to enhance the NeuAc yield on cell, glucose and malate coutilization pathways were engineered to balance NeuAc biosynthesis and cell growth via the blocking of glycolysis, the introduction of the Entner–Doudoroff pathway, and the overexpression of the malic enzyme YtsJ. NeuAc titer reached 2.18 g/L, with 0.38 g/g dry cell weight NeuAc yield on cell, which represented a 1.32‐fold and 2.64‐fold improvement over the existing methods, respectively. The strategy of modular pathway engineering of key carbon precursor supply pathways via engineering of the unique glucose‐malate coutilization pathway in B. subtilis should be generically applicable for engineering of B. subtilis for the production of other important biomolecules. Our study also provides a good starting point for further metabolic engineering to achieve industrial production of NeuAc by a Generally Regarded As Safe bacterial strain.  相似文献   

8.
Poly(γ‐glutamic acid) (γ‐PGA) is a promising biopolymer with many potential industrial and pharmaceutical applications. To reduce the production costs, the effects of yeast extract and L ‐glutamate in the substrate for γ‐PGA production were investigated systematically at shake flask scale. The results showed that lower concentrations of yeast extract (40 g/L) and L ‐glutamate (30 g/L) were beneficial for the cost‐effective production of γ‐PGA in the formulated medium. By maintaining the glucose concentration in the range of 3–10 g/L via a fed‐batch strategy in a 10‐L fermentor, the production of γ‐PGA was greatly improved with the highest γ‐PGA concentration of 101.1 g/L, a productivity of 2.19 g/L·h and a yield of 0.57 g/g total substrate, which is about 1.4‐ to 3.2‐fold higher than those in the batch fermentation. Finally, this high‐density fermentation process was successfully scaled up in a 100‐L fermentor. The present work provides a powerful approach to produce this biopolymer as a bulk chemical in large scale.  相似文献   

9.
Herein, we report the development of a microbial bioprocess for high‐level production of 5‐aminolevulinic acid (5‐ALA), a valuable non‐proteinogenic amino acid with multiple applications in medical, agricultural, and food industries, using Escherichia coli as a cell factory. We first implemented the Shemin (i.e., C4) pathway for heterologous 5‐ALA biosynthesis in E. coli. To reduce, but not to abolish, the carbon flux toward essential tetrapyrrole/porphyrin biosynthesis, we applied clustered regularly interspersed short palindromic repeats interference (CRISPRi) to repress hemB expression, leading to extracellular 5‐ALA accumulation. We then applied metabolic engineering strategies to direct more dissimilated carbon flux toward the key precursor of succinyl‐CoA for enhanced 5‐ALA biosynthesis. Using these engineered E. coli strains for bioreactor cultivation, we successfully demonstrated high‐level 5‐ALA biosynthesis from glycerol (~30 g L?1) under both microaerobic and aerobic conditions, achieving up to 5.95 g L?1 (36.9% of the theoretical maximum yield) and 6.93 g L?1 (50.9% of the theoretical maximum yield) 5‐ALA, respectively. This study represents one of the most effective bio‐based production of 5‐ALA from a structurally unrelated carbon to date, highlighting the importance of integrated strain engineering and bioprocessing strategies to enhance bio‐based production.  相似文献   

10.
Aims: Optimal production conditions of conjugated γ‐linolenic acid (CGLA) from γ‐linolenic acid using washed cells of Lactobacillus plantarum AKU 1009a as catalysts were investigated. Methods and Results: Washed cells of Lact. plantarum AKU 1009a exhibiting a high level of CGLA productivity were obtained by cultivation in a nutrient medium supplemented with 0·03% (w/v) α‐linolenic acid as an inducer. Under the optimal reaction conditions with 13 mg ml?1γ‐linolenic acid as a substrate in 5 ‐ml reaction volume, the washed cells [32% (wet cells, w/v) corresponding to 46 mg ml?1 dry cells] as the catalysts produced 8·8 mg CGLA per millilitre reaction mixture (68% molar yield) in 27 h. The produced CGLA was a mixture of two isomers, i.e., cis‐6,cis‐9,trans‐11‐octadecatrienoic acid (CGLA1, 40% of total CGLA) and cis‐6,trans‐9,trans‐11‐octadecatrienoic acid (CGLA2, 60% of total CGLA), and accounted for 66% of total fatty acid obtained. The CGLA produced was obtained as free fatty acids adsorbed mostly on the surface of the cells of Lact. plantarum AKU1009a. Conclusion: The practical process of CGLA production from γ‐linolenic acid using washed cells of Lact. plantarum AKU 1009a was successfully established. Significance and Impact of the Study: We presented the first example of microbial production of CGLA. CGLA produced by the process is valuable for evaluating their physiological and nutritional effects, and chemical characteristics.  相似文献   

