首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Wolff GL  Whittaker P 《Peptides》2005,26(10):1697-1711
Isogenic and congenic offspring from matings of inbred black a/a dams by sibling (or non-sibling from another inbred strain) yellow agouti Avy/a sires provide an animal model of obese yellow agouti Avy/a and isogenic lean pseudoagouti Avy/a mice exhibiting two different in vivo concentrations (high, very low) of ectopic agouti protein (ASP) with congenic lean black a/a mice as null controls. This makes it possible to differentiate between the high and very low dose levels of ectopic ASP with respect to interactions with diverse physiological and molecular pathways. Assay of differential responses to 12 or 24 months of carbonyl iron overload assessed the possible suitability of this animal model for the study of hemochromatosis. Agouti A/a B6C3F1 mice were used as non-congenic null controls. The age-related waxing and waning of body weight, food consumption, and caloric efficiency, as well as associated changes in pancreatic islets and islet cells, and formation of liver tumors were assayed. While the hypothesis that these mice might serve as a tool for investigating hemochromatosis was not confirmed, the data did provide evidence that even the very low levels of ASP in pseudoagouti Avy/a mice affect the network of molecular/metabolic/physiological response pathways that comprises the yellow agouti obese phenome. We suggest that the combination of yellow agouti Avy/a, pseudoagouti Avy/a, and black a/a congenic mice provides a practical tool for applying a dose-response systems biology approach to understanding the dysregulatory influence of ectopic ASP on the molecular-physiological matrix of the organism.  相似文献   

2.
Identification of the fundamental polypeptide difference between yellow (A(y)/-, A(vy)/-) and non-yellow mice is important for biomedical research because of the influence of the yellow genotype on normal and neoplastic growth and obesity. The complexity of the "yellow mouse syndrome" makes attainment of this objective dependent on the separation of those pleiotropic enzyme differences which are secondary, and depend on the background genome, from those which are primary, and depend primarily on the agouti locus genotype.-Four of nine hepatic enzyme activities assayed simultaneously differed between eight-week-old yellow (A(y)/-, A(vy)/-) and non-yellow (A/-, a/a) male inbred and F(1) hybrid mice. Among these four, only cytoplasmic malic enzyme activity was elevated in all yellow mice, as compared with the non-yellow sibs, regardless of background genome. Glucokinase, serine dehydratase, and tyrosine alpha-ketoglutarate transaminase activities were also changed in yellow mice, but these alterations depended on the background genome.-The ratio of malic enzyme activity to citrate-cleavage enzyme activity, possibly related to the altered fat metabolism of yellow mice, was influenced by background genome as well as by the yellow genotype.--Significant deviations of enzyme activities from mid-parent values among F(1) hybrids were associated with particular background genomes; the number of such deviations was larger among yellow mice than among non-yellows and this difference was greater among C3H F(1) hybrids than among C57BL/6 F(1) hybrids.  相似文献   

3.
Agouti (A(vy)/a) mice fed an AIN-93G diet containing the soy isoflavone genistein (GEN) prior to and during pregnancy were reported to shift coat color and body composition phenotypes from obese-yellow towards lean pseudoagouti, suggesting epigenetic programming. Human consumption of purified GEN is rare and soy protein is the primary source of GEN. Virgin a/a female and A(vy)/a male mice were fed AIN-93G diets made with casein (CAS) or soy protein isolate (SPI) (the same approximate GEN levels as in the above mentioned study) for 2 wks prior to mating. A(vy)/a offspring were weaned to the same diets and studied at age 75 d. Coat color distribution did not differ among diets, but SPI-fed, obese A(vy)/a offspring had lower hepatosteatosis (P < 0.05) and increased (P < 0.05) expression of CYP4a 14, a PPARalpha-regulated gene compared to CAS controls. Similarly, weanling male Sprague-Dawley (SD) rats fed SPI had elevated hepatic Acyl Co-A Oxidase (ACO) mRNA levels and increased in vitro binding of PPARalpha to the PPRE promoter response element. In another hepatosteatosis model, adult SD rats fed a high fat/cholesterol diet, SPI reduced (P < 0.05) steatosis. Thus, 1) consumption of diets made with SPI partially protected against hepatosteatosis in yellow mice and in SD rats, and this may involve induction of PPARalpha-regulated genes; and 2) the lifetime (in utero, neonatal and adult) exposure to dietary soy protein did not result in a shift in coat color phenotype of A(vy)/a mice. These findings, when compared with those of previously published studies of A(vy)/a mice, lead us to conclude that: 1) the effects of purified GEN differ from those of SPI when GEN equivalents are closely matched; 2) SPI does not epigenetically regulate the agouti locus to shift the coat color phenotype in the same fashion as GEN alone; and 3) SPI may be beneficial in management of non-alcoholic fatty liver disease.  相似文献   

