首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The chemical and kinetic mechanisms of the reaction catalyzed by the catalytic trimer of aspartate transcarbamoylase have been examined. The variation of the kinetic parameters with pH indicated that at least four ionizing amino acid residues are involved in substrate binding and catalysis. The pH dependence of K(ia) for carbamoyl phosphate and the K(i) for N-(phosphonoacetyl)-L- aspartate revealed that a protonated residue with a pK value of 9.0 is required for the binding of carbamoyl phosphate. However, the variation with pH of K(i) for succinate, a competitive inhibitor of aspartate, and for cysteine sulfinate, a slow substrate, showed that a single residue with a pK value of 7.3 must be protonated for binding these analogues and, by inference, aspartate. The profile of log V against pH displayed a decrease in reaction rate at low and high pH, suggesting that two groups associated with the Michaelis complex, a deprotonated residue with a pK value of 7.2 and a protonated group with a pK value of 9.5, are involved in catalysis. By contrast, the catalytically productive form of the enzyme-carbamoyl phosphate complex, as illustrated in the bell-shaped pH dependence of log (V/K)(asp), is one in which a residue with a pK value of 7.0 must be protonated while a group with a pK value of 9.1 is deprotonated. This interpretation is supported by the results from the temperature dependence of the V and V/K profiles and from the pH dependence of pK(i) for the aspartate analogues.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The alphabeta T cell receptor (TCR) is responsible for recognizing peptides bound and "presented" by major histocompatibility complex (MHC) molecules. We recently reported that at 25 degrees C the A6 TCR, which recognizes the Tax peptide presented by the class I MHC human leukocyte antigen-A*0201 (HLA-A2), binds with a weak DeltaH degrees , a favorable DeltaS degrees , and a moderately negative DeltaC(p). These observations were of interest given the unfavorable binding entropies and large heat capacity changes measured for many other TCR-ligand interactions, suggested to result from TCR conformational changes occurring upon binding. Here, we further investigated the A6-Tax/HLA-A2 interaction using titration calorimetry. We found that binding results in a pK(a) shift, complicating interpretation of measured binding thermodynamics. To better characterize the interaction, we measured binding as a function of pH, temperature, and buffer ionization enthalpy. A global analysis of the resulting data allowed determination of both the intrinsic binding thermodynamics separated from the influence of protonation as well as the thermodynamics associated with the pK(a) shift. Our results indicate that intrinsically, A6 binds Tax/HLA-A2 with a very weak DeltaH degrees , an even more favorable DeltaS degrees than previously thought, and a relatively large negative DeltaC(p). Comparison of these energetics with the makeup of the protein-protein interface suggests that conformational adjustments are required for binding, but these are more likely to be structural shifts, rather than disorder-to-order transitions. The thermodynamics of the pK(a) shift suggest protonation may be linked to an additional process such as ion binding.  相似文献   

3.
The mechanism of the tryptophan synthase alpha(2)beta(2) complex from Salmonella typhimurium is explored by determining the effects of pH, of temperature, and of isotopic substitution on the pyridoxal phosphate-dependent reaction of L-serine with indole to form L-tryptophan. The pH dependence of the kinetic parameters indicates that three ionizing groups are involved in substrate binding and catalysis with pK(a)1 = 6.5, pK(a)2 = 7.3, and pK(a)3 = 8.2-9. A significant primary isotope effect (approximately 3.5) on V and V/K is observed at low pH (pH 7), but not at high pH (pH 9), indicating that the base that accepts the alpha-proton (betaLys-87) is protonated at low pH, slowing the abstraction of the alpha-proton and making this step at least partially rate-limiting. pK(a)2 is assigned to betaLys-87 on the basis of the kinetic isotope effect results and of the observation that the competitive inhibitors glycine and oxindolyl-L-alanine display single pK(i) values of 7.3. The residue with this pK(a) (betaLys-87) must be unprotonated for binding glycine or oxindolyl-L-alanine, and, by inference, L-serine. Investigations of the temperature dependence of the pK(a) values support the assignment of pK(a)2 to betaLys-87 and suggest that the ionizing residue with pK(a)1 could be a carboxylate, possibly betaAsp-305, and that the residue associated with a conformational change at pK(a)3 may be betaLys-167. The occurrence of a closed to open conformational conversion at high pH is supported by investigations of the effects of pH on reaction specificity and on the equilibrium distribution of enzyme-substrate intermediates.  相似文献   

