首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We carried out the flash photolysis of oxy complexes of sperm whale myoglobin, cobalt-substituted sperm whale myoglobin, and Aplysia myoglobin. When the optical absorption spectral changes associated with the O2 rebinding were monitored on the nanosecond to millisecond time scale, we found that the transient spectra of the O2 photoproduct of sperm whale myoglobin were significantly different from the static spectra of deoxy form. This was sharply contrasted with the observations that the spectra of the CO photoproduct of sperm whale myoglobin and of the O2 photoproducts of cobalt-substituted sperm whale myoglobin and Aplysia myoglobin are identical to the corresponding spectra of their deoxy forms. These results led us to suggest the presence of a fairly stable transient species in the O2 photodissociation from the oxy complex of sperm whale myoglobin, which has a protein structure different from the deoxy form. We denoted the O2 photo-product to be Mb*. In the time-resolved resonance Raman measurements, the nu Fe-His mode of Mb* gave the same value as that of the deoxy form, indicating that the difference in the optical absorption spectra is possibly due to the structural difference at the heme distal side rather than those of the proximal side. The structure of Mb* is discussed in relation to the dynamic motion of myoglobin in the O2 entry to or exit from the heme pocket. Comparing the structural characteristics of several myoglobins employed, we suggested that the formation of Mb* relates to the following two factors: a hydrogen bonding of O2 with the distal histidine, and the movement of iron upon the ligation of O2.  相似文献   

2.
1H-NMR spectra of deoxy myoglobins (Mbs) from shark (Galeorhinus japonicus), horse, and sperm whale have been studied to gain insights into their active site structure. It has been demonstrated for the first time that nuclear Overhauser effect (NOE) can be observed between heme peripheral side-chain proton resonances of these paramagnetic complexes. Val-E11 methyl and His-F8 C delta H proton resonances of these Mbs were also assigned from the characteristic shift and line width. The hyperfine shift of the former resonance was used to calculate the magnetic anisotropy of the protein. The shift analysis of the latter resonance, together with the previously assigned His-F8 N delta H proton resonance, revealed that the strain on the Fe-N epsilon bond is in the order horse Mb approximately whale Mb < shark Mb and that the hydrogen bond strength of the His-F8 N delta H proton to the main-chain carbonyl oxygen in the preceding turn of the F helix is in the order shark Mb < horse Mb < whale Mb. Weaker Feporphyrin interaction in shark Mb was manifested in a smaller shift of the heme methyl proton resonance and appears to result from distortion of the coordination geometry in this Mb. Larger strain on the Fe-N epsilon bond in shark Mb should be to some extent attributed to its lowered O2 affinity (P50 = 1.1 mmHg at 20 degrees C), compared to whale and horse Mbs.  相似文献   

3.
Sperm whale myoglobin was reconstituted with etioheme and the stoichiometric complex formation was confirmed. The proton NMR spectrum of the deoxy myoglobin exhibits an NH signal from the proximal histidine at 78.6 ppm, indicating heme incorporation into the heme pocket to form the Fe-N(His-F8) bond. The appearance of a single set of the heme-methyl NMR signals shows that etioheme without acid side-chains specifically interacts with the surrounding globin. The visible spectral data suggest retention of a normal iron coordination structure. The functional and NMR spectral properties of etioheme myoglobin are similar to those of mesoheme myoglobin, reflecting the absence of the electron-withdrawing heme vinyl groups.  相似文献   

4.
Two-dimensional 1H NMR spectroscopy over a range of temperature through thermal unfolding has been applied to the low-spin, ferric cyanide complex of myoglobin from Aplysia limacina to search for intermediates in the unfolding and to characterize the effect of temperature on the magnetic properties and electronic structure of the heme iron. The observation of strictly linear behavior from 5 to 80 C degrees through the unfolding transition for all hyperfine-shifted resonances indicates the absence of significant populations of intermediate states to the cooperative unfolding with Tm approximately 80 degrees C. The magnetic anisotropies and orientation of the magnetic axes for the complete range of temperatures were also determined for the complex. The anisotropies have very similar magnitudes, and exhibit the expected characteristic temperature dependence, previously observed in the isoelectronic sperm whale myoglobin complex. In contrast to sperm whale Mb, where the orientation of the magnetic axis was completely temperature-independent, the tilt of the major magnetic axis, which correlates with the Fe-CN tilt, decreases at high temperature in Aplysia limacina Mb, indicating a molecular structure that is conserved with temperature, although more plastic than that of sperm whale Mb. The pattern of contact shifts reflects a conserved Fe-His(F8) bond and pi-spin delocalization into the heme, as expected for the orientation of the axial His imidazole.  相似文献   

