首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Y Kamio  Y Itoh    Y Terawaki 《Journal of bacteriology》1988,170(9):4411-4414
RepA protein, essential for the replication of plasmid Rts1, was purified, and its binding to mini-Rts1 subregions was examined by a DNase I protection assay. RepA protected the incI and incII iterons, a region immediately upstream of the repA promoter, and a 10-base-pair region located between the most external incII iteron and a GATC box. The protection was less efficient when preheated RepA was used.  相似文献   

2.
Y Terawaki  Z Hong  Y Itoh    Y Kamio 《Journal of bacteriology》1988,170(3):1261-1267
RepA protein, essential for replication of plasmid Rts1, was found to bind in vivo immediately upstream of the repA promoter in studies with mini-Rts1 derivatives with deletions in the upstream region of repA. We constructed another series of repA mutants that would encode RepA derivatives containing oligopeptide substitutions in place of the carboxyl-terminal six amino acids. These modified RepA proteins could not activate ori (Rts1) at all and showed various degrees of incompatibility, or no incompatibility, toward a mini-Rts1 plasmid. These results suggest that the carboxyl-terminal six (or fewer) amino acids of RepA are important for exerting replication and incompatibility functions. One of the RepA derivatives, which showed an evident incompatibility without initiating replication, was examined for its ability to repress the repA gene.  相似文献   

3.
H Nozue  K Tsuchiya  Y Kamio 《Plasmid》1988,19(1):46-56
An Rts1 derivative, pTW20, contains three incompatibility (inc) regions, incI-a (incI in previous studies), incII, and newly determined incI-b loci. By restriction analysis, we have located the incI-b adjacent to the incI-a region on the pTW20 map. Nucleotide sequence analysis of the minimal incI-b region revealed the presence of four repeated sequences, each consisting of 18 bp, which is similar to the incI-a and incII repeats existing on mini-Rts1. All four repeating units were required for expression of a strong incompatibility. In addition, RepA protein, essential for the replication of Rts1, bound specifically to the repeated sequences, suggesting that the repeats would titrate out RepA protein as do incI-a and IncII. Insertion of the incI-b to a mini-Rts1 plasmid in a natural arrangement decreases the copy number of mini-Rts1 to the same level as that of mini-F. The incI-a and incI-b might be a single constituent in incompatibility and copy number control of Rts1.  相似文献   

4.
The RepA protein of the Rts1 plasmid, consisting of 288 amino acids, is a trans-acting protein essential for replication. A mutant repA gene, repA delta C143, carrying a deletion that removed the 143 C-terminal amino acids of RepA, could transform, but at a low frequency, an Escherichia coli polA strain, JG112, when repA delta C143 was cloned into pBR322 with Rts1 ori in the natural configuration. The transformation was less efficient without the dyad DnaA box in the ori region, and no transformation occurred at 42 degrees C, characteristic of Rts1 replication. A fusion of the 3'-terminal half of repA of the P1 plasmid to repA delta C143 yielded a pBR322 chimeric plasmid that contained Rts1 ori through hybrid (Rts1-P1) repA. This plasmid was maintained much more stably in JG112 at 37 degrees C. At 42 degrees C, however, it was quite unstable. The overproduced hybrid RepA protein showed interference with mini-Rts1 replication in trans and also exhibited an autorepressor function, although both activities were decreased. These findings suggest that the N-terminal half of the RepA molecule of Rts1 is involved in the activation of the replication origin.  相似文献   