4.
Agouti: from mouse to man, from skin to fat   总被引:25,自引:0,他引:25  
The agouti protein regulates pigmentation in the mouse hair follicle producing a black hair with a subapical yellow band. Its effect on pigmentation is achieved by antagonizing the binding of alpha-melanocyte stimulating hormone (alpha-MSH) to melanocortin 1 receptor (Mc1r), switching melanin synthesis from eumelanin (black/brown) to phaeomelanin (red/yellow). Dominant mutations in the non-coding region of mouse agouti cause yellow coat colour and ectopic expression also results in obesity, type 11 diabetes, increased somatic growth and tumourigenesis. At least some of these pleiotropic effects can be explained by antagonism of other members of the melanocortin receptor family by agouti protein. The yellow coat colour is the result of agouti chronically antagonizing the binding of alpha-MSH to Mc1r and the obese phenotype results from agouti protein antagonizing the binding of alpha-MSH to Mc3r and/or Mc4r. Despite the existence of a highly homologous agouti protein in humans, agouti signal protein (ASIP), its role has yet to be defined. However it is known that human ASIP is expressed at highest levels in adipose tissue where it may antagonize one of the melanocortin receptors. The conserved nature of the agouti protein combined with the diverse phenotypic effects of agouti mutations in mouse and the different expression patterns of human and mouse agouti, suggest ASIP may play a role in human energy homeostasis and possibly human pigmentation.  相似文献   

5.
Here we have tested the hypothesis of association between different levels of agouti signalling peptide (ASIP) mRNA and the recessive black coat colour in the rare Xalda breed of sheep. To deal with this task, we first tested the possible action of both the dominant black extension allele (E(D)) and a 5-bp deletion (X99692:c.100_104del; A(del)) in the ovine ASIP coding sequence on the black coat colour pattern in 188 Xalda individuals. The E(D) allele was not present in the sample and only 11 individuals were homozygous for the A(del)ASIP allele. All Xalda individuals carrying the A(del)/A(del) genotype were phenotypically black. However, most black-coated individuals (109 out of 120) were not homozygous for the 5-bp deletion, thus rejecting the A(del)/A(del) genotype as the sole cause of recessive black coat colour in sheep. Differences in expression of ASIP mRNA were assessed via RT-PCR in 14 black-coated and 10 white-coated Xalda individuals showing different ASIP genotypes (A(wt)/A(wt), A(wt)/A(del) and A(del)/A(del)). Levels of expression in black animals were significantly (P < 0.0001) lower than those assessed for white-coated individuals. However, the ASIP genotype did not influence the ASIP mRNA level of expression. The consistency of these findings with those recently reported in humans is discussed, and the need to isolate the promoter region of ovine ASIP to obtain further evidence for a role of ASIP in recessive black ovine pigmentation is pointed out.  相似文献   