5.
The reaction of cyanide metmyoglobin with dithionite conforms to a two-step sequential mechanism with formation of an unstable intermediate, identified as cyanide bound ferrous myoglobin. This reaction was investigated by stopped-flow time resolved spectroscopy using different myoglobins, i.e. those from horse heart, Aplysia limacina buccal muscle, and three recombinant derivatives of sperm whale skeletal muscle myoglobin (Mb) (the wild type and two mutants). The myoglobins from horse and sperm whale (wild type) have in the distal position (E7) a histidyl residue, which is missing in A. limacina Mb as well as the two sperm whale mutants (E7 His----Gly and E7 His----Val). All these proteins in the reduced form display an extremely low affinity for cyanide at pH less than 10. The differences in spectroscopy and kinetics of the ferrous cyanide complex of these myoglobins indicate a role of the distal pocket on the properties of the complex. The two mutants of sperm whale Mb are characterized by a rate constant for the decay of the unstable intermediate much faster than that of the wild type, at all pH values explored. Therefore, we envisage a specific role of the distal His (E7) in controlling the rate of cyanide dissociation and also find that this effect depends on the protonation of a single ionizable group, with pK = 7.2, attributed to the E7 imidazole ring. The results on A. limacina Mb, which displays the slowest rate of cyanide dissociation, suggests that a considerable stabilizing effect can be exerted by Arg E10 which, according to Bolognesi et al. (Bolognesi, M., Coda, A., Frigerio, F., Gatti, C., Ascenzi, P., and Brunori, M. (1990) J. Mol. Biol. 213, 621-625), interacts inside the pocket with fluoride bound to the ferric heme iron. A mechanism of control for the rate of dissociation of cyanide from ferrous myoglobin, involving protonation of the bound anion, is discussed.  相似文献   

6.
The absorption and resonance Raman spectra and the azide binding kinetics of ferric horse heart myoglobin (Mb) and mini myoglobin (a chemically truncated form of horse heart Mb containing residues 32-139) have been compared. The steady-state spectra show that an additional six-coordinated low-spin form (not present in entire horse heart Mb, which is purely six-coordinated high spin) predominates in mini Mb. The distal histidine is possibly the sixth ligand in this species. The presence of two species corresponds to a kinetic biphasicity for mini Mb that is not observed for horse heart Mb. Azide binds to horse heart Mb much more slowly than to sperm whale Mb. This difference may result from a sterically hindered distal pocket in horse heart Mb. In both cases, the rate constants level off at high azide concentrations, implying the existence of a rate-limiting step (likely referable to the dissociation of the axial sixth ligand). The faster rate constant of mini Mb is similar to that of sperm whale Mb, whereas the slower one is similar to that of entire horse heart Mb.  相似文献   

