首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A dense complex has been isolated from bacteria infected with gene V amber mutant f 1 bacteriophage. The major protein in this complex is the f 1 bacteriophage-specific gene II protein. Other proteins in the complex include the f 1 bacteriophage coat protein and proteins which migrate on sodium dodecyl sulfate/polyacrylamide gel electrophoresis with the f1 bacteriophage-specific gene III, gene IV and X protein. A protein of approximately 20,000 Mr is also present in the complex. Examination of bacteria infected with gene V mutant f1 bacteriophage revealed the complex as a densely staining amorphous body which appears to be associated with the cytoplasmic membrane. Bacteria infected with f1 bacteriophage that contain amber mutations in genes other than gene V do not contain this complex.  相似文献   

2.
Infection of Escherichia coli with bacteriophage T7 results in an inhibition of the host exonuclease V (recB, C DNase) activity. This inhibition is not observed when cells are infected in the presence of chloramphenicol or with a gene 1 mutant. The protein responsible for the inhibition of exonuclease V has been partially purified from T7-infected cells. The protein which does not possess nuclease or ATPase activity can inhibit all nucleolytic activities associated with exonuclease V. The protein does not, however, inhibit the DNA-dependent ATPase activity associated with exonuclease V. The inhibitory protein has a molecular weight of about 12,000, as determined from sedimentation analysis in glycerol gradients.  相似文献   

3.
Several phage hosts of group A streptococci became resistant to lysis by bacteriophage as a consequence of having acquired the ability to grow in the presence of chloramphenicol. The phage was adsorbed to the streptococcal cell, and P(32)-labeling of the phage showed that the phage genome penetrated the chloramphenicol (CM)- resistant cells as it did the parent cells. However, artificial lysis of the infected CM-resistant cells with chloroform or enzymes revealed no intracellular mature phage particles. Lysates of infected CM-resistant cells contained no phage-related antigenic materials which possessed serum-blocking power, although they were readily detected in lysates of infected parent cells. The CM-resistant cells were not lysogenized by the phage. Only cells resistant to more than 10 mug/ml of chloramphenicol were resistant to phage, and this threshold effect was taken as an indication of at least two different loci of chloramphenicol resistance on the streptococcal genome. Strains resistant to high levels of other antibiotics, such as streptomycin and erythromycin, showed no resistance to lysis by phage. Evidence indicated that the mutant cells were deficient in an essential function associated with the phage genome.  相似文献   

4.
Many early mRNA species of bacteriophage T4 are not synthesized after infection of Escherichia coli in the presence of chloramphenicol. This has been interpreted as a need for T4 protein(s) to be synthesized to allow expression of some early genes, e.g., those for deoxycytidinetriphosphatase, deoxynucleosidemonophosphate kinase and UDP-glucose-DNA beta-glucosyltransferase. In the experiments described here, early mRNA of bacteriophage T4 was allowed to accumulate during chloramphenicol treatment. After the addition of rifampin to inhibit further RNA synthesis, and subsequent removal of chloramphenicol, the accumulated mRNA was permitted to express itself into measured enzyme activities. It was shown that the early mRNA species coding for deoxycytidinetriphosphatase and UDP-glucose-DNA beta-glucosyltransferase could be formed in the presence of chloramphenicol if the E. coli host cell carried a mutation in the structural gene for the RNA chain termination factor rho. This was interpreted to mean that T4 protein(s) with anti-rho activity is normally required for the expression of these two early genes. An altered rho-factor could not, however, relieve the need of phage protein synthesis for the formation of another early mRNA, that coding for deoxynucleosidemonophosphate kinase. In this case the mot gene of T4 seemed to be involved, since the primary infection of E. coli cells with the mot gene mutant tsG1 did not allow subsequent deoxynucleoside monophosphate kinase mRNA synthesis after wild-type phage infection in the presence of chloramphenicol. In control experiments, deoxynucleoside monophosphate kinase mRNA synthesis induced by wild-type phage superinfecting in the presence of chloramphenicol was facilitated by the primary infection with T4 phage containing an unmutated mot gene.  相似文献   

5.
The gene II region of bacteriophage f1 DNA codes for two proteins, the 46 kd gene II protein and the 13 kd gene X protein, which results from an in-phase start at codon 300 of gene II. Using antigens II protein IgG, we show that the intracellular concentration of both proteins is controlled by the phage gene V protein. In wild-type f1-infected cells, the amount of gene II protein reaches a plateau of about 1500 molecules per cell at 20 min after infection, as measured by blot immunoassay. Similarly, the amount of gene X protein reaches a peak of about 500 molecules per cell around 10 min after infection. In contrast, when the gene V protein is inactive, both gene II and gene X proteins continue to accumulate at a high rate for at least 40 min after infection. This difference is caused by decreased synthesis of gene II and gene X proteins in the presence of gene V protein, which represses the translation of these two proteins.  相似文献   

