首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In April 2009, the International Life Sciences Institute (ILSI) Health and Environmental Sciences Institute's (HESI) Developmental and Reproductive Toxicology Technical Committee held a two-day workshop entitled "Developmental Toxicology-New Directions." The third session of the workshop focused on ways to refine animal studies to improve relevance and predictivity for human risk. The session included five presentations on: (1) considerations for refining developmental toxicology testing and data interpretation; (2) comparative embryology and considerations in study design and interpretation; (3) pharmacokinetic considerations in study design; (4) utility of genetically modified models for understanding mode-of-action; and (5) special considerations in reproductive testing for biologics. The presentations were followed by discussion by the presenters and attendees. Much of the discussion focused on aspects of refining current animal testing strategies, including use of toxicokinetic data, dose selection, tiered/triggered testing strategies, species selection, and use of alternative animal models. Another major area of discussion was use of non-animal-based testing paradigms, including how to define a "signal" or adverse effect, translating in vitro exposures to whole animal and human exposures, validation strategies, the need to bridge the existing gap between classical toxicology testing and risk assessment, and development of new technologies. Although there was general agreement among participants that the current testing strategy is effective, there was also consensus that traditional methods are resource-intensive and improved effectiveness of developmental toxicity testing to assess risks to human health is possible. This article provides a summary of the session's presentations and discussion and describes some key areas that warrant further consideration.  相似文献   

2.
BACKGROUND : Testicular toxicity (TT) is a sporadic and challenging issue in pharmaceutical drug development. Efforts to develop TT screening assays or biomarkers have been overshadowed by consortium efforts to predict drug‐induced toxicities such as hepatic injury, which are encountered more frequently. METHODS : To gauge the current state of the field and to prioritize future TT activities, the International Life Sciences Institute‐Health and Environmental Sciences Institute Developmental and Reproductive Toxicology (DART) Technical Committee sponsored a survey to better understand the incidence and nature of TT findings encountered during drug development. RESULTS : Highlights from the 16 survey respondents include: (1) Although preclinical TT was encountered relatively infrequently, half of the participants observed repeated problems with TT during pharmaceutical development, (2) despite control measures such as use of sexually mature animals to diminish confounding effects of spurious lesions, interpretation of TT remains a challenge, (3) “traditional” evaluation tools such as hormonal monitoring and newer approaches such as ‐omics are utilized to investigate testicular changes, and (4) an understanding of the risk and relevance of TT findings is achieved through joint consideration of factors such as species specificity, potential mode of action, and safety margins. CONCLUSIONS : TT remains a relatively uncommon but persistent challenge in pharmaceutical development. Although current preclinical TT approaches appear to be effective in limiting the occurrence of pharmaceutical candidate attrition in clinical trials, improved biomarker or screening platforms would allow companies to identify TT at an earlier stage, thus decreasing the time and resources expended on safety evaluation of pharmaceutical candidates. Birth Defects Res (Part B) 92: 511–525, 2011. © 2011 Wiley Periodicals, Inc.  相似文献   

3.
4.
Juvenile animal toxicity studies are conducted to support applications for drugs intended for use in children. They are designed to address specific questions of potential toxicity in the growing animal or provide data about long-term safety effects of drugs that cannot be obtained from clinical trials. Decisions to conduct a juvenile animal study are based on existing data, such as a safety signal already identified in adult studies, or previous knowledge of the drug or chemical class for its potential to impair growth or developmental milestones. In 2006, the FDA issued an industry guidance in which considerations for determining when a juvenile animal study is warranted were outlined. A retrospective study was conducted covering years both before and after the issued guideline to examine the contribution of juvenile animal toxicity studies to the risk/benefit assessment of pediatric drugs at the FDA. The initial findings were presented as part of the May 2010 HESI workshop on the value of juvenile animal studies. The objective of the review was to better understand the value that the juvenile animal study contributes to regulatory decision making for pediatric drug development by looking at when the studies have been included in the product assessment; what, if any, impact the studies had on the regulatory decisions made; and whether the data were incorporated into the label. The data described below represent a first look at impact of the juvenile animal study since the pediatric legislation and the juvenile animal guidance were issued in the US.  相似文献   