5.
We constructed a system in which wild-type RepA or RepAcop1 protein was supplied in trans in various amounts to coexisting mini-Rts1 plasmids by clones of the repA or repAcop1 gene under the control of the native promoter with or without its operator sequence. RepAcop1 protein which contains a single amino acid substitution (Arg-142 to Lys) within its 288 amino acids could initiate the replication of the mini-Rts1 plasmid efficiently at both 37 and 42 degrees C even if it was supplied in excess. In contrast, excess wild-type RepA inhibited plasmid replication at 37 degrees C but supported replication at 42 degrees C. Therefore, it appears that the initiator activity of RepA is not related to the incompatibility phenotype associated with an excess of RepA protein. An immunoblot analysis revealed that neither RepA nor RepAcop1 synthesis was temperature sensitive and that both were autogenously regulated to a similar extent because of the presence of an operator located immediately upstream of the promoter. Two mutant RepA proteins, each of which contains a 4-amino-acid insertion in the middle of the protein, maintained the autorepressor and incompatibility activities but lost the ori(Rts1)-activating function.  相似文献   

6.
Nucleotide sequence analysis of mini-Rts1 and its copy mutant disclosed the presence of two clusters of direct-repeat sequences flanking the coding region for the 33,000-dalton RepA protein and two base substitutions on the mini-Rts1cop1 genome (Kamio et al., J. Bacteriol. 158:307-312, 1984). On subcloning of the left cluster (incI) that is located downstream from repA, the five 24-base-pair repeats expressed a stronger incompatibility toward mini-Rts1 than did the four repeats. The right cluster (incII) that contains three 21-base-pair repeats also exhibited strong incompatibility toward mini-Rts1. By separating the two base substitutions of mini-Rts1cop1, the mutation that is responsible for the copy increase was determined to be a single base change in the RepA coding region. Both clusters of the repeats, cloned separately into the vector plasmid, showed a weaker incompatibility toward mini-Rts1cop1 than to the wild-type mini-Rts1. These findings suggest a lowered binding affinity of the mutated RepA protein to the direct repeats.  相似文献   

7.
Y Itoh  Y Terawaki 《Plasmid》1989,21(3):242-246
Mini-Rts1 was found to be unable to replicate in a dnaA-null mutant. However, a mini-Rts1 derivative lacking entire tandem DnaA boxes in the replication origin retained the replication ability in a dnaA+ host although its copy number was about half that of the mini-Rts1 having complete DnaA boxes. Mini-Rts1cop1 that contains a high copy number mutation in repA was found to replicate more efficiently than mini-Rts1 of wild repA when DnaA boxes were deleted. In addition, the copy number of mini-Rts1cop1 without DnaA boxes increased 1.5-fold upon removal of incI iterons, whereas that of mini-Rts1 without DnaA boxes did not increase after the iterons were deleted. These indicate that the RepAcop1 protein can initiate the replication of mini-Rts1 efficiently even when DnaA boxes are absent from the origin of replication.  相似文献   

8.
H Zeng  T Hayashi    Y Terawaki 《Journal of bacteriology》1990,172(5):2535-2540
We induced site-directed mutations near the 3' terminus of the gene repA, which encodes the protein of 288 amino acid residues essential for plasmid Rts1 replication, and obtained seven repA mutants. Three of them contained small deletions at the 3' terminus. Mutant repAz delta C4, which encodes a RepA protein that lacks the C-terminal four amino acids, expressed a high-copy-number phenotype and had lost both autorepressor and incompatibility functions. Deletion of one additional amino acid residue to form the RepAz delta C5 protein caused restoration of the wild-type copy number and strong incompatibility. Studies of the remaining four repA mutants, each of which contained a single amino acid substitution near the RepA C terminus, suggested that Lys-268 is involved in both ori(Rts1) activation and autorepressor-incompatibility activities and that Arg-279 contributes to ori(Rts1) activation but not to incompatibility. Lys-268 is part of a dual-lysine sequence with Lys-267 and is located 21 amino acids upstream of the RepA C terminus. A dual-lysine sequence is also found at a similar position in both mini-F RepE and mini-P1 RepA proteins.  相似文献   