7.
J T Lecomte  G N La Mar 《Biochemistry》1985,24(25):7388-7395
The exchange rates of heme cavity histidine nitrogen-bound protons in horse and dog metcyanomyoglobins have been determined at 40 degrees C as a function of pH by 1H NMR spectroscopy. They were compared to the results reported for the sperm whale homologue [Cutnell, J. D., La Mar, G. N., & Kong, S. B. (1981) J. Am. Chem. Soc. 103, 3567-3572]. The rate profiles suggest that the exchange follows EX2-type kinetics, and the relative rate values favor a penetration model over a local unfolding model. It was found that the behavior of protons located on the proximal side of the heme is similar in the three proteins. The distal histidyl imidazole NH, however, shows a highly accelerated hydroxyl ion catalyzed rate in horse and dog myoglobins relative to that in sperm whale myoglobin. NMR spectral and relaxational characteristics of the assigned heme cavity protons indicate that the global geometry of the heme pocket is highly conserved in the ground-state structure of the three proteins. We propose a model that attributes the different distal histidine exchange behavior to the relative dynamic stability of the distal heme pocket in dog or horse myoglobin vs. sperm whale myoglobin. This model involves a dynamic equilibrium between a closed heme pocket as found in metaquomyoglobin [Takano, T. (1977) J. Mol. Biol. 110, 537-568] and an open pocket as found in phenylmetmyoglobin [Ringe, D., Petsko, G. A., Kerr, D. E., & Ortiz de Montellano, P. R. (1984) Biochemistry 23, 2-4].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The effect of pressure on the heme environment structure of sperm whale and horse heart metcyanomyoglobins was investigated up to 300 MPa by high-pressure (1)H NMR spectroscopy. Pressure-induced changes in the distances between the observed protons and the heme iron atom were estimated from changes in the dipolar shift due to the paramagnetic effect on the protons. The changes showed that the heme peripheral structure as a whole was compressed by pressure; the movements of the protons in the heme peripheral residues were in the range of +0.16 to -0.54 A/300 MPa. One-dimensional compressibilities for the protons, excluding the protons of the distal His residue, were in the range of 1.0 x 10(-4) to 6.1 x 10(-4)/MPa. The movements of the protons induced by pressure correlated well with the distance between the protons and cavities in the protein. The distal His residue (His 64) moved toward the outside of the heme pocket, but remained in the pocket even at 300 MPa. This movement was driven dominantly by a change in the dihedral angle around the C(alpha)-C(beta) rotational bond of the residue. Comparative work on horse heart metcyanomyoglobin implied that the conformational change of the His 64 imidazole ring was larger in the horse heart metcyanomyoglobin than in the sperm whale metcyanomyoglobin.  相似文献   

9.
The x-ray crystal structure of the fluoride derivative of ferric sperm whale (Physeter catodon) myoglobin (Mb) has been determined at 2.5 A resolution (R = 0.187) by difference Fourier techniques. The fluoride anion, sitting in the central part of the heme distal site and coordinated to the heme iron, is hydrogen bonded to the distal His(64)E7 NE2 atom and to the W195 solvent water molecule. This water molecule also significantly interacts with the same HisE7 residue, which stabilizes the coordinated fluoride ion. Moreover, fluoride and formate binding to ferric Aplysia limacina Mb, sperm whale (Physeter catodon) Mb, horse (Caballus caballus) Mb, loggerhead sea turtle (Caretta caretta) Mb, and human hemoglobin has been investigated by 1H-NMR relaxometry. A strong solvent proton relaxation enhancement is observed for the fluoride derivatives of hemoproteins containing HisE7. Conversely, only a small outer-sphere contribution to the solvent relaxation rate has been observed for all of the formate derivatives considered and for the A. limacina Mb:fluoride derivative, where HisE7 is replaced by Val.  相似文献   

10.
We have measured spectral and kinetic differences in protoheme, sperm whale or horse heart myoglobin and human hemoglobin following photodissociation induced by optical pulses of 80 fs duration. Full ligation was performed with oxygen or carbon monoxide. Femtosecond kinetics and transient difference spectra revealed the appearance of a deoxy species with tau approximately equal to 250-300 fs. The transient deoxy species in myoglobin and hemoglobin evidenced a 3-4 nm red shift of their delta A spectra compared with the equilibrium delta A spectrum. This shift was not observed after photodissociation of the carbon monoxide liganded protoheme. We proposed that the 250 fs time constant corresponding to the appearance of the deoxy-like species is related to the displacement of the ferrous iron out of the heme plane. Consequently, the small red shift of the delta A spectra observed in photodissociated hemoproteins may be tentatively attributed to changes in the vibrational modes of either the proximal histidine-Fe2+ bond and/or of the N4 porph-Fe-N epsilon His (F8) bent.  相似文献   

11.
Dynamics of dioxygen and carbon monoxide binding to soybean leghemoglobin   总被引:2,自引:0,他引:2  
The association of dioxygen and carbon monoxide to soybean leghemoglobin (Lb) has been studied by laser flash photolysis at temperatures from 10 to 320 K and times from 50 ns to 100 s. Infrared spectra of the bound and the photodissociated state were investigated between 10 and 20 K. The general features of the binding process in leghemoglobin are similar to the ones found in myoglobin. Below about 200 K, the photodissociated ligands stay in the heme pocket and rebinding is not exponential in time, implying a distributed enthalpy barrier between pocket and heme. At around 300 K, ligands migrate from the solvent through the protein to the heme pocket, and a steady state is set up between the ligands in the solvent and in the heme pocket. The association rate, lambda on, is mainly controlled by the final binding step at the heme, the bond formation with the heme iron. Differences between Lb and other heme proteins show up in the details of the various steps. The faster association rate in Lb compared to sperm whale myoglobin (Mb) is due to a faster bond formation. The migration from the solvent to the heme pocket is much faster in Lb than in Mb. The low-temperature binding (B----A) and the infrared spectra of CO in the bound state A and the photodissociated state B are essentially solvent-independent in Mb, but depend strongly on solvent in Lb. These features can be correlated with the x-ray structure.  相似文献   

