首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A cDNA coding for a human brain adenylyl cyclase was isolated and sequenced. The deduced partial 675 amino-acid sequence was compared with those of other known adenylyl and guanylyl cyclases. Comparison of this predicted amino-acid sequence with that of bovine brain (type I) and rat olfactory (type III) adenylyl cyclase indicated a significant homology with the carboxyl-terminal halves of both enzymes. The homology between the human adenylyl cyclase and the other two mammalian adenylyl cyclase also appears at the topographic level. Indeed, the human enzyme includes a extremely hydrophobic region containing six potential membrane-spanning segments followed by a large hydrophilic domain. At the beginning of the hydrophilic domain, there is a 250 amino-acid region which shows not only a striking homology with the bovine and rat adenylyl cyclase (86% of similarity and 57% of identity), but also a significant homology with non-mammalian adenylyl cyclase and guanylyl cyclases. We found that this 250 amino-acid domain contains a sequence of about 165 amino-acids which is highly conserved in most of the known nucleotide cyclases suggesting that it includes residues that are critical for the function of the enzymes.  相似文献   

2.
Summary Recently, we characterized a cDNA clone that encodes a human brain adenylyl cyclase (HBAC1). In the present study, we identified a second population of mRNA suspected to encode a new brain adenylyl cyclase (HBAC2). The amino acid sequence of HBAC2 displays significant homology with HBAC1 in the highly conserved adenylyl cyclase domain (250 aminio acids), found in the 3 cytoplasmic domain of all mammalian adenylyl cyclases. However, outside this domain, the homology is extremely low, suggesting that the corresponding mRNA originates from a different gene. We report here the first chromosomal localization of the adenylyl cyclase genes determined by in situ hybridization of human metaphase chromosomal spreads using human brain cDNA probes specific for each mRNA. The probe corresponding to HBAC1 exhibited a strong specific signal on chromosome 8q24, with a major peak in the band q24.2. In contrast, the HBAC2 probe hybridized to chromosome 5p15, with a major peak in the band p15.3. The two cDNAs hybridized at the two loci without any cross reactivity. Thus, in human brain, a heterogeneous population of adenylyl cyclase mRNAs is expressed, and the corresponding genes might be under the control of independent regulatory mechanisms.Abbreviations C catalytic part of adenylyl cyclase - BBAC bovine brain - HBAC human brain - ROAC rat olfactory - RLAC rat liver - RTAC rat testis adenylyl cyclase - G guanine nucleotide GTP binding protein (s, stimulatory; i, inhibitory)  相似文献   

3.
Monoclonal antibodies against partially purified adenylyl cyclase from bovine brain cortex were raised in mice. Three types of antibody were obtained. Type 1 was specific for the calmodulin-sensitive enzyme. Type II also recognized this enzyme, but recognized the calmodulin-insensitive enzymes from a variety of species and tissues as well. Type I antibodies precipitated their antigens in both the native and denatured forms, while type II strongly favored the denatured forms. Type III antibodies precipitated adenylyl cyclase activity, but as shown by Western blot analysis, were directed against 38-kDa and 45-kDa glycoproteins. The 38-kDa protein was identified as synaptophysin.  相似文献   

4.
A novel adenosine receptor subtype has been cloned from a rat brain cDNA library using a probe generated by the polymerase chain reaction. The cDNA, designated RFL9, encodes a protein of 332 amino acids. The structure of RFL9 is most similar to that of the recently cloned rat A2-adenosine receptor, with a sequence identity of 73% within the presumed seven transmembrane domains. Expression of RFL9 in COS-6M cells resulted in ligand binding and functional activity characteristics of an adenosine receptor that is coupled positively to adenylyl cyclase. Examination of the tissue distribution of RFL9 mRNA by Northern blot analysis showed a restricted distribution with highest levels expressed in large intestine, cecum, and urinary bladder; this pattern was distinct from that of either the A1- or A2-adenosine receptor mRNAs. In situ hybridization studies of RFL9 mRNA showed no specific hybridization pattern in brain, but a hybridization signal was readily observed in the hypophyseal pars tuberalis. Thus, RFL9 encodes a novel A2-adenosine receptor subtype.  相似文献   

