首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhou H  Wang HW  Zhu K  Sui SF  Xu P  Yang SF  Li N 《Plant physiology》1999,121(3):913-919
A pyridoxal 5'-phosphate (PLP)-dependent enzyme, 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (S-adenosyl-L-Met methylthioadenosine-lyase, EC 4.4.1.14), catalyzes the conversion of S-adenosyl-L-methionine (AdoMet) to ACC. A tomato ACC synthase isozyme (LE-ACS2) with a deletion of 46 amino acids at the C terminus was chosen as the control enzyme for the study of the function of R286 in ACC synthase. R286 of the tomato ACC synthase was mutated to a leucine via site-directed mutagenesis. The ACC synthase mutant R286L was purified using a simplified two-step purification protocol. Circular dichroism (CD) analysis indicated that the overall three-dimensional structure of the mutant was indistinguishable from that of the control enzyme. Fluorescence spectroscopy revealed that the binding affinity of R286L ACC synthase for its cofactor PLP was reduced 20- to 25-fold compared with control. Kinetic analysis of R286L showed that this mutant ACC synthase had a significantly reduced turnover number (k(cat)) of 8.2 x 10(-3) s(-1) and an increased K(m) of 730 microM for AdoMet, leading to an 8,000-fold decrease in overall catalytic efficiency compared with the control enzyme. Thus, R286 of tomato ACC synthase is involved in binding both PLP and AdoMet.  相似文献   

2.
1-Aminocyclopropanecarboxylate synthase, a key enzyme in ethylene biosynthesis   总被引:40,自引:0,他引:40  
1-Aminocyclopropanecarboxylate (ACC) synthase, which catalyzes the conversion of S-adenosylmethionine (SAM) to ACC and methylthioadenosine, was demonstrated in tomato extract. Methylthioadenosine was then rapidly hydrolyzed to methylthioribose by a nucleosidase present in the extract. ACC synthase had an optimum pH of 8.5, and a Km of 20 μm with respect to SAM. S-Adenosylethionine also served as a substrate for ACC synthase, but at a lower efficiency than that of SAM. Since S-adenosylethionine had a higher affinity for the enzyme than SAM, it inhibited the reaction of SAM when both were present. S-Adenosylhomocysteine was, however, an inactive substrate. The enzyme was activated by pyridoxal phosphate at a concentration of 0.1 μm or higher, and competitively inhibited by aminoethoxyvinylglycine and aminooxyacetic acid, which are known to inhibit pyridoxal phosphate-mediated enzymic reactions. These results support the view that ACC synthase is a pyridoxal enzyme. The biochemical role of pyridoxal phosphate is catalyzing the formation of ACC by α,γ-elimination of SAM is discussed.  相似文献   

3.
1-Aminocyclopropane-1-carboxylic acid (ACC), which is a precursor of ethylene in plants, has never been known to occur in microorganisms. We describe the synthesis of ACC by Penicillium citrinum, purification of ACC synthase [EC 4.4.1.14] and ACC deaminase [EC 4.1.99.4], and their properties. Analyses of P. citrinum culture showed occurrence of ACC in the culture broth and in the cell extract. ACC synthase was purified from cells grown in a medium containing 0.05% L-methionine and ACC deaminase was done from cells incubated in a medium containing 1% 2-aminoisobutyrate. The purified ACC synthase, with a specific activity of 327 milliunit/mg protein, showed a single band of M(r) 48,000 in SDS-polyacrylamide gel electrophoresis. The molecular mass of the native enzyme by gel filtration was 96,000 Da. The ACC synthase had the Km for S-adenosyl-L-methionine of 1.74 mM and kcat of 0.56 s-1 per monomer. The purified ACC deaminase, with a specific activity of 4.7 unit/mg protein, showed one band in SDS-polyacrylamide gel electrophoresis of M(r) 41,000. The molecular mass of the native ACC deaminase was 68,000 Da by gel filtration. The enzyme had a Km for ACC of 4.8 mM and kcat of 3.52 s-1. The presence of 7 mM Cu2+ in alkaline buffer solution was effective for increasing the stability of the ACC deaminase in the process of purification.  相似文献   