6.
An improved system for the production of a series of rodent-human hybrids selectively retaining single human chromosomes marked in known locations is described. Such hybrids have significant applications in gene mapping and other genetic studies. Human lymphoblastoid lines were infected with the retroviral vector SP-1, which contains the bacterial his-D gene allowing mammalian cells to grow in the presence of histidinol. Microcell fusion of the infected lymphoblastoid cells with CHO cells was used to produce hybrids containing single human chromosomes retained by histidinol selection. Hybrids containing a single human chromosome 9 and a single human chromosome 19 are described. These have been characterized cytogenetically by G-banding, in situ hybridization, and Southern blot analysis.  相似文献   

7.
8.
研究丝状噬菌体CTXΦ对O1群不同霍乱弧菌的水平转移效率及菌株的噬菌体免疫能力。利用带有氯霉素抗性基因遗传标记的CTXETΦ感染颗粒对O1群的4株不同霍乱弧菌进行体外和体内转染实验,根据氯霉素抗性筛选转染子,通过Southern Blot等方法进行验证并判断CTXΦ基因组的存在形式,计算比较不同菌株的转染率,分析转染及噬菌体免疫机制。带有遗传标记的CTXETΦ对古典型霍乱弧菌1119的体内转染率高于体外;体内转染实验中,古典菌株1119的转染率远高于其它3株El Tor型霍乱弧菌;在El Tor型霍乱弧菌中,不含rstR基因的IEM101的转染率高于另外两株带有rstR基因的霍乱弧菌2~3个数量级。古典型霍乱弧菌比El Tor型菌株对CTXETΦ噬菌体颗粒更易感,TCP菌毛的表达和rstR基因介导的噬菌体免疫影响CTXΦ在霍乱弧菌中的水平转移。  相似文献   

9.
Mutants of bacteriophage T7 that escape F restriction   总被引:7,自引:0,他引:7  
Mutants of bacteriophage T7 that escape F restriction have been isolated. Two mutations in gene 10, which codes for the capsid protein, and one mutation in gene 1.2 are required for these phages to grow on F-containing strains. The products of these two genes are the two targets of the exclusion system; the presence of either wild-type product results in an abortive infection. Phages that grow normally in male hosts still lead to membrane dysfunction and nucleotide efflux from the infected cell. This type of membrane damage and the abortive infection are therefore separable phenomena.  相似文献   

10.
11.
12.
Transdominant genetic selections can yield protein fragment and peptide modulators of specific biochemical pathways. In yeast, such screens have been highly successful in targeting the MAP (mitogen-activated protein) kinase growth-control pathway. We performed a similar type of selection aimed at recovery of modulators of the mammalian MAP kinase cascade. Two pathway activators were identified, fragments of the TrkB and Raf-1 kinases. In a second selection directed at the beta-catenin growth-control pathway, three different clones encoding cadherin fragments were recovered. In neither selection were peptide inhibitors observed. We conclude that some transdominant selections in mammalian cells can readily yield high-penetrance protein fragments, but may be less amenable to isolation of peptide inhibitors.  相似文献   

13.
14.
15.
Under certain culture conditions, Miracil (35 mug/ml) halts the growth of uninfected Escherichia coli. Cellular ribonucleic acid (RNA) synthesis is almost completely suppressed, whereas deoxyribonucleic acid and protein synthesis are inhibited to a lesser extent. When the drug is added to host bacteria prior to infection with bacteriophage MS2, the phage adsorb to the cells, but penetration of the viral RNA is inhibited. Penetration may be achieved without further viral development by infection in the presence of chloramphenicol. If the bacteria are infected with MS2 in the presence of chloramphenicol, subsequently washed to remove the chloramphenicol, and then treated with Miracil at any time between 0 and 20 min postinfection, a second viral function is inhibited and the yield of progeny phage is reduced. Addition of the drug after 20 min postinfection does not inhibit the infection process. When Miracil is present from early times in infection, only a limited synthesis of both double- and single-stranded virus-specific RNA is observed. The viral RNA species thus produced do not appear to differ from those made in the absence of the drug. A comparison of the activities of the viral RNA synthetase produced during the course of infection in the presence and in the absence of Miracil suggests that a possible cause of the inhibition is the synthesis of an unstable enzyme in the presence of the drug.  相似文献   

16.
The product of gene 1.2 of bacteriophage T7 is not required for the growth of T7 in wild-type Escherichia coli since deletion mutants lacking the entire gene 1.2 grow normally (Studier et al., J. Mol. Biol. 135:917-937, 1979). By using a T7 strain lacking gene 1.2, we have isolated a mutant of E. coli that was unable to support the growth of both point and deletion mutants defective in gene 1.2. The mutation, optA1, was located at approximately 3.6 min on the E. coli linkage map in the interval between dapD and tonA; optA1 was 92% cotransducible with dapD. By using the optA1 mutant, we have isolated six gene 1.2 point mutants of T7, all of which mapped between positions 15 and 16 on the T7 genetic map. These mutations have also been characterized by DNA sequence analysis, E. coli optA1 cells infected with T7 gene 1.2 mutants were defective in T7 DNA replication; early RNA and protein synthesis proceeded normally. The defect in T7 DNA replication is manifested by a premature cessation of DNA synthesis and degradation of the newly synthesized DNA. The defect was not observed in E. coli opt+ cells infected with T7 gene 1.2 mutants or in E. coli optA1 cells infected with wild-type T7 phage.  相似文献   