9.
The sequence of a 1823 base-pair region containing the replication functions of pPS10, a narrow host-range plasmid isolated from a strain of Pseudomonas savastanoi, is reported. The origin of replication, oriV, or pPS10 is contained in a 535 base-pair fragment of this sequence that can replicate in the presence of trans-acting function(s) of the plasmid. oriV contains four iterons of 22 base-pairs that are preceded by G+C-rich and A+T-rich regions. A dnaA box located adjacent to the repeats of the origin is dispensable but required for efficient replication of pPS10; A and T are equivalent bases at the 5' end of the box. repA, the gene of a trans-acting replication protein of 26,700 Mr has been identified by genetic and functional analysis. repA is adjacent to the origin of replication and is preceded by the consensus sequences of a typical sigma 70 promoter of Escherichia coli. The RepA protein has been identified, using the minicell system of E. coli, as a polypeptide with an apparent molecular mass of 26,000. A minimal pPS10 replicon has been defined to a continuous 1267 base-pair region of pPS10 that includes the oriV and repA sequences.  相似文献   

10.
The RepA protein of the plasmid Rts1, consisting of 288 amino acids, is a trans-acting protein essential for initiation of plasmid replication. To study the functional domains of RepA, hybrid proteins of Rts1 RepA with the RepA initiator protein of plasmid P1 were constructed such that the N-terminal portion was from Rts1 RepA and the C-terminal portion was from P1 RepA. Six hybrid proteins were examined for function. The N-terminal region of Rts1 RepA between amino acid residues 113 and 129 was found to be important for Rts1 ori binding in vitro. For activation of the origin in vivo, an Rts1 RepA subregion between residues 177 and 206 as well as the DNA binding domain was required. None of the hybrid initiator proteins activated the P1 origin. Both in vivo and in vitro studies showed, in addition, that a C-terminal portion of Rts1 RepA was required along with the DNA binding and ori activating domains to achieve autorepression, suggesting that the C-terminal region of Rts1 RepA is involved in dimer formation. A hybrid protein consisting of the N-terminal 145 amino acids of Rts1 and the C-terminal 142 amino acids from P1 showed strong interference with both Rts1 and P1 replication, whereas other hybrid proteins showed no or little effect on P1 replication.  相似文献   

11.
The minimal P1 replicon encompasses an open reading frame for the essential replication protein, RepA, bracketed by two sets of multiple 19-base pair repeated sequences, incA and incC. This study focused on the interaction of RepA with the incC and incA repeated sequences because earlier studies suggested that incA might control P1 copy number by titrating limiting amounts of RepA and because the incC repeats, which are part of the origin of replication, contain the promoter for repA. RepA is essential for origin function, autoregulates its own synthesis from the promoter, and, when overproduced, blocks origin function. In this study, RepA was overproduced from an expression vector and purified to 90% homogeneity. The binding of RepA to the DNA encompassing repeat sequences was assayed by monitoring the mobility of protein-DNA complexes on polyacrylamide gels. Distinct species of retarded bands were seen with the maximum number of bands corresponding to the number of repeats present in the target fragment. No evidence was found for RepA binding to fragments not containing the repeats. This suggests that the specific binding of RepA to the repeats may be involved in each of the diverse activities of RepA.  相似文献   

12.
13.
Minimal region necessary for autonomous replication of pTAR.   总被引:2,自引:1,他引:1       下载免费PDF全文
The native 44-kilobase-pair plasmid pTAR, discovered in a grapevine strain of Agrobacterium tumefaciens, contains a single origin of DNA replication confined to a 1.0-kilobase-pair region of the macromolecule. This region (ori) confers functions sufficient for replication in Agrobacterium and Rhizobium species but not in Pseudomonas solanacearum, Pseudomonas glumae, Pseudomonas syringae pv. savastanoi, Xanthomonas campestris pv. campestris, and Escherichia coli. ori contains a repA gene that encodes a 28,000-dalton protein required for replication. Nucleotide sequencing of repA and its promoter region revealed four 8-base-pair palindromic repeats upstream of the repA coding region. Deletion of these repeats alters repA expression and plasmid copy number. Downstream of repA are three additional repeats in a region essential for replication. A locus responsible for plasmid partitioning (parA) and a putative second locus regulating plasmid copy number are part of the origin region and are required for stable plasmid maintenance.  相似文献   