6.
The amino-terminal portion of human growth hormone, residues 1-43 (hGH1-43), has insulin-potentiating action, while a hyperglycemic pituitary peptide (HP), which co-purifies with human growth hormone (hGH), is antagonistic to the action of insulin. The effects of hGH, hGH1-43, and HP on glucose metabolism were assessed in young (4-5 weeks) and adult (6-8 months) hypophysectomized yellow Avy/A mice which lacked any interfering endogenous pituitary hormones, and compared with age-matched intact obese yellow Avy/A and lean agouti A/a mice. Treatment with hGH1-43 or HP did not promote body growth in hypophysectomized yellow mice; but after 2 weeks of treatment with hGH, there was a significant increase in body weight (P less than 0.05). Treatment with HP raised blood glucose and lowered insulin concentrations in obese yellow mice, but not in agouti or hypophysectomized yellow mice. The severely impaired glucose tolerance of the hypophysectomized yellow mice was improved by acute (60 min) and chronic (3 days) treatment with hGH1-43 as well as by 2 weeks of treatment with hGH; in contrast, HP had no effect. Glucose oxidation in adipose tissue from obese yellow mice was low and showed essentially no response to stimulation by insulin at doses lower than 1000 microunits/ml. Basal glucose oxidation rates in adipose tissue taken from agouti and hypophysectomized yellow mice were significantly higher (P less than 0.001) than those in tissue from obese yellow mice, and the rates responded significantly (P less than 0.05) to 100 microunits/ml insulin. The insulin binding affinities in liver membranes from agouti mice were higher than those from either obese or hypophysectomized yellow mice. The insulin receptor densities were similar in both agouti and obese yellow mice, but higher in hypophysectomized yellow mice (P less than 0.05). Treatment with hGH1-43 slightly increased, although not significantly, the insulin receptor density in yellow obese mice while hGH showed essentially no change. Therefore, hypophysectomy appeared to increase tissue response and decrease insulin resistance by increasing receptor numbers and lowering the circulating insulin levels. Furthermore, the insulin-like action of hGH was elicited directly in vivo by hGH1-43 in hypophysectomized yellow mice.  相似文献   

7.
Maturity-onset obesity and elevated circulating insulin levels are characteristic of some, but not all, mice bearing the viable yellow mutation (Avy) at the agouti locus. The expression of the Avy/a genotype in individual mice, which become obese and which remain lean is determined during prenatal development by as yet unidentified conditions in the dam's reproductive tract. One Avy/a phenotype is identified by a mottled yellow coat and characterized by adult obesity, elevated circulating insulin levels, and impaired glucose tolerance. These mice are notably more susceptible to hyperplasia and neoplasia. The alternative Avy/ a phenotype has a pseudoagouti coat, remains lean, is normoinsulinemic and normoglycemic, and in numerous other characteristics resembles congeneic lean black (a/a) littermates. Obese mottled yellow and lean pseudoagouti Avy/a mice differ in capacity to support the growth of ascites cells, in the growth response to castration, and in hepatic glutathione S-transferase activity, erythrocyte fragility, immune function, and susceptibility to Plasmodium yoelii pathogenesis. Our working hypothesis is that the constellation of characteristics, except coat color pattern, which differentiate the obese yellow mice from their lean littermates, is largely a consequence of the elevated circulating insulin levels that induce increased lipogenesis and decreased lipolysis, increased DNA and protein synthesis, increased mitosis in sensitive tissues, and increased proliferation of transformed cells.  相似文献   

8.
The mouse pink-eyed dilution (p) locus is known to control eumelanin synthesis, melanosome morphology, and tyrosinase activity in melanocytes. However, it has not been fully determined whether the mutant allele, p affects pheomelanin synthesis. Effects of the p allele on eumelanin and phemelanin synthesis were investigated by chemical analysis of dorsal hairs of 5-week-old mice obtained from the F(2) generations (black, pink-eyed black, recessive yellow, pink-eyed recessive yellow, agouti, and pink-eyed agouti) between C57BL/10JHir (B10)-congenic pink-eyed black mice (B10-p/p) and recessive yellow (B10-Mc1r(e)/Mc1r(e)) or agouti (B10-A/A) mice. The eumelanin content was dramatically (>20-fold) decreased in pink-eyed black and pink-eyed agouti mice, whereas the pheomelanin content did not decrease in pink-eyed black, pink-eyed recessive yellow, or pink-eyed agouti mice compared to the corresponding P/- mice. These results suggest that the pink-eyed dilution allele greatly inhibits eumelanin synthesis, but not pheomelanin synthesis.  相似文献   

9.
J. F. Leslie  K. K. Klein 《Genetics》1996,144(2):557-567
The murine agouti locus regulates a switch in pigment synthesis between eumelanin (black/brown pigment) and phaeomelanin (yellow/red pigment) by hair bulb melanocytes. We recently described a spontaneous mutation, hypervariable yellow (A(hvy)) and demonstrated that A(hvy) is responsible for the largest range of phenotypes yet identified at the agouti locus, producing mice that are obese with yellow coats to mice that are of normal weight with black coats. Here, we show that agouti expression is altered both temporally and spatially in A(hvy) mutants. Agouti expression levels are positively correlated with the degree of yellow pigmentation in individual A(hvy) mice, consistent with results from other dominant yellow agouti mutations. Sequencing of 5' RACE and genomic PCR products revealed that A(hvy) resulted from the integration of an intracisternal A particle (IAP) in an antisense orientation within the 5' untranslated agouti exon 1C. This retrovirus-like element is responsible for deregulating agouti expression in A(hvy) mice; agouti expression is correlated with the methylation state of CpG residues in the IAP long terminal repeat as well as in host genomic DNA. In addition, the data suggest that the variable phenotype of A(hvy) offspring is influenced in part by the phenotype of their A(hvy) female parent.  相似文献   