12.
HemAT-Bs is a heme-containing signal transducer protein responsible for aerotaxis of Bacillus subtilis. The recombinant HemAT-Bs expressed in Escherichia coli was purified as the oxy form in which oxygen was bound to the ferrous heme. Oxygen binding and dissociation rate constants were determined to be k(on) = 32 microm(-1) s(-1) and k(off) = 23 s(-1), respectively, revealing that HemAT-Bs has a moderate oxygen affinity similar to that of sperm whale myoglobin (Mb). The rate constant for autoxidation at 37 degrees C was 0.06 h(-1), which is also close to that of Mb. Although the electronic absorption spectra of HemAT-Bs were similar to those of Mb, HemAT-Bs showed some unique characteristics in its resonance Raman spectra. Oxygen-bound HemAT-Bs gave the nu(Fe-O(2)) band at a noticeably low frequency (560 cm(-1)), which suggests a unique hydrogen bonding between a distal amino acid residue and the proximal atom of the bound oxygen molecule. Deoxy HemAT-Bs gave the nu(Fe-His) band at a higher frequency (225 cm(-1)) than those of ordinary His-coordinated deoxy heme proteins. CO-bound HemAT-Bs gave the nu(Fe-CO) and nu(C-O) bands at 494 and 1964 cm(-1), respectively, which fall on the same nu(C-O) versus nu(Fe-CO) correlation line as that of Mb. Based on these results, the structural and functional properties of HemAT-Bs are discussed.  相似文献   

13.
The interactions of nitric oxide (NO) and organic nitroso compounds with heme proteins are biologically important, and adduct formation between NO-containing compounds and myoglobin (Mb) have served as prototypical systems for studies of these interactions. We have prepared crystals of horse heart (hh) MbNO from nitrosylation of aqua-metMb crystals, and we have determined the crystal structure of hh MbNO at a resolution of 1.9 A. The Fe-N-O angle of 147 degrees in hh MbNO is larger than the corresponding 112 degrees angle previously determined from the crystal structure of sperm whale MbNO (Brucker et al., Proteins 1998;30:352-356) but is similar to the 150 degrees angle determined from a MS XAFS study of a frozen solution of hh MbNO (Rich et al., J Am Chem Soc 1998;120:10827-10836). The Fe-N(O) bond length of 2.0 A (this work) is longer than the 1.75 A distance determined from the XAFS study and suggests distal pocket influences on FeNO geometry. The nitrosyl N atom is located 3.0 A from the imidazole N(epsilon) atom of the distal His64 residue, suggesting electrostatic stabilization of the FeNO moiety by His64. The crystal structure of the nitrosoethane adduct of ferrous hh Mb was determined at a resolution of 1.7 A. The nitroso O atom of the EtNO ligand is located 2.7 A from the imidazole N(epsilon) atom of His64, suggesting a hydrogen bond interaction between these groups. To the best of our knowledge, the crystal structure of hh Mb(EtNO) is the first such determination of a nitrosoalkane adduct of a heme protein.  相似文献   

14.
Myoglobin structure and regulation of solvent accessibility of heme pocket   总被引:1,自引:0,他引:1  
The effects of heme removal on the molecular structure of tuna and sperm whale myoglobin have been investigated by comparing the solvent accessibility to the heme pocket of the two proteins with that of the corresponding apoproteins. Although the heme microenvironment of tuna myoglobin is more polar than that of sperm whale myoglobin, the accessibility of solvent to heme is identical in the two proteins as revealed by thermal perturbation of Soret absorption. The removal of heme produces loss of helical folding and increase of solvent accessibility but the effects are rather different for the two proteins. More precisely, the loss of helical structure upon heme removal is 50% for tuna myoglobin and 15% for sperm whale myoglobin; moreover, the solvent accessibility of the heme pocket of tuna apomyoglobin is 2-3-fold greater than that of sperm whale apomyoglobin. These results have been explained in terms of the lack of helical folding in segment D, the structural organization of which may have a relevant effect in regulating the accessibility of ligands to the heme. The effects produced by charged quenchers reveal that the ligand path from the surface of the molecule to the ion atom of the heme involves a positively charged residue which may reasonably be identified as Arg-45 (sperm whale myoglobin) or Lys-41 (tuna myoglobin) on the basis of recent X-ray crystallographic information.  相似文献   