5.
Expression of Go alpha mRNA and protein in bovine tissues   总被引:4,自引:0,他引:4  
Go alpha is a 39-kDa guanine nucleotide-binding protein (G protein) similar in structure and function to Gs alpha and Gi alpha of the adenylate cyclase complex and to transducin (Gt alpha) of the retinal photon receptor system. Although expression of Go alpha protein has been reported to be tissue-specific, other workers have found Go alpha mRNA in all rat tissues examined. In order to clarify this contradiction, studies to verify the distribution of Go alpha mRNA and protein in bovine and rat tissues were performed. Tissues were screened for the presence of Go alpha mRNA by use of a series of restriction fragments of a bovine retinal cDNA clone, lambda GO9, and oligonucleotide probes complementary to sequences specific among G alpha subunits for the 5' untranslated and coding regions of Go alpha. These probes hybridized predominantly with mRNA of 4.0 and 3.0 kb in bovine brain and retina. A 2.0-kb mRNA in retina also hybridized strongly with the cDNA but weakly with the oligonucleotide probes. In bovine lung, two mRNAs of 1.6 and 1.8 kb hybridized with the cDNA while only the 1.6-kb species hybridized with the coding-region oligonucleotide. In bovine heart, only a 4.0-kb mRNA was detected and in amounts much less than those in the other tissues. A similar distribution of Go alpha mRNAs was seen in rat tissues. In bovine tissues, Go alpha protein was identified with rabbit polyclonal antibodies directed against purified bovine brain Go alpha. An immunoreactive 39-kDa membrane protein was found principally in retina and brain, and in a lesser amount in heart.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The Drosophila learning mutant, rutabaga, is deficient in the calmodulin-sensitive adenylate cyclase, and studies of associative learning in Aplysia have implicated this enzyme in neuroplasticity. Therefore, the distribution of mRNA encoding the calmodulin-sensitive adenylate cyclase in rat brain was examined by in situ hybridization. mRNA for this enzyme is expressed in specific areas of brain that have been implicated in learning and memory, including the neocortex, the hippocampus, and the olfactory system. The presence of mRNA for this enzyme in the pyramidal and granule cells of the hippocampal formation provides evidence that it is found in neurons. These data are consistent with the proposal that the calmodulin-sensitive adenylate cyclase plays an important role in learning and memory.  相似文献   

7.
An A1-adenosine receptor has been cloned from a rat brain cDNA library using a probe generated by the polymerase chain reaction. The cDNA encodes a protein of 327 amino acids which is 91% identical to a recently cloned dog A1-adenosine receptor (RDC7). Expression of the rat cDNA in COS-6M and NIH 3T3 cells resulted in ligand binding and functional activity characteristics of an A1-adenosine receptor that is coupled to inhibition of adenylyl cyclase. Examination of the distribution of A1-adenosine receptor mRNA by Northern blot analysis showed that it is highly expressed in brain, spinal cord, testis, and white adipose tissue. In situ hybridization studies revealed an extensive hybridization pattern in the central nervous system, with high levels in cerebral cortex, hippocampus, cerebellum, thalamus, brainstem, and spinal cord. The cloned A1-adenosine receptor may thus mediate many of the modulatory actions of adenosine in neural and endocrine systems.  相似文献   

8.
Aldose reductase (AR; E.C. 1. 1. 1. 21) has been implicated in a variety of diabetic complications. To investigate the expression of this enzyme in target tissues susceptible to such complications, mRNA encoding AR was characterized by Northern blot hybridization in various tissues and cultured cell preparations. The size of mRNA for AR (approximately 1500 bases) was in good agreement with the size determined by sequence analysis. A cDNA probe for AR from rat lens hybridized to the same size species of RNA isolated from cultured dog lens epithelial cells, cultured human retinal capillary pericytes (mural cells), and Y 79 human retinoblastoma cells. In rat tissues, a substantial amount of mRNA was expressed not only in lens, but also in retina, sciatic nerve and kidney medulla. AR mRNA seemed to be less abundant in rat skeletal muscle and brain, and was scarcely present in liver. Furthermore, Southern blot analysis of rat genomic DNA indicated that there are multiple sequences related to that for AR, probably indicating the existence of a multi-gene family.  相似文献   

9.
Cloned human dopamine D2 receptor cDNA was isolated from a pituitary cDNA library and found to encode an additional 29 amino acid residues in the predicted intracellular domain between transmembrane regions 5 and 6 relative to a previously described rat brain D2 receptor. Results from polymerase chain reactions as well as in situ hybridization revealed that mRNA encoding both receptor forms is present in pituitary and brain of both rat and man. The larger form was predominant in these tissues and, as shown in the rat, expressed by dopaminergic and dopaminoceptive neurons. Analysis of the human gene showed that the additional peptide sequence is encoded by a separate exon. Hence, the two receptor forms are generated by differential splicing possibly to permit coupling to different G proteins. Both receptors expressed in cultured mammalian cells bind [3H]spiperone with high affinity and inhibit adenylyl cyclase, as expected of the D2 receptor subtype.  相似文献   