10.
Early nutrition affects adult metabolism in humans and other mammals, potentially via persistent alterations in DNA methylation. With viable yellow agouti (A(vy)) mice, which harbor a transposable element in the agouti gene, we tested the hypothesis that the metastable methylation status of specific transposable element insertion sites renders them epigenetically labile to early methyl donor nutrition. Our results show that dietary methyl supplementation of a/a dams with extra folic acid, vitamin B(12), choline, and betaine alter the phenotype of their A(vy)/a offspring via increased CpG methylation at the A(vy) locus and that the epigenetic metastability which confers this lability is due to the A(vy) transposable element. These findings suggest that dietary supplementation, long presumed to be purely beneficial, may have unintended deleterious influences on the establishment of epigenetic gene regulation in humans.  相似文献   

11.
Switching between production of eumelanin or pheomelanin in follicular melanocytes is responsible for hair color in mammals; in mice, this switch is controlled by the agouti locus, which encodes agouti signal protein (ASP) through the action of melanocortin receptor 1. To study expression and processing patterns of ASP in the skin and its regulation of pigment production in hair follicles, we have generated a rabbit antibody (termed alphaPEP16) against a synthetic peptide that corresponds to the carboxyl terminus of ASP. The specificity of that antibody was measured by ELISA and was confirmed by Western blot analysis. Using immunohistochemistry, we characterized the expression of ASP in the skin of newborn mice at 3, 6, and 9 days postnatally. Expression in nonagouti (a/a) black mouse skin was negative at all times examined, as expected, and high expression of ASP was observed in 6 day newborn agouti (A/+) and in 6 and 9 day newborn lethal yellow (A(y)/a) mouse skin. In lethal yellow (pheomelanogenic) mice, ASP expression increased day by day as the hair color became more yellow. These expression patterns suggest that ASP is delivered quickly and efficiently to melanocytes and to hair matrix cells in the hair bulbs where it regulates melanin production.  相似文献   

12.
The recessive black plumage mutation in the Japanese quail (Coturnix japonica) is controlled by an autosomal recessive gene (rb) and displays a blackish-brown phenotype in the recessive homozygous state (rb/rb). A similar black coat color phenotype in nonagouti mice is caused by an autosomal recessive mutation at the agouti locus. An allelism test showed that wild type and mutations for yellow, fawn-2, and recessive black in Japanese quail were multiple alleles (*N, *Y, *F2, and *RB) at the same locus Y and that the dominance relationship was Y*F2 > Y*Y > Y*N > Y*RB. A deletion of 8 bases was found in the ASIP gene in the Y*RB allele, causing a frameshift that changed the last six amino acids, including a cysteine residue, and removed the normal stop codon. Since the cysteine residues at the C terminus are important for disulphide bond formation and tertiary structure of the agouti signaling protein, the deletion is expected to cause a dysfunction of ASIP as an antagonist of alpha-MSH in the Y*RB allele. This is the first evidence that the ASIP gene, known to be involved in coat color variation in mammals, is functional and has a similar effect on plumage color in birds.  相似文献   

13.
Phenotypically distinct but genetically identical obese mottled yellow Avy/a and lean pseudoagouti Avy/a sibling mice and their congeneic black a/a littermates provide an experimental system for distinguishing phenotypic effects from genotypic effects in the expression of the genotype at the organismic level. Hepatic glutathione S-transferase activity in obese yellow Avy/a (YS X VY) F-1 hybrid female mice was only about 66% of that found in their lean black a/a sisters. This decreased enzyme activity was not a direct effect of the Avy/a genotype but was associated with the obesity of the yellow mice since the enzyme activity in lean pseudoagouti Avy/a female siblings was similar to that found in the black a/a mice. Long-term feeding of 160 ppm lindane in the diet decreased the enzyme activity in all phenotypes but did not eliminate the difference between the obese yellow and lean pseudoagouti and black mice. Interpretation of the available data suggests that no direct relationship exists between the level of hepatic glutathione S-transferase activity and the enhancement of tumor formation in yellow Avy/a mice. Several inbred mouse strains and F-1 hybrids were also screened for this enzyme activity. No strain differences were found but sex differences within different inbred strains were not uniform. In the AE and YS strains and their F-1 hybrid enzyme activity was higher in female than in males. In contrast, BALB/c and VY strain males had higher enzyme activity than the corresponding females.  相似文献   