5.
In October 2013, the International Life Sciences Institute - Health and Environmental Sciences Institute Immunotoxicology Technical Committee (ILSI-HESI ITC) held a one-day workshop entitled, “Workshop on Cytokine Release: State-of-the-Science, Current Challenges and Future Directions”. The workshop brought together scientists from pharmaceutical, academic, health authority, and contract research organizations to discuss novel approaches and current challenges for the use of in vitro cytokine release assays (CRAs) for the identification of cytokine release syndrome (CRS) potential of novel monoclonal antibody (mAb) therapeutics. Topics presented encompassed a regulatory perspective on cytokine release and assessment, case studies regarding the translatability of preclinical cytokine data to the clinic, and the latest state of the science of CRAs, including comparisons between mAb therapeutics within one platform and across several assay platforms, a novel physiological assay platform, and assay optimization approaches such as determination of FcR expression profiles and use of statistical tests. The data and approaches presented confirmed that multiple CRA platforms are in use for identification of CRS potential and that the choice of a particular CRA platform is highly dependent on the availability of resources for individual laboratories (e.g. positive and negative controls, number of human blood donors), the assay through-put required, and the mechanism-of-action of the therapeutic candidate to be tested. Workshop participants agreed that more data on the predictive performance of CRA platforms is needed, and current efforts to compare in vitro assay results with clinical cytokine assessments were discussed. In summary, many laboratories continue to focus research efforts on the improvement of the translatability of current CRA platforms as well explore novel approaches which may lead to more accurate, and potentially patient-specific, CRS prediction in the future.  相似文献   

6.
A workshop organised by the European Medicines Agency involved assessors and experts present in a Nonclinical Working Group evaluating juvenile animal studies for Paediatric Investigation Plans in collaboration with the Paediatric Committee and the Safety Working Party of the Committee for Human Medicinal Products. The objective of the workshop was to analyse which juvenile animal studies proposals were received and agreed by the Paediatric Committee, to check consistency and how to apply the existing European guideline on juvenile animal studies. A comparison of main organ system development in man vs. animal species was presented to guide the review and to support species selection and protocol design. An analysis of juvenile animal studies included in finalised PIP's was also presented. Out of 109 paediatric investigation plans finalised between November 2008 and March 2009, 43 included one or more juvenile animal studies. In most cases the preferred species was the rat; one species only was requested to be studied (20/22), but in a minority two species were required (2/22). When deciding on the characteristics of the juvenile animal studies, such as age of animals at study start, the age of the children targeted by the medicine was considered. It is expected that the increasing experience gained by Applicants and Regulators will allow further refining the criteria for these juvenile animal studies. Further research on this topic is highly encouraged in the European Regulatory framework. Birth Defects Res (Part B) 89:467–473, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
During the workshop organized by ILSI/HESI on May 5-6, 2010 on the value of juvenile animal toxicity studies, the implementation of the European Pediatric Regulation and in particular the review process of the nonclinical part of the Pediatric Investigation Plan (PIP) were described. A PIP is intended to outline the development of a medicinal product in the pediatric population (i.e. quality, safety, efficacy of the medicine and timing of studies); it is reviewed and agreed by the Pediatric Committee (PDCO) of the European Medicines Agency (EMA). The Nonclinical Working Group (NcWG) supports the PDCO in the review process of the nonclinical part of a PIP and is composed of members from the PDCO, the EMA Safety Working Party, additional experts from national competent authorities and the FDA. This article summarizes the NcWG review process and outcomes of 97 approved or ongoing PIPs, from the establishment of the NcWG in November 2008 to May 2010, as presented during the workshop. Juvenile animal studies were proposed by the applicant in 33% or required by the NcWG in 26% of the PIPs. The requirements were mainly motivated by concerns regarding potential developmental toxicities, in view of the young age of the pediatric population to be investigated, the lack of knowledge concerning the maturation of the pharmacological target, the lack of sufficient (non)clinical data, observed toxicities in the adult (non)clinical studies and the long duration of the intended treatments. Most juvenile animal studies were in the therapeutic areas of oncology, infectious diseases and endocrinology. In about 14% of the PIPs submitted, the NcWG requested either justifications of, or amendments to the study designs proposed by the applicants (e.g. justification of endpoints, study duration, species selection and timing with regards to clinical pediatric studies). Generally, only one species was selected or proposed for the juvenile studies, the rat being the most prevalent. The number of juvenile studies initially proposed by the applicant plus those requested by the NcWG was higher than the number of studies included in the "key binding elements" of the PIP opinions. This apparent discrepancy was mainly due to additional information or justifications submitted by the applicant during the clock stop. It was noted that the PIPs initially submitted often lacked information relevant to the nonclinical evaluation. Therefore, during the workshop, the need to provide scientifically based justifications when no juvenile animal studies are proposed in the initial PIP submission was stressed.  相似文献   