4.
Yip WK  Dong JG  Yang SF 《Plant physiology》1991,95(1):251-257
1-Aminocyclopropane-1-carboxylate (ACC) synthase, a key enzyme in ethylene biosynthesis, was isolated and partially purified from apple (Malus sylvestris Mill.) fruits. Unlike ACC synthase isolated from other sources, apple ACC synthase is associated with the pellet fraction and can be solubilized in active form with Triton X-100. Following five purification steps, the solubilized enzyme was purified over 5000-fold to a specific activity of 100 micromoles per milligram protein per hour, and its purity was estimated to be 20 to 30%. Using this preparation, specific monoclonal antibodies were raised. Monoclonal antibodies against ACC synthase immunoglobulin were coupled to protein-A agarose to make an immunoaffinity column, which effectively purified the enzyme from a relatively crude enzyme preparation (100 units per milligram protein). As with the tomato enzyme, apple ACC synthase was inactivated and radiolabeled by its substrate S-adenosyl-l-methionine. Apple ACC synthase was identified to be a 48-kilodalton protein based on the observation that it was specifically bound to immunoaffinity column and it was specifically radiolabeled by its substrate S-adenosyl-l-methionine.  相似文献   

5.
The crystal structure of 1-aminocyclopropane-1-carboxylate (ACC) synthase in complex with the substrate analogue [2-(amino-oxy)ethyl](5'-deoxyadenosin-5'-yl)(methyl)sulfonium (AMA) was determined at 2.01-A resolution. The crystallographic results show that a covalent adduct (oxime) is formed between AMA (an amino-oxy analogue of the natural substrate S-adenosyl-L-methionine (SAM)) and the pyridoxal 5'-phosphate (PLP) cofactor of ACC synthase. The oxime formation is supported by spectroscopic data. The ACC synthase-AMA structure provides reliable and detailed information on the binding mode of the natural substrate of ACC synthase and complements previous structural and functional work on this enzyme.  相似文献   

6.
S-methyl-l-methionine (SMM) is ubiquitous in the tissues of flowering plants, but its precise function remains unknown. It is both a substrate and an inhibitor of the pyridoxal 5-phosphate-dependent enzyme 1-aminocyclopropane-1-carboxylate (ACC) synthase, due to its structural similarity to the natural substrate of this enzyme, S-adenosyl-l-methionine. In the reaction with ACC synthase, SMM can either be transaminated to yield 4-dimethylsulfonium-2-oxobutyrate; converted to α-ketobutyrate, ammonia, and dimethylsulfide; or inactivate the enzyme covalently after elimination of dimethylsulfide. These results suggest a previously unrecognized role for SMM in the regulation of ACC synthase activity in plants.  相似文献   

7.
1-Aminocyclopropane-1-carboxylate (ACC) synthase, EC 4.4.1.14, was purified to homogeneity from etiolated mung bean hypocotyl segments. This was made possible by the ability to elevate the enzyme level markedly through hormone treatments and by stabilization of the enzyme with high phosphate concentrations. The four-step procedure resulted in 1050-fold purification with 25% yield, and consisted of stepwise elution from hydroxylapatite, chromatography on phenyl-Sepharose CL-4B, gradient elution from hydroxylapatite, and fast protein liquid chromatography (FPLC) on a MonoQ anion-exchange column. FPLC-purified ACC synthase migrated as a single band of Mr 65,000 on denaturing polyacrylamide gel electrophoresis. The molecular weight of native enzyme by Bio-Gel A-0.5 M chromatography was 125,000, indicating that the enzyme probably exists as a dimer of identical 65,000 Mr subunits. The mung bean ACC synthase exhibited a pH optimum of 8.0 for activity and a Km for S-adenosylmethionine (AdoMet) of 55 microM at 30 degrees C. It exhibited an Arrhenius activation energy of 12 kcal mol-1 degree-1 and was inactivated at temperatures in excess of 40 degrees C. The specific activity for pure ACC synthase was 21 mumol of ACC formed/mg protein/h when determined under optimal conditions with 400 microM AdoMet.  相似文献   