4.
Mock WL  Cheng H 《Biochemistry》2000,39(45):13945-13952
Hydroxamic acids of structure RCON(OH)CH(2)CH(CH(2)C(6)H(5))CO(2)H induce micromolar competitive inhibition of catalysis for the enzyme carboxypeptidase A. Enzyme affinity depends on the nature of the acyl group, for RCO equaling HCO, CH(3)CO, FCH(2)CO, F(2)CHCO, F(3)CCO, CH(3)OCH(2)CO, or CH(3)OCO. In acid dissociation these residues yield hydroxamic acid pK(a) values that vary from 7.6 to 10.3. Profiles of inhibitory pK(i) plotted versus pH indicate characteristically a maximum effectiveness near neutrality. Weaker binding to enzyme is generally displayed in either acidic or alkaline solution, with the position of the alkaline limb of the profiles depending on the pK(a) of the inhibitor. A reverse-protonation pattern of association with the enzyme is indicated, in which the hydroxamate anion of the inhibitor displaces a relatively acidic H(2)O ligand (pK(a) of 6) from the active-site zinc ion of carboxypeptidase A. The metal-coordinating, N-substituted hydroxamic acid functional groups exist in solution as a mixture of syn and anti rotamers, with relative abundances that depend on their pK(a). A pyrrolidinone analogue having a conformationally syn-fixed cyclohydroxamic acid was not an especially potent inhibitor. Structure-activity relationships suggest design criteria for hydroxamic acid inhibitors in order to provide most effective binding with metalloenzymes.  相似文献   

5.
The effect of pH on the kinetic parameters (Km and Ki) for extracellular acid Penicillium brevicompactum RNAse (pH max 4.7+/-0.1), non-specific to the chemical nature of nucleic bases, was studied. The pKm--pH dependence curve showed bends within the following intervals of pH: 3.5--4.0 and 5.6--6.0 (upward side concavity) and 6.2--6.8 (downward side concavity). The pKi--pH dependence for adenosine-3'-monophosphate as an inhibitor is identical to the pH dependence on pKm for the substrate. On the other hand, the pKi--pH dependence curves obtained for the base-free inhibitors (ribose-5'-monophosphate, or phosphate (adenosine) show no bends within the pH intervals of 3.0--4.0 and 5.6--7.0 respectively. A possibility is discussed of the presence of a carboxylic (pK 3.58+/-0.1) and two imidazole groups (pK 6.42+/-0.1--a weakly protonated and 5.8+/-+/-0.1--a strongly protonated group) in the RNAse active site and their participation in the formation of the RNAse-nucleotide (RNAse-substrate) complex.  相似文献   