14.
To test the hypothesis that the elevated insulin levels in obese neoplasia-susceptible yellow Avy/- mice might be a major factor stimulating tumor formation, it is necessary to use normoinsulinemic yellow mice. Although our attempt to obtain normoinsulinemic, euglycemic mice by streptozotocin treatment was unsuccessful, we did observe significant differences in the responsiveness to this treatment among mice of identical genotype. These differences were observed among female yellow Avy/A and agouti A/a (BALB/c x VY)F1 hybrid mice in the responses of body weight gain, plasma glucose, and plasma insulin levels to a single intraperitoneal injection of either 150 or 200 mg/kg streptozotocin (STZ) at 4 weeks of age followed by a 22-week observation period. Among animals treated with the high streptozotocin dose, 80% of the yellow mice gained almost no weight and became grossly hyperglycemic and hypoinsulinemic; however, only 55% of the agouti mice exhibited such a strong response. In the low dose group, 25% of the yellow mice responded with reduced body weight gain, decreased insulin, and elevated glucose levels whereas none of the agouti mice exhibited such responses. More pancreatic islet tissue mass was present in the untreated yellow control mice than among the comparable agouti mice by the end of the study. In both streptozotocin dose groups and in both genotypes, islet tissue mass was reduced to a much greater extent in the more responsive mice than in the less responsive mice. There appeared to be no correlation between islet tissue mass and insulin level. The phenotypic variation in responsiveness to an exogenous agent among test animals of a single inbred or F1 hybrid genotype reported here is not unique to this F1 hybrid since it is seen in most chronic bioassays when relatively low levels of agent are used.  相似文献   

15.
16.
Mutation yellow at the agouti locus in mice (A(y)/a-mice) causes the increase of food intake and development of obesity and type 2 diabetes. In A(y)/a-females the disturbances of glucose and fat metabolisms occur after puberty. We have assumed that the mutation yellow violates the regulatory effect of estradiol on glucose and fat metabolism in mice. We investigated the effects of ovariectomy and estradiol treatment on body weight, food intake, glucose tolerance, plasma levels of glucose, insulin and etherified fatty acids in A(y)/a-females. C57Bl/6J females, not carrying yellow mutation at the agouti locus (a/a-mice), were used as a control. The data suggest that the yellow mutation did not affect estradiol regulation of food intake and glucose blood levels after a night of fasting, but, apparently, prevented estradiol participation in the regulation of glucose and fat metabolisms in the muscle and fat tissues.  相似文献   

17.
We compared tyrosinase activity (TH, DO, and native PAGE-defined isozymes) and melanin production in particulate and soluble fractions of hairbulb melanocytes of lethal yellow (Ay/a C/C), nonagouti black (a/a C/C), and albino (a/a c2J/c2J) of 3-, 6-, 9-, and 12-day regenerating hairbulbs. With respect to tyrosine hydroxylase (TH) and dopa oxidase (DO) activities, Ay/a melanocytes possessed only 25-35% of the activity of a/a; there were no genotype differences in either the subcellular distribution of activity in soluble and particulate fractions or in the relative increases of activity over the 12-day developmental period. TH data on wild-type agouti (AwJ/AwJ) mice over the 3-11 day regeneration interval showed an activity intermediate between that of a/a and Ay/a; the rate of TH increase reflected black and yellow phases of the agouti hair cycle. Analyses of the number and densities of dopa-sensitive bands following native PAGE of 3-, 6-, 9-, and 12-day hairbulb fractions of a/a and Ay/a mice suggested stage-dependent patterns. A comparison of rates and amounts of melanin production in 3-, 6-, 9-, and 12-day fractions showed consistent melanin production in Ay/a to be 10-20% that of a/a; however, fold increases in melanin production over the four stages were similar between genotypes. Overall, tyrosinase activity data support the notion that agouti locus modification of tyrosinase activity is a graded or quantitative rather than a qualitative phenomenon.  相似文献   