8.
Satoh S  Yang SF 《Plant physiology》1989,91(3):1036-1039
The pyridoxal phosphate-dependent 1-aminocyclopropane-1-carboxylate (ACC) synthase catalyzes the conversion of S-adenosyl-l-methionine (AdoMet) to ACC, and is inactivated by AdoMet during the reaction. l-Vinylglycine was found to be a competitive inhibitor of the enzyme, and to cause a time-dependent inactivation of the enzyme. The inactivation required the presence of pyridoxal phosphate and followed pseudo-first-order kinetics at various concentrations of l-vinylglycine. The Michaelis constant for l-vinylglycine in the inactivation reaction (Kinact) was 3.3 millimolar and the maximum rate constant (kmax) was 0.1 per minute. These findings, coupled with the previous observations that the suicidal action of AdoMet involved a covalent linkage of the aminobutyrate portion of AdoMet to the enzyme, support the view that the mechanism-based inactivation of ACC synthase by the substrate AdoMet proceeds through the formation of a vinylglycine-ACC synthase complex as an intermediate.  相似文献   

9.
The key regulatory enzyme in the biosynthetic pathway of the plant hormone ethylene is 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (EC 4.4.1.14). We have partially purified ACC synthase 6,000-fold from Cucurbita fruit tissue treated with indoleacetic acid + benzyladenine + aminooxyacetic acid + LiCl. The enzyme has a specific activity of 35,000 nmol/h/mg protein, a pH optimum of 9.5, an isoelectric point of 5.0, a Km of 17 microM with respect to S-adenosylmethionine, and is a dimer of two identical subunits of approximately 46,000 Da each. The subunit exists in vivo as a 55,000-Da species similar in size to the primary in vitro translation product. DNA sequence analysis of the cDNA clone pACC1 revealed that the coding region of the ACC synthase mRNA spans 493 amino acids corresponding to a 55,779-Da polypeptide; and expression of the coding sequence (pACC1) in Escherichia coli as a COOH terminus hybrid of beta-galactosidase or as a nonhybrid polypeptide catalyzed the conversion of S-adenosylmethionine to ACC (Sato, T., and Theologis, A. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 6621-6625). Immunoblotting experiments herein show that the molecular mass of the beta-galactosidase hybrid polypeptide is 170,000 Da, and the size of the largest nonhybrid polypeptide is 53,000 Da. The data suggest that the enzyme is post-translationally processed during protein purification.  相似文献   

10.
We studied the regulation of 1-aminocyclopropane-1-carboxylate (ACC) synthase activity in tomato (Lycopersicon esculentum Mill.) fruit tissue and attempted the purification of this enzyme. The increase of ACC synthase activity in wounded tomato pericarp was inhibited by cordycepin and cycloheximide. Density labeling studies showed a 0.75% increase in the buoyant density of ACC synthase isolated from tomato pericarp tissue that had been incubated on 2H2O as compared to ACC synthase from H2O-treated tissue. These data are consistent with the hypothesis that ACC synthase is synthesized de novo following wounding of tomato pericarp tissue. SDS-gel electrophoresis and fluorography showed that the pattern of incorporation of l-[35S]methionine into protein changed with time after wounding of the tissue. Radioactive protein bands that were not detected 1 hour after wounding, became apparent 2 to 3 hours after wounding.  相似文献   

11.
1-Aminocyclopropane-l-carboxylate (ACC) synthase [EC 4.4.1.14 [EC] ]is the key enzyme regulating ethylene biosynthesis in higherplants. A complementary DNA encoding wound-induced ACC synthasefrom mesocarp of winter squash (Cucurbita maxima Duch.) fruitswas cloned, and its complete nucleotide sequence determined.The cloned cDNA contained an open reading frame of 1479 basepairs encoding a sequence of 493 amino acids. Identificationof the cDNA was accomplished by expression of active enzymein Escherichia coli harboring the cDNA and by the presence ofa partial amino acid sequence identical to that found in thepurified enzyme. A putative pyridoxal phosphate binding siteof the enzyme is suggested. Northern blot analysis showed thatthe ACC synthase gene was activated by tissue wounding, andits expression was repressed by ethylene. Genomic Southern analysisindicates the presence of at least another sequence which weaklyhybridizes with the cDNA. (Received June 26, 1990; Accepted August 7, 1990)  相似文献   

