首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigated the effects of probenecid to inhibit the multi-drug resistance-associated protein-1 (MRP-1) in mediating the efflux and myotoxicity in rat skeletal muscles, with administration of rosuvastatin. Male Sprague-Dawley rats were administered daily, for 15 days, with either rosuvastatin (50, 100 or 200 mg/kg) or probenecid (100 mg/kg) alone, or with a combination of rosuvastatin (50, 100 or 200 mg/kg) and probenecid (100 mg/kg). Skeletal muscle toxicity was elevated with probenecid administered with 200 mg/kg/day of rosuvastatin, with the elevation of creatine kinase by 12-fold, alanine aminotrasferase by 10-fold and creatinine by 9-fold at day 15, with no adverse effects observed when probenecid was given alone. Mitochondria ultrastructural damage with enlargement, disruption, cristolysis and vaculation was seen in the soleus and plantaris of animals administered with probenecid and high dosages of statin. These muscles were also expressing more succinic dehydrogenase (SDH)-positive and cytochrome oxidase (CyOX)-positive fibers. Although generally well-tolerated, statins produce a variety of adverse skeletal muscle events. Hydrophilic statins, with reduced levels of non-specific passive diffusion rates into extra-hepatic tissues, are still seen to produce myopathy. This highlights the important roles of transport mechanisms in statin transport at the skeletal muscles. Excessive influx, reduced efflux or the combination of the two could result in elevated cellular levels of statins at the skeletal muscles, resulting in toxicity. This study provides preliminary evidence that the MRP-1 transporter and efflux at skeletal muscles possibly play significant roles in statin-induced myopathy.  相似文献   

2.
《Autophagy》2013,9(12):2115-2125
Colchicine treatment is associated with an autophagic vacuolar myopathy in human patients. The presumed mechanism of colchicine-induced myotoxicity is the destabilization of the microtubule system that leads to impaired autophagosome-lysosome fusion and the accumulation of autophagic vacuoles. Using the MTOR inhibitor rapamycin we augmented colchicine’s myotoxic effect by increasing the autophagic flux; this resulted in an acute myopathy with muscle necrosis. In contrast to myonecrosis induced by cardiotoxin, myonecrosis induced by a combination of rapamycin and colchicine was associated with accumulation of autophagic substrates such as LC3-II and SQSTM1; as a result, autophagic vacuoles accumulated in the center of myofibers, where LC3-positive autophagosomes failed to colocalize with the lysosomal protein marker LAMP2. A similar pattern of central LC3 accumulation and myonecrosis is seen in human patients with colchicine myopathy, many of whom have been treated with statins (HMGCR/HMG-CoA reductase inhibitors) in addition to colchicine. In mice, cotreatment with colchicine and simvastatin also led to muscle necrosis and LC3 accumulation, suggesting that, like rapamycin, simvastatin activates autophagy. Consistent with this, treatment of mice with four different statin medications enhanced autophagic flux in skeletal muscle in vivo. Polypharmacy is a known risk factor for toxic myopathies; our data suggest that some medication combinations may simultaneously activate upstream autophagy signaling pathways while inhibiting the degradation of these newly synthesized autophagosomes, resulting in myotoxicity.  相似文献   