11.
12.
Fed‐batch synthesis of galacto‐oligosaccharides (GOS) from lactose with β‐galactosidase from Aspergillus oryzae was evaluated experimentally and reaction yield was maximized via optimal control technique. The optimal lactose and enzyme feed flow rate profiles were determined using a model for GOS synthesis previously reported by the authors. Experimentally it was found that fed‐batch synthesis allowed an increase on the maximum total GOS concentration from 115 (batch synthesis) to 218 g L?1 as consequence of the increase in total sugars concentration from 40 to 58% w/w. Such high concentration of total sugars was not attainable in batch operation because of the low solubility of lactose at the reaction temperature (40°C). Simulations predicted a GOS yield of 32.5 g g?1 in fed‐batch synthesis under optimal conditions, while experimentally the same yield as in batch synthesis was obtained (28 g g?1). Besides, an enrichment of total oligosaccharides in GOS with a high polymerization degree (GOS‐5 and GOS‐6) was observed in the fed‐batch synthesis. Experimental profiles for all sugars were similar to the ones predicted by simulation, which supports the use of this methodology for the optimization of GOS synthesis. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 30:59–67, 2014  相似文献   

13.
A cell‐wall deficient strain of Chlamydomonas reinhardtii P. A Dang. CC‐849 was cotransformed with two expression vectors, p105B124 and pH105C124, containing phbB and phbC genes, respectively, from Ralstonia eutropha. The transformants were selected on Tris‐acetate‐phosphate media containing 10 μg · mL?1 Zeomycin. Upon further screening, the transgenic algae were subcloned and maintained in culture. PCR analysis demonstrated that both phbB and phbC genes were successfully integrated into the algal nuclear genome. Poly‐3‐hydroxybutyrate (PHB) synthase activity in these transgenic algae ranged from 5.4 nmol · min?1 · mg protein?1 to 126 nmol · min?1 · mg protein?1. The amount of PHB in double transgenic algae was determined by gas chromatography–mass spectrometry (GC–MS) when comparing with PHB standard. In addition, PHB granules were observed in the cytoplasm of transgenic algal cells using TEM, which indicated that PHB was synthesized in transgenic C. reinhardtii. Hence, results clearly showed that producing PHB in C. reinhardtii was feasible. Further studies would focus on enhancing PHB production in the transgenic algae and targeting the chloroplast for PHB accumulation.  相似文献   

14.
Glycerol, a byproduct of the biodiesel industry, can be used by bacteria as an inexpensive carbon source for the production of value‐added biodegradable polyhydroxyalkanoates (PHAs). Burkholderia cepacia ATCC 17759 synthesized poly‐3‐hydroxybutyrate (PHB) from glycerol concentrations ranging from 3% to 9% (v/v). Increasing the glycerol concentration results in a gradual reduction of biomass, PHA yield, and molecular mass (Mn and Mw) of PHB. The molecular mass of PHB produced utilizing xylose as a carbon source is also decreased by the addition of glycerol as a secondary carbon source dependent on the time and concentration of the addition. 1H‐NMR revealed that molecular masses decreased due to the esterification of glycerol with PHB resulting in chain termination (end‐capping). However, melting temperature and glass transition temperature of the end‐capped polymers showed no significant difference when compared to the xylose‐based PHB. The fermentation was successfully scaled up to 200 L for PHB production and the yield of dry biomass and PHB were 23.6 g/L and 7.4 g/L, respectively. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