12.
Feng L  Kirsch JF 《Biochemistry》2000,39(10):2436-2444
L-Vinylglycine (L-VG) has been shown to be a mechanism-based inhibitor of 1-aminocyclopropane-1-carboxylate (ACC) synthase [Satoh, S., and Yang, S. F. (1989) Plant Physiol. 91, 1036-1039] as well as of other pyridoxal phosphate-dependent enzymes. This report demonstrates that L-VG is primarily an alternative substrate for the enzyme. The L-VG deaminase activity of ACC synthase yields the products alpha-ketobutyrate and ammonia with a k(cat) value of 1.8 s(-1) and a K(m) value of 1.4 mM. The k(cat)/K(m) of 1300 M(-1) s(-1) is 0.17% that of the diffusion-controlled reaction with the preferred substrate, S-adenosyl-L-methionine. The enzyme-L-VG complex partitions to products 500 times for every inactivation event. The catalytic mechanism proceeds through a spectrophotometrically detected quinonoid with lambda(max) of 530 nm, which must rearrange to a 2-aminocrotonate aldimine to yield final products. Alternative mechanisms for the inactivation reaction are presented, and the observed kinetics for the full reaction course are satisfactorily modeled by kinetic simulation. The inactive enzyme is an aldimine with lambda(max) of 432 nm. It is resistant to NaBH(3)CN but is reduced by NaBH(4). ACC synthase is now expressed in Pichia pastoris with an improved yield of 10 mg/L.  相似文献   

13.
1-Aminocyclopropane-l-carboxylate (ACC) synthase from applefruits was purified over 5,000-fold by conventional column chromatography.By immunizing mice with this partially purified enzyme preparation,8 hybridoma lines producing monoclonal antibodies against appleACC synthase were isolated. While all 8 clones immunoprecipitatednative ACC synthase, only two clones recognized the putative(48 kDa) ACC synthase on Western blots. When a partially purifiedACC synthase preparation was incubated with S-adenosyl-L-[carboxyl-14C]methionine(AdoMet), only one radioactive protein of 48 kDa was detectedon sodium dodecyl sulfate-poly-acrylamide gel electrophoresis.This radioactive protein was specifically immunoprecipitatedby the monoclonal antibodies, indicating that apple ACC synthaseis specifically radiolabeled by its substrate AdoMet, as istomato ACC synthase. Thus, the monoclonal antibodies recognizedboth native and AdoMet-inactivated forms of ACC synthase. Whilethese antibodies failed to im-munoprecipitate ACC synthase isolatedfrom ripe tomato fruits, ripe avocado fruits or auxin-treatedmungbean hypocotyls, they were effective in immunoprecipitatingthe enzyme isolated from ripe pear fruits. (Received August 11, 1990; Accepted October 17, 1990)  相似文献   

14.
Tryptophan synthase, which catalyzes the final step of tryptophan biosynthesis, is a multifunctional protein that requires pyridoxal phosphate for two of its three distinct enzyme activities. Tryptophan synthase from Neurospora crassa, a homodimer of two 75-kDa subunits, was shown to bind 1 mol of pyridoxal phosphate/mol of subunit with a calculated dissociation constant for pyridoxal phosphate of 1.1 microM. The spectral properties of the holoenzyme, apoenzyme, and reconstituted holoenzyme were characterized and compared to those previously established for the heterotetrameric (alpha 2 beta 2) enzyme from Escherichia coli. The Schiff base formed between pyridoxal phosphate and the enzyme was readily reduced by sodium borohydride, but not sodium cyanoborohydride. The active site residue that binds pyridoxal phosphate, labeled by reduction of the Schiff base with tritium-labeled sodium borohydride, was determined to be lysine by high performance liquid chromatography analysis of the protein hydrolysate. A 5400-dalton peptide containing the reduced pyridoxal phosphate moiety was generated by cyanogen bromide treatment, purified and sequenced. The sequence is 85% homologous with the corresponding sequence obtained for yeast tryptophan synthase (Zalkin, H., and Yanofsky, C. (1982) J. Biol. Chem. 257, 1491-1500); the lysine derivatized by pyridoxal phosphate is located at the same relative position as that in the yeast and E. coli enzymes.  相似文献   