8.
Recent changes in the regulations from the FDA and EMA have shifted the focus of juvenile toxicity studies more to the safe use of all pharmaceuticals and the absence of label or safety information for the pediatric population. Unlike other regulatory guidance, the need or design of these animal studies is not specified. Ideally these should be decided “case‐by‐case” based on the patient population, pharmacology, existing toxicological and clinical data, dosing regimen, and developing system impact. Following the publishing of a small intercompany survey (Bailey and Mariën, 2009), a more extensive survey was commissioned by the ILSI/HESI DART Technical Committee to clarify what has been learned for the safety assessment for pediatrics. Contributions from 24 companies totaling 241 studies (84% rat and 14% dog) were received. In 12 of 82 programs (15%) were the existing adult preclinical or clinical data considered a sufficient safety prediction for pediatric trials. Clinical/preclinical correlates were observed in 17.2% (rat) and 42.9% (dog) of the studies and a lack of predictability from the pharmacology or the adult toxicity data was seen in 25% of rat and 14.3% of dog studies. Many of the studies were large, lengthy, complex, included parameters that mirrored the adult studies and yielded no new or useful information. We should avoid conducting complex or inappropriate studies and Contract Research Organisations and regulatory agencies have a role in encouraging more targeted designs. Only with appropriate designs can we adequately identify safety or pharmacokinetic issues, suggest clinical endpoints, and contribute to the product label. Birth Defects Res (Part B) 92:273–291, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

9.
A workshop on 'Improving translation of animal models for nervous system disorders' held at the National Academy of Sciences, Institute of Medicine, in Washington, DC, 28-29 March 2012, was organized to discuss the issues that contribute to the poor translation of results from animal models to human nervous system disorders, to consider strategies to increase the scientific rigor of preclinical testing, to identify methods to maximize bidirectional translation between basic and clinical research, and to determine the next steps for improvement of the development and testing of animal models of nervous system disorders. The proceedings of this workshop will be of great interest to those doing research in genes, brain and behaviour.  相似文献   

10.
11.
Pharmaceuticals have been used on adults and children; however, they were previously investigated only by adult human clinical studies and adult animal nonclinical studies. The US FDA finalized the guidance of juvenile animal toxicity studies in 2006, and EMEA was finalized in 2008. At that point, juvenile animal toxicity studies were encouraged to investigate the safety of the pediatric population. In Japan, the awareness of the development of pediatric drugs is increasing, and many scientific meetings about juvenile animal studies are being held. A Japanese guideline for juvenile animal toxicity studies has been long awaited by many Japanese pharmaceutical companies because concrete directionality has not been available in Japan thus far. The Ministry of Health, Labour, and Welfare started to prepare the guideline for nonclinical safety studies in juvenile animals since October 2010. After completion of the Japanese guideline, guidelines would exist in the three regions: Japan, US, and Europe. Then, global development of pediatric pharmaceuticals would be accelerated effectively.  相似文献   