14.
The functional ori1 of the 5.6kb gonococcal R-plasmid pSJ5.6 contains an A-T rich region followed by four 22bp direct repeats and one 19bp inverted repeat. The replication region of the plasmid also contains a gene encoding for a 39kD RepA protein. We have further assessed the functionality of the replication region in pSJ5.6, an-iteron type plasmid, using in vivo complementation assays in Escherichia coli. A 2.1kb PstI-RsaI fragment containing the ori1 and repA gene of pSJ5.6 was cloned into vector pZErO -2 to obtain pZA-MRR. The pUC origin in pZA-MRR was deleted to render the plasmid dependable on the cis-acting ori1 for replication. The resulting plasmid, pMRR, was capable of replication and maintenance in E. coli. We also cloned the ori1 and repA gene separately to obtain pA-Ori and pZG-Rep, respectively. Using in vivo complementation assays, we demonstrated that the ori1(+) plasmid (pA-Ori) was maintained only when the RepA protein was supplied in trans by the high copy number plasmid pZG-Rep.  相似文献   

15.
16.
17.
P1 plasmid replication: replicon structure   总被引:21,自引:0,他引:21  
Bacteriophage P1 lysogenizes Escherichia coli as a unit-copy plasmid. We have undertaken to define the plasmid-encoded elements implicated in P1 plasmid maintenance. We show that a 2081 base-pair fragment of the 90,000 base P1 plasmid confers the capacity for controlled plasmid replication. DNA sequence analysis reveals several open reading frames in this fragment. The largest is shown to encode a 32,000 Mr protein required for plasmid replication. The corresponding gene, repA, has been identified genetically. A set of five 19 base-pair repeats is located upstream from repA; a set of nine similar repeats is located immediately downstream from repA. Each set of repeats, when cloned into pBR322, exerts incompatibility towards a P1 replicon. The upstream set, designated incC, consists of direct repeats that are spaced about two turns of the DNA helix apart; the downstream set, designated incA, consists of nine repeats arranged three in one orientation and six in the other. Spacing between incA repeats were three or four turns of the helix apart. The organization of the plasmid maintenance regions of P1 and the unit-copy sex factor plasmid, F, is strikingly similar. Although the DNA sequences of this region in the two plasmids exhibit little homology, a 9 base-pair sequence that appears four times in the origin region of members of the Enterobacteriaceae also occurs twice as direct repeats in similar positions in P1 and F. This sequence, where it occurs in E. coli, has been postulated to be the binding site for the essential replication protein determined by dnaA. The dnaA protein appears not to be essential for the replication of either plasmid; therefore, the function of the sequence in P1 and F may be regulatory.  相似文献   

18.
The plasmid mini-Rts1, consisting of an EcoRI/HindIII fragment of about 1.8 kilobases (kb), contains an incompatibility determinant in its EcoRI/AccI region (0.5 kb). The nucleotide sequence of this incompatibility fragment was determined. A most striking feature of the sequence is the presence of five 24-base pair direct repeats. Four out of the five repeating units, which are contained in a 0.2-kb EcoRI/HincII fragment, were cloned en bloc in pACYC184 and found to express Rts1-specific incompatibility. In addition, the copy number of the mini-Rts1 plasmid appeared to be increased threefold upon removal of the 0.2-kb incompatibility region (incI) from the plasmid. This deletion derivative of mini-Rts1, as well as mini-Rts1, was maintained stably at 37 degrees C, but was cured at a high frequency at 42 degrees C. A possible role of the repeated nucleotide sequence was discussed. By subcloning the mini-Rts1 DNA, a second inc determinant (incII) was found on the AccI fragment, which is contiguous to the 0.5-kb EcoRI/AccI fragment.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号