15.
The accessibility of the heme binding site of two apomyoglobins, i.e. tuna and sperm whale apomyoglobin, has been evaluated by quenching the fluorescence of their ANS-conjugates. The quenching pattern obtained by using charged and uncharged quenchers revealed that the heme pocket of tuna apomyoglobin is more accessible than that of sperm whale. Moreover, a larger number of positively charged groups is present in the heme pocket of tuna apomyoglobin as indicated by comparing the extent of quenching produced by iodide and cesium ion. The relaxation time of ANS bound to tuna apomyoglobin is lower than that of the same chromophore bound to sperm whale globin thus indicating that there is some localized flexibility in the tuna globin.  相似文献   

16.
Indoleamine 2,3-dioxygenase is a heme enzyme that catalyzes the oxidative degradation of L-Trp and other indoleamines. We have used resonance Raman spectroscopy to characterize the heme environment of purified recombinant human indoleamine 2,3-dioxygenase (hIDO). In the absence of L-Trp, the spectrum of the Fe(3+) form displayed six-coordinate, mixed high and low spin character. Addition of L-Trp triggered a transition to predominantly low spin with two Fe-OH(-) stretching modes identified at 546 and 496 cm(-1), suggesting H-bonding between the NH group of the pyrrole ring of L-Trp and heme-bound OH(-). The distal pocket of Fe(3+) hIDO was explored further by an exogenous heme ligand, CN(-); again, binding of L-Trp introduced strong H-bonding and/or steric interactions to the heme-bound CN(-). On the other hand, the spectrum of Fe(2+) hIDO revealed a five-coordinate and high spin heme with or without L-Trp bound. The proximal Fe-His stretching mode, identified at 236 cm(-1), did not shift upon L-Trp addition, indicating that the proximal Fe-His bond strength is not affected by binding of the substrate. The high Fe-His stretching frequency suggests that Fe(2+) hIDO has a strong "peroxidase-like" Fe-His bond. Using CO as a structural probe for the distal environment of Fe(2+) hIDO revealed that binding of L-Trp in the distal pocket converted IDO to a peroxidase-like enzyme. Binding of L-Trp also caused conformational changes to the heme vinyl groups, which were independent of changes of the spin and coordination state of the heme iron. Together these data indicate that the strong proximal Fe-His bond and the strong H-bonding and/or steric interactions between l-Trp and dioxygen in the distal pocket are likely crucial for the enzymatic activity of hIDO.  相似文献   