12.
【目的】探讨家蚕Bombyx mori的潜在驯化基因——转录因子ZnF-706在鳞翅目(Lepidoptera)昆虫进化过程及家蚕驯化过程中的分子进化格局;并基于CRISPR/Cas9家蚕基因组编辑平台,探讨ZnF-706基因在家蚕中的功能。【方法】首先分析了家蚕ZnF-706序列特征,并利用已发表芯片数据调研该基因在家蚕幼虫组织中的表达格局;利用Phylogenetic Analysis byMaximum Likelihood (PAML)分支检验方法,分析该基因在鳞翅目不同类群中的分子进化格局。基于已发表的家蚕-野桑蚕Bombyx mandarina群体基因组多态性数据,对ZnF-706进行基因区域人工选择信号分析;对ZnF-706基因上游2 kb的调控区域进行单核苷酸多态性位点频率检测,发掘在家蚕群体中固定下来的突变位点;针对突变位点所在区域进行转录因子结合活性预测。利用CRISPR/Cas9基因编辑技术敲除ZnF-706基因,获得纯和突变体;以野生型家蚕为对照,检测突变体的茧重及蛹重变化。【结果】家蚕ZnF-706的编码蛋白具有典型的锌指蛋白结构域。ZnF-706在家蚕5龄第3天幼虫各组织中广泛表达,尤其表皮、脂肪体和生殖腺中有很高的表达量;该基因在鳞翅目、蚕蛾总科(Bombycoidea)及天蚕Antherea yamamai 3个分支中均呈现快速进化信号,在家蚕中有强烈的人工选择信号。该基因所在基因组区域的家蚕-野桑蚕种群分歧度参数Fst明显升高,家蚕群体中的群体多样性π明显降低,表明它位于一个选择扫荡区域内;该基因在家蚕-野桑蚕中的9个SNP位点存在于上游调控区,并位于转录因子结合活性区域内。该基因的纯合家蚕突变体ΔZn F-706生存力减弱,并且茧重以及蛹重与野生型家蚕相比都显著降低。但与黑腹果蝇Drosophila melanogaster中不同的是,家蚕中该基因的突变并不致死。【结论】ZnF-706可能在鳞翅目尤其是泌丝昆虫中进化,并在家蚕驯化过程中受到选择压力,提示其对于特征性状茧丝的变异可能发挥作用。该基因可能通过对丝蛋白基因的直接调控,或通过影响家蚕的生长发育而间接地影响茧丝性状。本研究不仅为探究家养动物人工选择机制提供了来自昆虫类材料的独有证据,也为后续深入开展家蚕重要经济性状的转录调控研究提供线索。  相似文献   

13.
Evaluation of pharmaceutical agents in children is now conducted earlier in the drug development process. An important consideration for this pediatric use is how to assess and support its safety. This article is a collaborative effort of industry toxicologists to review strategies, challenges, and current practice regarding preclinical safety evaluations supporting pediatric drug development with biopharmaceuticals. Biopharmaceuticals include a diverse group of molecular, cell‐based or gene therapeutics derived from biological sources or complex biotechnological processes. The principles of preclinical support of pediatric drug development for biopharmaceuticals are similar to those for small molecule pharmaceuticals and in general follow the same regulatory guidances outlined by the Food and Drug Administration and European Medicines Agency. However, many biopharmaceuticals are also inherently different, with limited species specificity or immunogenic potential which may impact the approach taken. This article discusses several key areas to aid in the support of pediatric clinical use, study design considerations for juvenile toxicity studies when they are needed, and current practices to support pediatric drug development based on surveys specifically targeting biopharmaceutical development. Birth Defects Res (Part B) 92:359–380, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