6.
Comparative kinetic studies with glycon inhibitors were used to investigate the properties of the active site of human acid beta-glucosidase (EC 3.2.1.45) from normal placenta and spleens of type 1 Ashkenazi Jewish Gaucher disease (AJGD) patients. With the pure normal enzyme, the specificity of glycon binding was assessed with 35 glucose derivatives and epimers. Most glycons were mixed type inhibitors with a predominantly competitive nature (i.e., Kis much less than Kii) and had low apparent affinity for the enzyme (Kisapp = 20-500 mmol/l). beta-Glucose-1-phosphate was unusual, since it inhibited 4-methylumbelliferyl-beta-glucoside hydrolysis in an uncompetitive pattern (Kiapp = 0.55 mmol/l) but had no effect on glucosyl ceramide hydrolysis. C-1- (1-deoxy-1-amino-beta-D-glucose) and C-3- (3-deoxy-3-amino-D-glucose) amino and C-5-imino [1-deoxynojirimycin (dNM), nojirimycin and castanospermine] substituted sugars were highly potent inhibitors with Kisapp(beta-glucose)/Kisapp approximately equal to 10(3)-10(5); an amine at C-2 did not alter Kisapp compared to beta-glucose. The variation of Kisapp with pH for the 5-imino- and 1-deoxy-1-aminoglycosides conformed to a model for the unprotonated inhibitors binding to the protonated forms (EH and EH2) of the diprotic (Vmaxapp and Vmaxapp/Kmapp) normal enzyme (pK1 = 4.7; pK2 = 6.7) with pH-independent Kisapp values of 2.9-9.0 mumol/l and 0.22 mmol/l, respectively. Several of the amine-containing inhibitors competitively protected the enzyme from inactivation by conduritol B epoxide, a covalent active site-directed inhibitor, indicating interaction with residues at that site. With the partially purified AJGD splenic enzymes, the results were the same except that Kisapp(AJGD)/Kisapp(normal) = 4-17 for dNM and 1-deoxy-1-amino-beta-glucose; this ratio was approximately equal to 1 with most other glycons, and particularly, nojirimycin and castanospermine. The results of these studies indicated that the glycon binding site of the normal acid beta-glucosidase contains important residues for interaction with the C-2, C-3 and C-4 hydroxyl groups of beta-glucose and a residue with pKa = 6.7 which was critical to the binding of amine-containing inhibitors and the hydrolysis of substrates. The findings were consistent with a specific alteration in or near the glycon binding site which results in the functional abnormalities of the mutant AJGD acid beta-glucosidase.  相似文献   

7.
8.
The pH dependence of steady-state parameters for aldehyde reduction and alcohol oxidation were determined in the human liver aldehyde reductase reaction. The maximum velocity of aldehyde reduction with NADPH or 3-acetyl pyridine adenine dinucleotide phosphate (3-APADPH) was pH independent at low pH but decreased at high pH with a pK of 8.9-9.6. The V/K for both nucleotides decreased below a pK of 5.7-6.2, as did the pKi of competitive inhibitors NADP and ATP-ribose, suggesting that the 2'-phosphate of the nucleotide has to be deprotonated for binding to the enzyme. The pK of the 2'-phosphate of NADPH appears to be perturbed in the ternary complexes to 5.2-5.4. The V/K for NADPH, the V/K for 3-APADPH, and the pKi of ATP-ribose also decreased above a pK of 9-10, suggesting interaction of the 2'-phosphate of the nucleotide with a protonated base, perhaps lysine. Since protonation of a residue with a pK of 8 (evident in V/K for DL-glyceraldehyde and V/K for L-gulonate versus pH profiles) appears to be essential for aldehyde reduction, and deprotonation for alcohol oxidation, this residue appears to act as a general acid-base catalyst. An additional anion binding site with a pK of 9.94 facilitates the binding of carboxylic substrates such as D-glucuronate. With NADPH as the coenzyme the primary deuterium isotope effects on V and V/K for NADPH were close to unity and pH independent, suggesting that the hydride transfer step is not rate determining over the experimental pH range. With 3-APADPH as the coenzyme, the maximum velocity, relative to NADPH was three- to four-fold lower. Isotope effects on V, V/K for 3-APADPH, and V/K for D-glucuronate were pH independent and equal to 2.2-2.8, indicating that the chemical step of the reaction is relatively insensitive to pH. These data suggest that substrates bind to both the protonated and the deprotonated forms of the enzyme, though only the protonated enzyme catalyzes aldehyde reduction and the deprotonated enzyme catalyzes alcohol oxidation. On the basis of these results a scheme for the chemical mechanism of aldehyde reductase is postulated.  相似文献   