10.
11.
Abstract: Prostaglandin (PG) D2 is one of the major prostanoids in the mammalian brain and eye tissues. Its function is mediated by the prostanoid DP receptor, which is specific for PGD2 among the various prostanoids. In this study, we cloned the full-length cDNA for the rat DP receptor and used it for detection of DP receptor mRNA in various rat tissues. Northern blotting and RT-PCR analyses revealed that this DP receptor was expressed most intensely in the eye tissues, moderately in the leptomeninges and oviduct, and weakly in the epididymis. The tissue distribution profile of the mRNA for the rat DP receptor is overlapped with those of hematopoietic and lipocalin-type PGD synthases. Among rat eye tissues, the expression was the highest in the iris. In situ hybridization and in situ RT-PCR revealed DP receptor mRNA to be localized in the epithelium of the iris and ciliary body and in photoreceptor cells of the retina, suggesting the involvement of the receptor in the physiological regulation of intraocular pressure and the vision process. In the brain, DP receptor mRNA was dominantly expressed in the leptomeninges and was not detected in the brain parenchyma including the ventral rostral forebrain, the surface area of which is reportedly involved in sleep induction by PGD2.  相似文献   

12.
13.
Tissue distribution and developmental expression of protein kinase C isozymes   总被引:17,自引:0,他引:17  
Protein kinase C is a ubiquitous enzyme found in a variety of mammalian tissues and is especially highly enriched in brain and lymphoid organs. Based on biochemical and immunological analyses, we have identified three types of protein kinase C isozyme (designated types I-III) from rat brain. Monospecific antibodies against each of the protein kinase C isozymes were prepared for the determination of tissue distribution, subcellular localization, and developmental changes of these enzymes. The various protein kinase C isozymes were found to be distinctively distributed in different tissues: the type I enzyme in brain; the type II enzyme in brain, pituitary and pineal glands, spleen, thymus, retina, lung, and intestine; and the type III enzyme in brain, pineal gland, retina, and spleen. The rat brain enzymes were differentially distributed in different subcellular fractions. The type I enzyme appeared to be most lipophilic and was recovered mostly in the particulate fractions (80-90%) regardless of the EGTA- or Ca2+-containing buffer used in the homogenization. Significant amounts (30-40%) of the type II and III enzymes were recovered in the cytosolic fraction with EGTA-containing buffer. The expressions of different protein kinase C isozymes appear to be differently controlled during development. In rat brain, both type II and III enzymes were found to increase progressively from 3 days before birth up to 2-3 weeks of age and remained constant thereafter. However, the expression of the type I enzyme displayed a different developmental pattern; it was very low within 1 week, and an abrupt increase was observed between 2 and 3 weeks of age. In thymus, the type II enzyme was found to be maximal shortly after birth; whereas the same kinase in spleen was very low within 2 weeks of age, and a significant increase was observed between 2 and 3 weeks. These results demonstrate that protein kinase C isozymes are distinctively distributed in different tissues and subcellular locales and that their expressions are controlled differently during development.  相似文献   

14.
It has been reported that mammalian serum, and to a lower extent mammalian liver, brain, pancreas, udder, and milk, contain glycosylphosphatidylinositolspecific phospholipase D activity. However, the sites of synthesis have not been determined. In order to study in which cells(s) of the organism synthesis of glycosylphosphatidylinositol-specific phospholipase D takes place, we undertook a systematic screening of 12 different bovine tissues. In situ hybridization experiments with a specific anti-sense RNA probe, derived from a bovine liver cDNA, revealed that glycosylphosphatidylinositol-specific phospholipase D mRNA is present in mast cells of the adrenal gland, lung, and liver. On the other hand, our specific probe detected no mRNA in bovine pancreas, brain, and udder, although enzyme activity has been reported in these tissues. Northern blot analysis of total bovine liver RNA demonstrated two distinct glycosylphosphatidylinositol-specific phospholipse D mRNAs of approximately 3.3 kb and 4 kb length suggesting that two forms of the enzyme may exist.  相似文献   

15.
Expression of ceruloplasmin (Cp)-coding gene in rat and human liver and brain tissues was studied by Northern blot hybridization and by in situ hybridization with cloned species-specific cDNA probes. In rat brain structures, different levels of Cp mRNA were detected, the maximal one was found in cerebellum. The steady-state level of Cp mRNA in rat and human brain was several times lower than in parenchymatous liver cells. The size heterogeneity of Cp mRNA was found. Polyadenylated RNA prepared from human liver contains two equally abundant Cp mRNAs differing in their chain length (3.6 and 4.5 kb) while brain polyadenylated RNA contains a single Cp mRNA (4.5 kb).  相似文献   