14.
In this whitepaper, the Manufacturing Technical Committee (MTC) of the Product Quality Research Institute has updated the 1997 Transdermal Drug Delivery Systems Scale-Up and Post Approval Change workshop report findings to add important new product development and control principles. Important topics reviewed include ICH harmonization, quality by design, process analytical technologies, product and process validation, improvements to control of critical excipients, and discussion of Food and Drug Administration's Guidance on Residual Drug in Transdermal and Related Drug Delivery Systems as well as current thinking and trends on in vitro-in vivo correlation considerations for transdermal systems.  相似文献   

15.
The National Toxicology Program (NTP) Center for the Evaluation of Risks to Human Reproduction (NTP-CERHR) was established by the NTP and the National Institute of Environmental Health Sciences (NIEHS) in 1998 to address the impact of chemical exposures on human reproductive and developmental health and to serve as an environmental and reproductive health resource for government agencies and the general public. The purpose of this report is to provide an overview of the Center activities and a summary of NTP conclusions on chemicals evaluated during this time period. CERHR evaluations involve the critical review of reproductive, developmental, and other relevant toxicity data by independent panels of scientists. The products of these evaluations are expert panel reports. The public has opportunities to provide oral comments at the panel meeting and written comments on draft and final expert panel reports. The NTP evaluates these comments, the conclusions of the expert panel, and any new data not available at the time of the panel meeting, and prepares an NTP brief that describes in plain language the NTP's conclusions on the reproductive and developmental hazard from specified chemical exposures. The NTP brief, expert panel report, and public comments comprise the NTP monograph on the chemical. Monographs are sent to federal regulatory agencies, the NTP Executive Committee, and the NTP Board of Scientific Counselors, and are publicly available. Over the last five years, CERHR conducted expert panel evaluations on 14 chemicals. At this time, 13 panel reports have been published and 12 NTP-CERHR monographs have been issued. Additionally, CERHR conducted a 2-day workshop on the role of thyroid hormones in reproductive and developmental health.  相似文献   

16.
In September of 2011, the National Institute of Neurological Disorders and Stroke (NINDS), the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), the International Rett Syndrome Foundation (IRSF) and the Rett Syndrome Research Trust (RSRT) convened a workshop involving a broad cross-section of basic scientists, clinicians and representatives from the National Institutes of Health (NIH), the US Food and Drug Administration (FDA), the pharmaceutical industry and private foundations to assess the state of the art in animal studies of Rett syndrome (RTT). The aim of the workshop was to identify crucial knowledge gaps and to suggest scientific priorities and best practices for the use of animal models in preclinical evaluation of potential new RTT therapeutics. This review summarizes outcomes from the workshop and extensive follow-up discussions among participants, and includes: (1) a comprehensive summary of the physiological and behavioral phenotypes of RTT mouse models to date, and areas in which further phenotypic analyses are required to enhance the utility of these models for translational studies; (2) discussion of the impact of genetic differences among mouse models, and methodological differences among laboratories, on the expression and analysis, respectively, of phenotypic traits; and (3) definitions of the standards that the community of RTT researchers can implement for rigorous preclinical study design and transparent reporting to ensure that decisions to initiate costly clinical trials are grounded in reliable preclinical data.  相似文献   