3.
4.
Statin-induced apoptosis and skeletal myopathy   总被引:2,自引:0,他引:2  
  相似文献   

5.
Recent studies have revealed a role of endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR) in the regulation of RPE cell activity and survival. Herein, we examined the mechanisms by which the UPR modulates apoptotic signaling in human RPE cells challenged with cigarette smoking extract (CSE). Our results show that CSE exposure induced a dose- and time-dependent increase in ER stress markers, enhanced reactive oxygen species (ROS), mitochondrial fragmentation, and apoptosis of RPE cells. These changes were prevented by the anti-oxidant NAC or chemical chaperone TMAO, suggesting a close interaction between oxidative and ER stress in CSE-induced apoptosis. To decipher the role of the UPR, overexpression or down-regulation of XBP1 and CHOP genes was manipulated by adenovirus or siRNA. Overexpressing XBP1 protected against CSE-induced apoptosis by reducing CHOP, p-p38, and caspase-3 activation. In contrast, XBP1 knockdown sensitized the cells to CSE-induced apoptosis, which is likely through a CHOP-independent pathway. Surprisingly, knockdown of CHOP reduced p-eIF2α and Nrf2 resulting in a marked increase in caspase-3 activation and apoptosis. Furthermore, Nrf2 inhibition increased ER stress and exacerbated cell apoptosis, while Nrf2 overexpression reduced CHOP and protected RPE cells. Our data suggest that although CHOP may function as a pro-apoptotic gene during ER stress, it is also required for Nrf2 up-regulation and RPE cell survival. In addition, enhancing Nrf2 and XBP1 activity may help reduce oxidative and ER stress and protect RPE cells from cigarette smoke-induced damage.  相似文献   

6.
In acute pancreatitis, endoplasmic reticulum (ER) stress prompts an accumulation of malfolded proteins inside the ER, initiating the unfolded protein response (UPR). Because the ER chaperone tauroursodeoxycholic acid (TUDCA) is known to inhibit the UPR in vitro, this study examined the in vivo effects of TUDCA in an acute experimental pancreatitis model. Acute pancreatitis was induced in Wistar rats using caerulein, with or without prior TUDCA treatment. UPR components were analyzed, including chaperone binding protein (BiP), phosphorylated protein kinase-like ER kinase (pPERK), X-box binding protein (XBP)-1, phosphorylated c-Jun NH(2)-terminal kinase (pJNK), CCAAT/enhancer binding protein homologues protein, and caspase 12 and 3 activation. In addition, pancreatitis biomarkers were measured, such as serum amylase, trypsin activation, edema formation, histology, and the inflammatory reaction in pancreatic and lung tissue. TUDCA treatment reduced intracellular trypsin activation, edema formation, and cell damage, while leaving amylase levels unaltered. The activation of myeloperoxidase was clearly reduced in pancreas and lung. Furthermore, TUDCA prevented caerulein-induced BiP upregulation, reduced XBP-1 splicing, and caspase 12 and 3 activation. It accelerated the downregulation of pJNK. In controls without pancreatitis, TUDCA showed cytoprotective effects including pPERK signaling and activation of downstream targets. We concluded that ER stress responses activated in acute pancreatitis are grossly attenuated by TUDCA. The chaperone reduced the UPR and inhibited ER stress-associated proapoptotic pathways. TUDCA has a cytoprotective potential in the exocrine pancreas. These data hint at new perspectives for an employment of chemical chaperones, such as TUDCA, in prevention of acute pancreatitis.  相似文献   

7.
8.
9.
The mammalian unfolded protein response (UPR) includes two major branches: one(s) specific to ER stress (Ire1/XBP-1 and ATF6-dependent), and one(s) shared by other cellular stresses (PERK/eIF-2alpha phosphorylation-dependent). Here, we demonstrate that the ER-localized protein Herp represents a second target, in addition to CHOP, that is dually regulated by both the shared and the ER stress-specific branches during UPR activation. For the first time, we are able to assess the contribution of each branch of the UPR in the induction of these targets. We demonstrate that activation of the shared branch of the UPR alone was sufficient to induce Herp and CHOP. ATF4 was not required during ER stress when both branches were used but did contribute significantly to their induction. Conversely, stresses that activated only the shared branch of the UPR were completely dependent on ATF4 for CHOP and Herp induction. Thus, the shared and the ER stress-specific branches of the UPR diverge to regulate two groups of targets, one that is ATF6 and Ire1/XBP-1-dependent, which includes BiP and XBP-1, and another that is eIF-2alpha kinase-dependent, which includes ATF4 and GADD34. The two branches also converge to maximally up-regulate targets like Herp and CHOP. Finally, our studies reveal that a PERK-dependent target other than ATF4 is contributing to the cross-talk between the two branches of the UPR that has previously been demonstrated.  相似文献   