17.
A hybrid protein was constructed in vitro which consists of the first 372 amino acids of the attachment (gene III) protein of filamentous bacteriophage f1 fused, in frame, to the carboxy-terminal catalytic domain of colicin E3. The hybrid toxin killed cells that had the F-pilus receptor for phage f1 but not F- cells. The activity of the hybrid protein was not dependent upon the presence of the colicin E3 receptor, BtuB protein. The killing activity was colicin E3 specific, since F+ cells expressing the colicin E3 immunity gene were not killed. Entry of the hybrid toxin was also shown to depend on the products of tolA, tolQ, and tolR which are required both for phage f1 infection and for entry of E colicins. TolB protein, which is required for killing by colicin E3, but not for infection by phage f1, was also found to be necessary for the killing activity of the hybrid toxin. The gene III protein-colicin E3 hybrid was released from producing cells into the culture medium, although the colicin E3 lysis protein was not present in those cells. The secretion was shown to depend on the 18-amino-acid-long gene III protein signal sequence. Deletion of amino acids 3 to 18 of the gene III moiety of the hybrid protein resulted in active toxin, which remained inside producing cells unless it was mechanically released.  相似文献   

18.
A recombinant plasmid carrying the recA gene of Vibrio cholerae was isolated from a V. cholerae genomic library, using complementation in Escherichia coli. The plasmid complements a recA mutation in E. coli for both resistance to the DNA-damaging agent methyl methanesulfonate and recombinational activity in bacteriophage P1 transductions. After determining the approximate location of the recA gene on the cloned DNA fragment, we constructed a defined recA mutation by filling in an XbaI site located within the gene. The 4-base pair insertion resulted in a truncated RecA protein as determined by minicell analysis. The mutation was spontaneously recombined onto the chromosome of a derivative of V. cholerae strain P27459 by screening for methyl methanesulfonate-sensitive variants. Southern blot analysis confirmed the presence of the inactivated XbaI site in the chromosome of DNA isolated from one of these methyl methanesulfonate-sensitive colonies. The recA V. cholerae strain was considerably more sensitive to UV light than its parent, was impaired in homologous recombination, and was deficient in induction of a temperate vibriophage upon exposure to UV light. We conclude that the V. cholerae RecA protein has activities which are analogous to those described for the RecA protein of E. coli.  相似文献   

19.
Extracts of DNA polymerase I defective Escherichia coli infected with phage T4 contain an exonuclease activity that removes thymine dimers from UV-irradiated DNA previously nicked with T4 UV endonuclease. This activity is not expressed if cells are infected in the presence of chloramphenicol. The enzyme has a requirement for divalent cation and is not affected by caffeine, but excision is inhibited in the presence of proflavine. The enzyme is present in all phage T4 mutants thus far examined, including 25 UV-sensitive mutants isolated during the course of the experiments, all of which are defective in the v gene. A similar activity can be detected in cells infected with phages T2, T3, and T6, but not in cells infected with phage T7.  相似文献   

20.
Recombinant vaccinia viruses that express the bacteriophage T3 RNA polymerase (VV-T3pol) or the Escherichia coli lac repressor (VV-lacI) under control of the early-late vaccinia promoter P7.5 were constructed. To determine whether phage polymerase and lac repressor can function in the nucleus of mammalian cells, the bacterial chloramphenicol acetyltransferase (CAT) gene was cloned downstream of a T3 promoter (PT3-CAT) or downstream of a T3 promoter-lac operator fusion element (PT3Olac-CAT), and these reporter gene cassettes were introduced stably into NIH 3T3 or Ltk- cells. Infection of 3T3/PT3-CAT or Ltk-/PT3-CAT cells by VV-T3pol led to rapid expression of CAT (greater than 20 ng of CAT protein per 10(6) cells). The presence of hydroxyurea (which blocks virus DNA replication) did not prevent CAT production. When 3T3/PT3Olac-CAT cells were infected with both VV-T3pol and VV-lacI (multiplicities of infection of 2.5 and 10, respectively), greater than 30-fold repression of CAT gene activity by lac repressor was observed. This could be reversed to unrepressed levels by the presence of 10 mM o-nitrophenyl-beta-D-galactoside (IPTG) in the medium. Regulated expression of the target gene was observed with cell lines that had been maintained for over 1 year (greater than 50 passages in culture), and Southern blot analysis revealed the presence of the CAT gene only in the nuclear fraction in these cells, demonstrating the stability of the target gene. These results indicate that vaccinia virus-encoded proteins can function in the mammalian nucleus and provide the basis for a genetic system in which essential vaccinia virus genes, placed in the chromosome of a cell, can be used to complement defective virus particles. This approach may prove useful for other virus systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号