17.
《Cytotherapy》2021,23(9):757-773
Cell-based therapies have been making great advances toward clinical reality. Despite the increase in trial activity, few therapies have successfully navigated late-phase clinical trials and received market authorization. One possible explanation for this is that additional tools and technologies to enable their development have only recently become available. To support the safety evaluation of cell therapies, the Health and Environmental Sciences Institute Cell Therapy—Tracking, Circulation and Safety Committee, a multisector collaborative committee, polled the attendees of the 2017 International Society for Cell & Gene Therapy conference in London, UK, to understand the gaps and needs that cell therapy developers have encountered regarding safety evaluations in vivo. The goal of the survey was to collect information to inform stakeholders of areas of interest that can help ensure the safe use of cellular therapeutics in the clinic. This review is a response to the cellular imaging interests of those respondents. The authors offer a brief overview of available technologies and then highlight the areas of interest from the survey by describing how imaging technologies can meet those needs. The areas of interest include imaging of cells over time, sensitivity of imaging modalities, ability to quantify cells, imaging cellular survival and differentiation and safety concerns around adding imaging agents to cellular therapy protocols. The Health and Environmental Sciences Institute Cell Therapy—Tracking, Circulation and Safety Committee believes that the ability to understand therapeutic cell fate is vital for determining and understanding cell therapy efficacy and safety and offers this review to aid in those needs. An aim of this article is to share the available imaging technologies with the cell therapy community to demonstrate how these technologies can accomplish unmet needs throughout the translational process and strengthen the understanding of cellular therapeutics.  相似文献   

18.
Stewart KL  Raje SS 《Lab animal》2001,30(8):50-52
The authors discuss the role of the Environmental Enrichment Committee in developing, implementing, assessing, and modifying a university animal enrichment program.  相似文献   

19.
Zechner EL  Bailey MJ 《Plasmid》2004,51(2):67-74
The European Science Foundation (ESF) funds a limited number of exploratory workshops each year that enable scientists to meet and develop plans for a program of integrated research which would benefit from a coordinated European effort. In summer 2003, the Standing Committee for Life and Environmental Sciences (LESC) sponsored such a workshop called The Horizontal Gene Pool: The Functional Role of Mobile Genetic Information--How Bacteria Perceive, Sample, and Utilize Genetic Elements in evolution and Local Adaptation. The workshop took place at St. Catherine's College, Oxford, UK. Its purpose was to identify how recent advances in the application of genomics and microbial ecology can be harnessed to determine the genetic mechanisms that underpin the biological role of the horizontal gene pool. Scientific excellence at the workshop was contributed by senior scientists and young investigators from research institutes located in nine European countries.  相似文献   

20.
In vitro genotoxicity assays are often used to screen and predict whether chemicals might represent mutagenic and carcinogenic risks for humans. Recent discussions have focused on the high rate of positive results in in vitro tests, especially in those assays performed in mammalian cells that are not confirmed in vivo. Currently, there is no general consensus in the scientific community on the interpretation of the significance of positive results from the in vitro genotoxicity assays. To address this issue, the Health and Environmental Sciences Institute (HESI), held an international workshop in June 2006 to discuss the relevance and follow-up of positive results in in vitro genetic toxicity assays. The goals of the meeting were to examine ways to advance the scientific basis for the interpretation of positive findings in in vitro assays, to facilitate the development of follow-up testing strategies and to define criteria for determining the relevance to human health. The workshop identified specific needs in two general categories, i.e., improved testing and improved data interpretation and risk assessment. Recommendations to improve testing included: (1) re-examine the maximum level of cytotoxicity currently required for in vitro tests; (2) re-examine the upper limit concentration for in vitro mammalian studies; (3) develop improved testing strategies using current in vitro assays; (4) define criteria to guide selection of the appropriate follow-up in vivo studies; (5) develop new and more predictive in vitro and in vivo tests. Recommendations for improving interpretation and assessment included: (1) examine the suitability of applying the threshold of toxicological concern concepts to genotoxicity data; (2) develop a structured weight of evidence approach for assessing genotoxic/carcinogenic hazard; and (3) re-examine in vitro and in vivo correlations qualitatively and quantitatively. Conclusions from the workshop highlighted a willingness of scientists from various sectors to change and improve the current paradigm and move from a hazard identification approach to a "realistic" risk-based approach that incorporates information on mechanism of action, kinetics, and human exposure..  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号