10.
The myotoxicity of statins   总被引:10,自引:0,他引:10  
PURPOSE OF REVIEW: Since hypercholesterolaemia is a chronic condition, the long-term safety of statins is important. Adverse reactions involving skeletal muscle are the most common (reported incidence 1-7%). The recent withdrawal of cerivastatin because of deaths from rhabdomyolysis, of which 25% were related to gemfibrozil-cerivastatin combination therapy, has focused attention on myotoxicity associated with statins and in particular with statin-fibrate combinations. We review the safety profiles of the individual statins, and discuss the mechanisms that may account for myotoxicity associated with statins and these agents and how these may relate to the different myotoxic potential of individual agents. RECENT FINDINGS: The statins, particularly the first-generation agents, have been well evaluated from the perspective of safety and efficacy. Cerivastatin was associated with a 10-fold higher incidence of myotoxicity than any other statin, suggesting that there may be differences in myotoxic potential between agents. Statin-associated myotoxicity is complex, involving effects on cell membrane structure and function, mitochondrial dysfunction and impaired myocyte duplication. Potential differences in myotoxicity between agents may relate to the physicochemical, pharmacokinetic and pharmacodynamic properties of individual drugs. The aetiology of myotoxicity associated with statin-fibrate combination therapy is complex and multifactorial, with recent studies suggesting that there may be differences in myotoxic potential between individual fibrates. SUMMARY: Recent evidence suggests that there may be differences in myotoxic potential between individual agents. Thus, the choice of hypolipidaemic therapy needs to be based not only on outcome evidence and cost-effectiveness analysis, but also on safety considerations for individual agents.  相似文献   

11.
12.
The accumulation of unfolded proteins in the endoplasmic reticulum (ER) induces ER stress. To restore ER homeostasis, cells possess a highly specific ER quality-control system called the unfold protein response (UPR). In the case of prolonged ER stress or UPR malfunction, apoptosis signalling is activated. This ER stress-induced apoptosis has been implicated in the pathogenesis of several conformational diseases. CCAAT-enhancer-binding protein homologous protein (CHOP) is induced by ER stress and mediates apoptosis. Recent studies by the Gotoh group have shown that the CHOP pathway is also involved in ER stress-induced cytokine production in macrophages. The multifunctional roles of CHOP in the ER stress response are discussed below.  相似文献   

13.
Endoplasmic reticulum (ER) protein misfolding activates the unfolded protein response (UPR) to help cells cope with ER stress. If ER homeostasis is not restored, UPR promotes cell death. The mechanisms of UPR-mediated cell death are poorly understood. The PKR-like endoplasmic reticulum kinase (PERK) arm of the UPR is implicated in ER stress–induced cell death, in part through up-regulation of proapoptotic CCAAT/enhancer binding protein homologous protein (CHOP). Chop/ cells are partially resistant to ER stress–induced cell death, and CHOP overexpression alone does not induce cell death. These findings suggest that additional mechanisms regulate cell death downstream of PERK. Here we find dramatic suppression of antiapoptosis XIAP proteins in response to chronic ER stress. We find that PERK down-regulates XIAP synthesis through eIF2α and promotes XIAP degradation through ATF4. Of interest, PERK''s down-regulation of XIAP occurs independently of CHOP activity. Loss of XIAP leads to increased cell death, whereas XIAP overexpression significantly enhances resistance to ER stress–induced cell death, even in the absence of CHOP. Our findings define a novel signaling circuit between PERK and XIAP that operates in parallel with PERK to CHOP induction to influence cell survival during ER stress. We propose a “two-hit” model of ER stress–induced cell death involving concomitant CHOP up-regulation and XIAP down-regulation both induced by PERK.  相似文献   