18.
A Transgenic Mouse Assay for Agouti Protein Activity   总被引:1,自引:0,他引:1       下载免费PDF全文
The mouse agouti gene encodes an 131 amino acid paracrine signaling molecule that instructs hair follicle melanocytes to switch from making black to yellow pigment. Expression of agouti during the middle part of the hair growth cycle in wild-type mice produces a yellow band on an otherwise black hair. The ubiquitous unregulated expression of agouti in mice carrying dominant yellow alleles is associated with pleiotropic effects including increased yellow pigment in the coat, obesity, diabetes and increased tumor susceptibility. Agouti shows no significant homology to known genes, and the molecular analysis of agouti alleles has shed little new light on the important functional elements of the agouti protein. In this paper, we show that agouti expression driven by the human β-ACTIN promoter produces obese yellow transgenic mice and that this can be used as an assay for agouti activity. We used this assay to evaluate a point mutation associated with the a(16H) allele within the region encoding agouti's putative signal sequence and our results suggest that this mutation is sufficient to cause the a(16H) phenotype. Thus, in vitro mutagenesis followed by the generation of transgenic mice should allow us to identify important functional elements of the agouti protein.  相似文献   

19.
Insulin-like and anti-insulin effects of human growth hormone (hGH) were examined by determining the effects of two peptides representing portions of the hGH molecule in lean agouti A/a and obese yellow Avy/A and ob/ob mice. The peptides were the amino terminal segment, residue 1-43 (hGH1-43), which has been shown to potentiate the response to insulin and another peptide, hyperglycemic peptide (HP), with unknown structure, which has anti-insulin activity. The anti-insulin component is an acidic low molecular weight peptide which co-purifies with hGH but was not recognized by antibodies to intact hGH and did not cross-react with anti-hGH1-43 antiserum. The purpose of these studies was to further understand the multiple actions of hGH and its acute and chronic effects on response to insulin. Injections of hGH1-43 dramatically enhanced the effect of insulin on glucose clearance of obese yellow Avy/A and ob/ob mice and increased the insulin-stimulated glucose oxidation in adipose tissue of yellow mice, but had no direct effect on blood glucose or insulin levels of either genotype. Administration of HP to obese yellow mice produced hyperglycemia and suppressed serum insulin concentrations. Tissues from lean agouti and obese yellow mice treated with HP in vitro showed decreased basal and insulin-stimulated glucose oxidation as well as decreased 14C incorporation into lipids. Chronic treatment of obese yellow and ob/ob mice with HP increased fasting blood glucose and impaired glucose tolerance. The effect of HP was more pronounced in obese yellow mice and the ob/ob mice were more sensitive to the diabetogenic actions of intact hGH. These data provide further evidence for the existence of two opposing biologic activities derived from disparate amino acid sequences in hGH. Additionally, the data indicate that assays using obese yellow Avy/A mice can distinguish the effects of hGH from those of the individual peptides to a greater degree than assays using obese ob/ob mice.  相似文献   

20.
Structures of the agouti signaling protein   总被引:9,自引:0,他引:9  
Expression of the agouti signaling protein (ASIP) during hair growth produces the red/yellow pigment pheomelanin. ASIP, and its neuropeptide homolog the agouti-related protein (AgRP) involved in energy balance, are novel, paracrine signaling molecules that act as inverse agonists at distinct subsets of melanocortin receptors. Ubiquitous ASIP expression in mice gives rise to a pleiotropic phenotype characterized by a uniform yellow coat color, obesity, overgrowth, and metabolic derangements similar to type II diabetes in humans. Here we report the synthesis and NMR structure of ASIP's active, cysteine-rich, C-terminal domain. ASIP adopts the inhibitor cystine knot fold and, along with AgRP, are the only known mammalian proteins in this structure class. Moreover, ASIP populates two distinct conformers resulting from a cis peptide bond at Pro102-Pro103 and a coexistence of cis/trans isomers of Ala104-Pro105. Pharmacologic studies of Pro-->Ala mutants demonstrate that the minor conformation with two cis peptide bonds is responsible for activity at all MCRs. The loop containing the heterogeneous Ala-Pro peptide bond is conserved in mammals, and suggests that ASIP is either trapped by evolution in this unusual configuration or possesses function outside of strict MCR antagonism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号