9.
A biochromatographic approach is developed to measure for the first time changes in enthalpy, heat capacity change and protonation for the binding of nor-NOHA to arginase in a wide temperature range. For this, the arginase enzyme was immobilized on a chromatographic support. It was established that this novel arginase column was stable during an extended period of time. The affinity of nor-NOHA to arginase is high and changes slightly with the pH, because the number of protons linked to binding is low. The determination of the enthalpy change at different pH values suggested that the protonated group in the nor-NOHA-arginase complex exhibits a heat protonation of approximately -33 kJ/mol. This value agrees with the protonation of an imidazole group. Our result confirmed that active-site residue Hist 141 is protonated as imidazolium cation. Hist 141 can function as a general acid to protonate the leaving amino group of L-ornithine during catalysis. The thermodynamic data showed that nor-NOHA-arginase binding, for low temperature (<15 degrees C), is enthalpically unfavourable and being dominated by a positive entropy change. This result suggests that dehydration at the binding interface and charge-charge interactions contribute to the nor-NOHA-arginase complex formation. The temperature dependence of the free energy of binding is weak because of the enthalpy-entropy compensation caused by a large heat capacity change, DeltaC(p)=-2.43 kJ/mol/K, of arginase. Above 15 degrees C, the thermodynamic data DeltaH and DeltaS became negative due to van der Waals interactions and hydrogen bonding which are engaged at the complex interface confirming strong enzyme-inhibitor hydrogen bond networks. As well, by the use of these thermodynamic data and known correlations it was clearly demonstrated that the binding of nor-NOHA to arginase produces slight conformational changes in the vicinity of the active site. Our work indicated that our biochromatographic approach could soon become very attractive for studying other enzyme-ligand binding.  相似文献   

10.
The interactions and complexation process of the amphiphilic penicillins sodium cloxacillin and sodium dicloxacillin with horse myoglobin in aqueous buffered solutions of pH 4.5 and 7.4 have been examined by equilibrium dialysis, zeta-potential, isothermal titration calorimetry (ITC) and UV-Vis absorbance techniques. A more opened structure of the protein molecules is detected as a consequence of the reduction of pH from 7.4 to 4.5. Binding isotherms and derived Hill coefficients reflect a cooperative binding behavior. Gibbs energies of binding per mole of drug were obtained from equilibrium dialysis data and compared with those derived from the zeta potential taking into account cooperativity. DeltaGads degrees values so obtained are large and negative at low concentrations where binding to the "high-energy" sites occurs and decreases with the drug concentration. The enthalpies of binding have been obtained from ITC and are small and exothermic so that the Gibbs energies of binding are dominated by large increases in entropy consistent with hydrophobic interactions. Other thermodynamic quantities of the binding mechanism, that is, entropy, DeltaSITCi, Gibbs energy, DeltaGITCi, the binding constant, KITCi, and the number of binding sites, ni, were also obtained, confirming the above results. From ITC data and following a theoretical model, the number of bound and free penicillin molecules was calculated, being higher at pH 4.5 than at pH 7.4. The binding of penicillin causes a conformational transition on protein structure as a consequence of the resulting intramolecular repulsion between the penicillin molecules bound to the protein. Thermodynamic quantites (the Gibbs energy of the transition in water, DeltaGw degrees , and in a hydrophobic environment, DeltaGhc degrees) of the denaturation process were calculated, indicating that at pH 4.5 some of the histidine residues are protonated, becoming accessible to solvent and giving rise to a more opened protein structure.  相似文献   

11.
The pH dependence of matrix metalloproteinase (MMP) catalysis is described by a broad bell-shaped curve, indicating the involvement of two unspecified ionizable groups in proteolysis. Stromelysin-1 has a third pK(a) near 6, resulting in a uniquely sharp acidic catalytic optimum, which has recently been attributed to His(224). This suggests the presence of a critical, but unidentified, S1' substructure. Integrating biochemical characterizations of inhibitor-enzyme interactions with active site topography from corresponding crystal structures, we isolated contributions to the pH dependence of catalysis and inhibition of active site residues Glu(202) and His(224). The acidic pK(a) 5.6 is attributed to the Glu(202).zinc.H(2)O complex, consistent with a role for the invariant active site Glu as a general base in MMP catalysis. The His(224)-dependent substructure is identified as a tripeptide (Pro(221)-Leu(222)-Tyr(223)) that forms the substrate cleft lower wall. Substrate binding induces a beta-conformation in this sequence, which extends and anchors the larger beta-sheet of the enzyme. substrate complex and appears to be essential for productive substrate binding. Because the PXY tripeptide is strictly conserved among MMPs, this "beta-anchor" may represent a common motif required for macromolecular substrate hydrolysis. The striking acidic profile of stromelysin-1 defined by the combined ionization of Glu(202) and His(224) allows the design of highly selective inhibitors.  相似文献   