17.
Three mutant proteins of sperm whale myoglobin (Mb) that exhibit altered axial ligations were constructed by site-directed mutagenesis of a synthetic gene for sperm whale myoglobin. Substitution of distal pocket residues, histidine E7 and valine E11, with tyrosine and glutamic acid generated His(E7)Tyr Mb and Val(E11)Glu Mb. The normal axial ligand residue, histidine F8, was also replaced with tyrosine, resulting in His(F8)Tyr Mb. These proteins are analogous in their substitutions to the naturally occurring hemoglobin M mutants (HbM). Tyrosine coordination to the ferric heme iron of His(E7)Tyr Mb and His(F8)Tyr Mb is suggested by optical absorption and EPR spectra and is verified by similarities to resonance Raman spectral bands assigned for iron-tyrosine proteins. His(E7)Tyr Mb is high-spin, six-coordinate with the ferric heme iron coordinated to the distal tyrosine and the proximal histidine, resembling Hb M Saskatoon [His(beta E7)Tyr], while the ferrous iron of this Mb mutant is high-spin, five-coordinate with ligation provided by the proximal histidine. His(F8)Tyr Mb is high-spin, five-coordinate in both the oxidized and reduced states, with the ferric heme iron liganded to the proximal tyrosine, resembling Hb M Iwate [His(alpha F8)Tyr] and Hb M Hyde Park [His(beta F8)Tyr]. Val(E11)Glu Mb is high-spin, six-coordinate with the ferric heme iron liganded to the F8 histidine. Glutamate coordination to the ferric iron of this mutant is strongly suggested by the optical and EPR spectral features, which are consistent with those observed for Hb M Milwaukee [Val(beta E11)Glu]. The ferrous iron of Val(E11)Glu Mb exhibits a five-coordinate structure with the F8 histidine-iron bond intact.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The influence of Cu2+ concentration, pH, and ionic strength of the solution as well as redox-inactive zinc ions on the rate of oxidation of sperm whale, horse, and pig oxymyoglobins (oxy-Mb) by copper ions has been studied. These myoglobins have homologous spatial structures and equal redox potentials but differ in the number of histidines located on the surface of the proteins. It was shown that oxy-Mb can be oxidized in the presence of Cu2+ through two distinct pathways depending on which histidine binds the reagent and how stable the complex is. A slow pH-dependent catalytic process is observed in the presence of equimolar Cu2+ concentration for sperm whale and horse oxymyoglobins. The curves of pH dependence in both cases are sigmoid with pK eff corresponding to the ionization. The process is caused by the strong binding of Cu2+ to His113 and His116, an analogous His residue being absent in pig Mb. In contrast, rapid oxidation of 10-15% of pig oxy-Mb is observed under the same conditions (fast phase), which is not accompanied by catalysis because the reduced copper is apparently not reoxidized. The complexing of Cu2+ with His97 situated near the heme is probably responsible for the fast phase of the reaction. The affinity of His97 for Cu2+ must be significantly lower than those of the catalytic His residues since the fast phase does not contribute markedly to the rate of sperm whale and horse oxy-Mb oxidation. Increasing copper concentration does not produce a proportional growth in the oxidation rate of sperm whale and horse oxy-Mbs. Which Cu2+ binding sites of Mb make main contributions to the His reaction rate at different Cu2+/Mb ratios from 0.25 to 10 is discussed.  相似文献   

19.
The crystal structures of sperm whale metmyoglobins reconstituted with four modified hemes, isopemptoheme, pemptoheme, 2-ethyldeuteroheme, and 4-ethyldeuteroheme, have been determined and refined at 2.2 A resolution to R = 0.217, 0.218, 0.213, and 0.222, respectively. All the crystals of these myoglobins are isomorphous with that of native metmyoglobin. The structural changes of the modified myoglobin from the native myoglobin were examined on difference Fourier maps; the orientation of 4-ethyldeuteroheme in the heme pocket is such that the heme is rotated by 180 degrees about an axis through the alpha-gamma-meso carbons, whereas the orientations of the other three hemes are the same as that of the protoheme in the native myoglobin. The changes of the structures around the heme become greater in the order of isopemptoheme, 2-ethyldeuteroheme less than pemptoheme less than 4-ethyldeuteroheme. The magnitudes of the changes seem to be related to the oxygen affinities of these four reconstituted myoglobins.  相似文献   

20.
Two heme propionate side chains, which are attached at the 6 and 7 positions of the heme framework, are linked with Arg45 and Ser92, respectively, in sperm whale myoglobin. To evaluate the role of each propionate, two kinds of one-legged hemins, 6-depropionated and 7-depropionated protohemins, were prepared and inserted into the apomyoglobin to yield two reconstituted proteins. Structural data of the reconstituted myoglobins were obtained via an X-ray crystallographic analysis at a resolution of 1.1-1.4 A and resonance Raman spectroscopy. It was found that the lack of the 6-propionate reduces the number of hydrogen bonds in the distal site and clearly changes the position of the Arg45 residue with the disrupting Arg45-Asp60 interaction. In contrast, the removal of the 7-propionate does not cause a significant structural change in the residues of the distal and proximal sites. However, the resonance Raman studies suggested that the coordination bond strength of the His93-Fe bond for the protein with the 7-depropionated protoheme slightly increases compared to that for the protein with the native heme. The O2 and CO ligand binding studies for the reconstituted proteins with the one-legged hemes provide an important insight into the functional role of each propionate. The lack of the 6-propionate accelerates the O2 dissociation by ca. 3-fold compared to those of the other reconstituted and native proteins. The lack of the 7-propionate enhances the CO affinity by 2-fold compared to that of the protein with the native heme. These results indicate that the 6-propionate clearly contributes to the stabilization of the bound O2, whereas the 7-propionate plays an important role in the regulation of the Fe-His bond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号