15.
Kim WT  Yang SF 《Plant physiology》1992,100(3):1126-1131
Ethylene production in plant tissues declines rapidly following induction, and this decline is due to a rapid decrease in the activity of 1-aminocyclopropane-1-carboxylic acid (ACC) synthase, a key enzyme in ethylene biosynthesis. To study the nature of the rapid turnover of ACC synthase in vivo, proteins in wounded ripening tomato (Lycopersicon esculentum) fruit discs were radiolabeled with [35S]methionine, followed by a chase with nonradioactive methionine. Periodically, the radioactive ACC synthase was isolated with an immunoaffinity gel and analyzed. ACC synthase protein decayed rapidly in vivo with an apparent half-life of about 58 min. This value for protein turnover in vivo is similar to that previously reported for activity half-life in vivo and substrate-dependent enzyme inactivation in vitro. Carbonylcyanide-m-chlorophenylhydrazone and 2,4-dinitrophenol, potent uncouplers of oxidative phosphorylation, strongly inhibited the rapid decay of ACC synthase protein in the tissue. Degradation of this enzyme protein was moderately inhibited by the administration of aminooxyacetic acid, a competitive inhibitor of ACC synthase with respect to its substrate S-adenosyl-l-methionine, α,α′-dipyridyl, and phenylmethanesulfonyl fluoride or leupeptin, serine protease inhibitors. These results support the notion that the substrate S-adenosyl-l-methionine participates in the rapid inactivation of the enzyme in vivo and suggest that some ATP-dependent processes, such as the ubiquitin-requiring pathway, are involved in the degradation of ACC synthase proteins.  相似文献   

16.
Discs (9 mm in diameter and 2 mm in thickness) sliced from mesocarpof winter squash fruit (Cucurbita maxima Duch.) upon incubationat 24°C produced ethylene at an increasing rate after alag period of 3 h. 1-Aminocydopropane-l-carboxylic acid (ACC)synthase activity also increased at a rapid rate after lag periodof less than 3 h, reaching a peak 14 h after incubation andthen declining sharply. The rise in ACC synthase activity precededa rapid increase in ACC formation and ethylene production. Inductionof ACC synthase by wounding in sliced discs was strongly suppressedby the application of cycloheximide, actinomycin D and cordycepin,suggesting that the rise in ACC synthase activity may resultfrom de novo synthesis of protein. ACC synthase extracted from wounded tissue of winter squashmesocarp required pyridoxal phosphate for its maximum activity.The optimum pH of the reaction was 8.5. Km value for S-adenosylmethioninewas 120 µM. The reaction was markedly inhibited by aminoethoxyvinylglycinewith Ki value being 2.7 µM. (Received March 23, 1983; Accepted May 23, 1983)  相似文献   

17.
1-Aminocyclopropane-1-carboxylic acid (ACC), which is a precursor of ethylene in plants, has never been known to occur in microorganisms. We describe the synthesis of ACC by Penicillium citrinum, purification of ACC synthase [EC 4.4.1.14] and ACC deaminase [EC 4.1.99.4], and their properties. Analyses of P. citrinum culture showed occurrence of ACC in the culture broth and in the cell extract. ACC synthase was purified from cells grown in a medium containing 0.05% L-methionine and ACC deaminase was done from cells incubated in a medium containing 1% 2-aminoisobutyrate. The purified ACC synthase, with a specific activity of 327 milliunit/mg protein, showed a single band of M r 48,000 in SDS-polyacrylamide gel electrophoresis. The molecular mass of the native enzyme by gel filtration was 96,000 Da. The ACC synthase had the K m for S-adenosyl-L-methionine of 1.74 mM and k cat of 0.56 s-1 per monomer. The purified ACC deaminase, with a specific activity of 4.7 unit/mg protein, showed one band in SDS-polyacrylamide gel electrophoresis of M r 41,000. The molecular mass of the native ACC deaminase was 68,000 Da by gel filtration. The enzyme had a K m for ACC of 4.8 mM and k cat of 3.52 s-1. The presence of 7 mM Cu2+ in alkaline buffer solution was effective for increasing the stability of the ACC deaminase in the process of purification.  相似文献   