15.
In macroautophagy, de novo formation of the double membrane‐bound organelles, termed autophagosomes, is essential for engulfing and sequestering the cytoplasmic contents to be degraded in the lytic compartments such as vacuoles and lysosomes. Atg8‐family proteins have been known to be responsible for autophagosome formation via membrane tethering and fusion events of precursor membrane structures. Nevertheless, how Atg8 proteins act directly upon autophagosome formation still remains enigmatic. Here, to further gain molecular insights into Atg8‐mediated autophagic membrane dynamics, we study the two representative human Atg8 orthologs, LC3B and GATE‐16, by quantitatively evaluating their intrinsic potency to physically tether lipid membranes in a chemically defined reconstitution system using purified Atg8 proteins and synthetic liposomes. Both LC3B and GATE‐16 retained the capacities to trigger efficient membrane tethering at the protein‐to‐lipid molar ratios ranging from 1:100 to 1:5,000. These human Atg8‐mediated membrane‐tethering reactions require trans‐assembly between the membrane‐anchored forms of LC3B and GATE‐16 and can be reversibly and strictly controlled by the membrane attachment and detachment cycles. Strikingly, we further uncovered distinct membrane curvature dependences of LC3B‐ and GATE‐16‐mediated membrane tethering reactions: LC3B can drive tethering more efficiently than GATE‐16 for highly curved small vesicles (e.g., 50 nm in diameter), although GATE‐16 turns out to be a more potent tether than LC3B for flatter large vesicles (e.g., 200 and 400 nm in diameter). Our findings establish curvature‐sensitive trans‐assembly of human Atg8‐family proteins in reconstituted membrane tethering, which recapitulates an essential subreaction of the biogenesis of autophagosomes in vivo.  相似文献   

16.
A rapid micro‐scale solid‐phase micro‐extraction (SPME) procedure coupled with gas‐chromatography with flame ionized detector (GC‐FID) was used to extract parts per billion levels of a principle basmati aroma compound “2‐acetyl‐1‐pyrroline” (2‐AP) from bacterial samples. In present investigation, optimization parameters of bacterial incubation period, sample weight, pre‐incubation time, adsorption time, and temperature, precursors and their concentrations has been studied. In the optimized conditions, detection of 2‐AP produced by Bacillus cereus ATCC10702 using only 0.5 g of sample volume was 85 μg/kg. Along with 2‐AP, 15 other compounds produced by B. cereus were also reported out of which 14 were reported for the first time consisting mainly of (E)?2‐hexenal, pentadecanal, 4‐hydroxy‐2‐butanone, n‐hexanal, 2–6‐nonadienal, 3‐methoxy‐2(5H) furanone and 2‐acetyl‐1‐pyridine and octanal. High recovery of 2‐AP (87 %) from very less amount of B. cereus samples was observed. The method is reproducible fast and can be used for detection of 2‐AP production by B. cereus. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:1356–1363, 2014  相似文献   

17.
In this study, although the highest production of two physiologically significant progestins in teleosts [17,20β‐dihydroxypregn‐4‐en‐3‐one (17,20β‐P) and 17,20β,21‐trihydroxypregn‐4‐en‐3‐one (17,20β,21‐P)] was observed in the period just prior to spawning in both male and female roach Rutilus rutilus, there was also a substantial production (mean levels of 5–10 ng ml?1 in blood; and a rate of release of 5–20 ng fish?1 h?1 into the water) in males and females in the late summer and early autumn (at least 7 months prior to spawning). During this period, the ovaries were increasing rapidly in size and histological sections were dominated by oocytes in the secondary growth phase [i.e. incorporation of vitellogenin (VTG)]. At the same time, the testes were also increasing rapidly in size and histological sections were dominated by cysts containing mainly spermatogonia type B. Measurements were also made of 11‐ketotestosterone (11‐KT) in males and 17β‐oestradiol and VTG in females. The 3 months with the highest production of 11‐KT coincided with the period that spermatozoa were present in the testes. In females, the first sign of a rise in 17β‐oestradiol concentrations coincided with the time of the first appearance of yolk globules in the oocytes (in August). The role of the progestins during the late summer and autumn has not been established.  相似文献   