16.
The localization of different classes of alcohol dehydrogenases (ADH) in the brain is of great interest because of their role in both ethanol and retinoic acid metabolism. Conflicting data have been reported in the literature. By Northern blot and enzyme activity analyses only class III ADH has been detected in adult brain specimens, while results from riboprobe in situ hybridization indicate class I as well as class IV ADH expression in different regions of the rat brain. Here we have studied the expression patterns of three ADH classes in adult rat, mouse and human tissues using radioactive oligonucleotide in situ hybridization. Specificity of probes was tested on liver and stomach control tissue, as well as tissue from class IV ADH knock-out mice. Only class III ADH mRNA was found to be expressed in brain tissue of all three investigated species. Particularly high expression levels were found in neurons of the red nucleus in human tissue, while cortical neurons, pyramidal and granule cells of the hippocampus and dopamine neurons of substantia nigra showed moderate expression levels. Purkinje cells of cerebellum were positive for class III ADH mRNA in all species investigated, whereas granular layer neurons were positive only in rodents. The choroid plexus was highly positive for class III ADH, while no specific signal for class I or class IV ADH was detected. Our results thus support the notion that the only ADH expressed in adult mouse, rat and human brain is class III ADH.  相似文献   

17.
Nucleoside transport processes may play a role in regulating endogenous levels of the inhibitory neuromodulator adenosine in brain. The cDNAs encoding species homologues of one member of the equilibrative nucleoside transporter (ENT) gene family have recently been isolated from rat (rENT1) and human (hENT1) tissues. The current study used RT-PCR, northern blot, in situ hybridization, and [3H]nitrobenzylthioinosine autoradiography to determine the distribution of mRNA and protein for ENT1 in rat and human brain. Northern blot analysis indicated that hENT1 mRNA is widely distributed in adult human brain. 35S-labeled sense and antisense riboprobes, transcribed from a 153-bp segment of rENT1, were hybridized to fresh frozen coronal sections from adult rat brain and revealed widespread rENT1 mRNA in pyramidal neurons of the hippocampus, granule neurons of the dentate gyrus, Purkinje and granule neurons of the cerebellum, and cortical and striatal neurons. Regional localization in rat brain was confirmed by RT-PCR. Thus, ENT1 mRNA has a wide cellular and regional distribution in brain, indicating that this nucleoside transporter subtype may be important in regulating intra- and extracellular levels of adenosine in brain.  相似文献   

18.
Guanylate cyclase was purified 12,700-fold from bovine brain supernatant, and the purified enzyme exhibited essentially a single protein band on polyacrylamide gel electrophoresis. Repeated injection of the purified enzyme into rabbits produced an antibody to guanylate cyclase. The immunoglobulin G fraction from the immunized rabbit gave only one precipitin line against the purified guanylate cyclase and the crude supernatant of bovine brain on double immunodiffusion and immunoelectrophoreis. The antibody completely inhibited the soluble guanylate cyclase activity from bovine brain, various tissues of rat and mouse and neuroblastoma N1E 115 cells, whereas the Triton-dispersed particulate guanylate cyclase from these tissues was not inhibited by the antibody.  相似文献   

19.
Concentrations of mRNA coding for the opioid peptide precursor proenkephalin A were measured in bovine brain areas, pituitary and adrenal medulla. In all tissues, a single hybridizable species of 1400 bases in size was found by Northern blot analysis using as a probe a single-stranded (ss) cDNA complementary to bovine proenkephalin A mRNA. In solution hybridization experiments the distribution of the mRNA was quantified. Considerable differences were found for the abundance of proenkephalin A mRNA in the various tissues: from 0.023% in the adrenal medulla to 0.00002% in the adenohypophysis. Relative abundance in the various brain areas varied greater than 20-fold, being highest in the caudate nucleus (0.0025%) and lowest in the thalamus and substantia nigra (0.0001%). Comparison with immunoreactive peptide concentrations in these tissues showed a close correlation between the levels of proenkephalin A mRNA and the immunoreactive peptides.  相似文献   

20.
Bailey MJ  Chong NW  Xiong J  Cassone VM 《FEBS letters》2002,513(2-3):169-174
We have identified and characterized an ortholog of the putative mammalian clock gene cryptochrome 2 (Cry2) in the chicken, Gallus domesticus. Northern blot analysis of gCry2 mRNA indicates widespread distribution in central nervous and peripheral tissues, with very high expression in pineal and retina. In situ hybridization of chick brain and retina reveals expression in photoreceptors and in visual and circadian system structures. Expression is rhythmic; mRNA levels predominate in late subjective night. The present data suggests that gCry2 is a candidate avian clock gene and/or photopigment and set the stage for functional studies of gCry2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号