18.
Eliot AC  Kirsch JF 《Biochemistry》2002,41(11):3836-3842
The active sites of the homologous pyridoxal phosphate- (PLP-) dependent enzymes 1-aminocyclopropane-1-carboxylate (ACC) synthase and aspartate aminotransferase (AATase) are almost entirely conserved, yet the pK(a)'s of the two internal aldimines are 9.3 and 7.0, respectively, to complement the substrate pK(a)'s (S-adenosylmethionine pK(a) = 7.8 and aspartate pK(a) = 9.9). This complementation is required for maximum enzymatic activity in the physiological pH range. The most prominent structural difference in the active site is that Ile232 of ACC synthase is replaced by alanine in AATase. The I232A mutation was introduced into ACC synthase with a resulting 1.1 unit decrease (from 9.3 to 8.2) in the aldimine pK(a), thus identifying Ile232 as a major determinant of the high pK(a) of ACC synthase. The mutation also resulted in reduced k(cat) (0.5 vs 11 s(-1)) and k(cat)/K(m) values (5.0 x 10(4) vs 1.2 x 10(6) M(-1) s(-1)). The effect of the mutation is interpreted as the result of shortening of the Tyr233-PLP hydrogen bond. Addition of the Y233F mutation to the I232A ACC synthase to generate the double mutant I232A/Y233F raised the pK(a) from 8.2 to 8.8, because the Y233F mutation eliminates the hydrogen bond between that residue and PLP. The introduction of the retro mutation A224I into AATase raised the aldimine pK(a) of that enzyme from 6.96 to 7.16 and resulted in a decrease in single-turnover k(max) (108 vs 900 s(-1) for aspartate) and k(max)/K(m)(app) (7.5 x 10(4) vs 3.8 x 10(5) M(-1) s(-1)) values. The distance from the pyridine nitrogen of the cofactor to a conserved aspartate residue is 2.6 A in AATase and 3.8 A in ACC synthase. The D230E mutation introduced into ACC synthase to close this distance increases the aldimine pK(a) from 9.3 to 10.0, as would be predicted from a shortened hydrogen bond.  相似文献   

19.
We used sequence and structural comparisons to determine the fold for eukaryotic ornithine decarboxylase, which we found is related to alanine racemase. These enzymes have no detectable sequence identity with any protein of known structure, including three pyridoxal phosphate-utilizing enzymes. Our studies suggest that the N-terminal domain of ornithine decarboxylase folds into a beta/alpha-barrel. Through the analysis of known barrel structures we developed a topographic model of the pyridoxal phosphate-binding domain of ornithine decarboxylase, which predicts that the Schiff base lysine and a conserved glycine-rich sequence both map to the C-termini of the beta-strands. Other residues in this domain that are likely to have essential roles in catalysis, substrate, and cofactor binding were also identified, suggesting that this model will be a suitable guide to mutagenic analysis of the enzyme mechanism.  相似文献   

20.
Satoh S  Yang SF 《Plant physiology》1988,88(1):109-114
1-Aminocyclopropane-1-carboxylic acid (ACC) synthase was partially purified from the homogenate of wounded tomato (Lycoperiscon esculentum Mill.) pericarp tissue by (NH4)2SO4 fractionation followed by conventional column chromatography with diethylaminoethyl-Sepharose, Sephadex G-150, Affi-Gel blue and hydroxylapatite. The partially purified ACC synthase preparation attained a specific activity of about 12,000 nmoles per hour per milligram protein. Employing this enzyme preparation, we confirmed that the ACC synthase was inactivated by its substrate, S-adenosyl-l-methionine (SAM), during its catalytic action. When the partially purified enzyme preparation was incubated with [3,4-14C]SAM and the resulting proteins were analyzed by sodium dodecyl sulfate-gel electrophoresis, only one radioactive protein band was observed. This protein was thought to be ACC synthase based on its molecular mass of 50 kD and on the fact that it was specifically bound to a monoclonal antibody against ACC synthase (AB Bleecker et al. 1986 Proc Natl Acad Sci USA 83, 7755-7759). These results suggest that the substrate SAM acts as an enzyme-activated inactivator of ACC synthase by covalently linking a fragment of SAM molecule to the active site of ACC synthase, resulting in the inactivation of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号