18.
Endo‐βN‐acetylglucosaminidase isolated from B. infantis ATCC 15697 (EndoBI‐1) is a novel enzyme that cleaves N‐N′‐diacetyl chitobiose moieties found in the N‐glycan core of high mannose, hybrid, and complex N‐glycans. These conjugated N‐glycans are recently shown as a new prebiotic source that stimulates the growth of a key infant gut microbe, Bifidobacterium longum subsp. Infantis. The effects of pH (4.45–8.45), temperature (27.5–77.5°C), reaction time (15–475 min), and enzyme/protein ratio (1:3,000–1:333) were evaluated on the release of N‐glycans from bovine colostrum whey by EndoBI‐1. A central composite design was used, including a two‐level factorial design (24) with four center points and eight axial points. In general, low pH values, longer reaction times, higher enzyme/protein ratio, and temperatures around 52°C resulted in the highest yield. The results demonstrated that bovine colostrum whey, considered to be a by/waste product, can be used as a glycan source with a yield of 20 mg N‐glycan/g total protein under optimal conditions for the ranges investigated. Importantly, these processing conditions are suitable to be incorporated into routine dairy processing activities, opening the door for an entirely new class of products (released bioactive glycans and glycan‐free milk). The new enzyme's activity was also compared with a commercially available enzyme, showing that EndoBI‐1 is more active on native proteins than PNGase F and can be efficiently used during pasteurization, streamlining its integration into existing processing strategies. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1331–1339, 2015  相似文献   

19.
The conversion of carbon dioxide (CO2) and bicarbonate (HCO3) to each other is very important for living metabolism. Carbonic anhydrase (CA, E.C.4.2.1.1), a metalloenzyme familly, catalyzes the interconversion of these ions (CO2 and HCO3) and are very common in living organisms. In this study, a series of novel 2‐amino‐3‐cyanopyridines supported with some functional groups was synthesized and tested as potential inhibition effects against both cytosolic human CA I and II isoenzymes (hCA I and II) using by Sepharose‐4B‐l ‐tyrosine‐sulfanilamide affinity chromatography. The structural elucidations of novel 2‐amino‐3‐cyanopyridines were achieved by NMR, IR, and elemental analyses. K i values of the novel synthesized compounds were found in range of 2.84–112.44 μM against hCA I and 2.56–31.17 μM against hCA II isoenzyme. While compound 7d showed the best inhibition activity against hCA I (K i: 2.84 μM), the compound 7b demonstrated the best inhibition profile against hCA II isoenzyme (K i: 2.56 μM).  相似文献   

20.
Microbially produced gamma‐polyglutamic acid (γ‐PGA) is a commercially important biopolymer with many applications in biopharmaceutical, food, cosmetic and waste‐water treatment industries. Owing to its increasing demand in various industries, production of γ‐PGA is well documented in the literature, however very few methods have been reported for its recovery. In this paper, we report a novel method for the selective recovery and purification of γ‐PGA from cell‐free fermentation broth of Bacillus licheniformis. The cell‐free fermentation broth was treated with divalent copper ions, resulting in the precipitation of γ‐PGA, which was collected as a pellet by centrifugation. The pellet was resolubilized and dialyzed against de‐ionized water to obtain the purified γ‐PGA biopolymer. The efficiency and selectivity of γ‐PGA recovery was compared with ethanol precipitation method. We found that 85% of the original γ‐PGA content in the broth was recovered by copper sulfate‐induced precipitation, compared to 82% recovery by ethanol precipitation method. Since ethanol is a commonly used solvent for protein precipitation, the purity of γ‐PGA precipitate was analyzed by measuring proteins that co‐precipitated with γ‐PGA. Of the total proteins present in the broth, 48% proteins were found to be co‐precipitated with γ‐PGA by ethanol precipitation, whereas in copper sulfate‐induced precipitation, only 3% of proteins were detected in the final purified γ‐PGA, suggesting that copper sulfate‐induced precipitation offers better selectivity than ethanol precipitation method. Total metal content analysis of the purified γ‐PGA revealed the undetectable amount of copper ions, whereas other metal ions detected were in low concentration range. The purified γ‐PGA was characterized using infrared spectroscopy. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号