14.
The aberrant activation of osteoblasts in the early stage is one of the critical steps during the pathogenesis of skeletal fluorosis. The endoplasmic reticulum (ER) stresses and unfolded protein response (UPR) are initiated to alleviate the accumulation of unfolded proteins against cell injury. The previous researches had demonstrated that fluoride induced ER stress in other cells or tissues. In this study, we determined the ER stress and UPR to investigate their roles in aberrant activation of fluoride-treated osteoblasts. The gene expression of bone markers and UPR factors in MC3T3-E1 cells treated with varying doses of fluoride administration was analyzed. Meantime, levels of glutathione and glutathione disulfide were tested by the ultraperformance liquid chromatography–tandem mass spectrometry applications. Our results indicated that a certain dose and period of fluoride administration induced cell proliferation and differentiation, and Runx2 was involved in the regulation of osteoblastic differentiation of MC3T3-E1 cells. Increase trend of Runx2 expression was consistent with change of marker of ER stress. Fluoride caused ER stress and stimulated UPR during the process of osteoblast maturation, while oxidative stress was also active in the occurrence of ER stress. These data indicated that ER stress and UPR were possibly involved in the action of fluoride on osteoblasts.  相似文献   

15.
PURPOSE OF REVIEW: The 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors (statins) are the cornerstone of therapy for dyslipidemia. A significant portion of patients are not adherent to statin therapy, due to either intolerance from muscle symptoms or fears of myopathy reported in the media. The diagnosis and management of patients with statin-induced myopathy will be reviewed. RECENT FINDINGS: Based on a review of healthy clinical-trial participants, the placebo-corrected incidences of minor muscle pain, myopathy (with significant elevations in creatinine kinase), and rhabdomyolysis are 190, 5, and 1.6 per 100,000 patient years, respectively. More recent prospective observational data yield better, real-world estimates of muscle complaints (>10%) in patients started on high-dose statins. Current data suggest that important patient characteristics, statin-drug pharmacokinetics, and statin-drug interactions play a role in myopathy. Myopathy is more related to statin dose and blood levels than to LDL reductions. Evidence for managing myopathic patients with coenzyme Q10 is not conclusive. SUMMARY: It is important to maintain perspective by looking at the impact of statin myopathy relative to the impact of preventing atherosclerotic complications. The potential benefits of therapy must outweigh the risks. In the case of statin therapy the benefit/risk ratio is overwhelmingly positive.  相似文献   

16.
17.
The unfolded protein response (UPR) is involved in a diverse range of pathologies triggered by endoplasmic reticulum (ER) stress. Endeavor to seek selective regulators of the UPR is a promising challenge towards therapeutic intervention in ER stress-related disorders. In the present report, we describe aberrant, differential and bidirectional regulation of the UPR by 3'-deoxyadenosine (cordycepin) towards cell survival. 3'-Deoxyadenosine blocked ER stress-induced apoptosis via inhibiting the IRE1-JNK pro-apoptotic pathway. 3'-Deoxyadenosine also inhibited apoptosis through reinforcement of the pro-survival eIF2α signaling without affecting PERK activity. It was associated with depression of GADD34 that dephosphorylates eIF2α, and dephosphorylation of eIF2α by salubrinal mimicked the anti-apoptotic effect of 3'-deoxyadenosine. Unexpectedly, although 3'-deoxyadenosine caused activation of eIF2α, it inhibited downstream pro-apoptotic events including induction of ATF4 and expression of CHOP. Cooperation of adenosine transporter and A3 adenosine receptor, but not A1/A2 receptors, mediated the pluripotent effects of 3'-deoxyadenosine. In mice, ER stress caused activation of JNK, expression of CHOP and induction of apoptosis in renal tubules. The apoptosis was significantly attenuated by administration with 3'-deoxyadenosine, and it was correlated with blunted induction of JNK and CHOP in the kidney. These results disclosed atypical pro-survival regulation of the UPR by 3'-deoxyadenosine, which may be advantageous for the treatment of intractable, ER stress-related disorders.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号