12.
It is an accepted practice in ligand design to introduce conformational constraint with the expectation of improving affinity, justified by the theoretical possibility that an unfavorable change in binding entropy will be reduced. This rationale of minimizing the entropic penalty through imposing structural constraints upon a ligand, however, has been voiced more often than verified. Here we examine three modified cyclic peptides, along with multiple versions of their linear control analogs, and determine their thermodynamic parameters when binding the same host, the third PDZ domain (PDZ3) of the mammalian postsynaptic density-95 (PSD-95) protein. To begin a two-stage investigation, the initial evaluation involved solution binding studies with isothermal titration calorimetry (ITC), which provided the changes in Gibbs free energy (DeltaG), enthalpy (DeltaH), and entropy (TDeltaS) upon formation of the protein-ligand complex. In the second stage, a selected macrocycle along with two matched linear controls were subjected to more rigorous analysis by ITC, which included (1) change in heat of buffer ionization (DeltaH(ion)) titrations, to examine the role of proton transfer events; (2) change in heat capacity (DeltaC(p)) determinations, to indirectly probe the nature of the binding surface; and (3) osmotic stress experiments, to evaluate desolvation effects and quantitate water release. Together, these demonstrate that the entropic relationship between a macrocyclic ligand and a linear counterpart can be a complex one that is difficult to rationalize. Further, the addition of constraint can, counterintuitively, lead to a less favorable change in binding entropy. This underscores the need to use matched linear control ligands to assure that comparisons are made in a meaningful manner.  相似文献   

13.
The peripheral subunit-binding domain (PSBD) of the dihydrolipoyl acetyltransferase (E2, EC 2.3.1.12) binds tightly but mutually exclusively to dihydrolipoyl dehydrogenase (E3, EC 1.8.1.4) and pyruvate decarboxylase (E1, EC 1.2.4.1) in the pyruvate dehydrogenase multienzyme complex of Bacillus stearothermophilus. Isothermal titration calorimetry (ITC) experiments demonstrated that the enthalpies of binding (DeltaH degrees ) of both E3 and E1 with the PSBD varied with salt concentration, temperature, pH, and buffer composition. There is little significant difference in the free energies of binding (DeltaG degrees = -12.6 kcal/mol for E3 and = -12.9 kcal/mol for E1 at pH 7.4 and 25 degrees C). However, the association with E3 was characterized by a small, unfavorable enthalpy change (DeltaH degrees = +2.2 kcal/mol) and a large, positive entropy change (TDeltaS degrees = +14.8 kcal/mol), whereas that with E1 was accompanied by a favorable enthalpy change (DeltaH degrees = -8.4 kcal/mol) and a less positive entropy change (TDeltaS degrees = +4.5 kcal/mol). Values of DeltaC(p) of -316 cal/molK and -470 cal/molK were obtained for the binding of E3 and E1, respectively. The value for E3 was not compatible with the DeltaC(p) calculated from the nonpolar surface area buried in the crystal structure of the E3-PSBD complex. In this instance, a large negative DeltaC(p) is not indicative of a classical hydrophobic interaction. In differential scanning calorimetry experiments, the midpoint melting temperature (T(m)) of E3 increased from 91 degrees C to 97.1 degrees C when it was bound to PSBD, and that of E1 increased from 65.2 degrees C to 70.0 degrees C. These high T(m) values eliminate unfolding as a major source of the anomalous DeltaC(p) effects at the temperatures (10-37 degrees C) used for the ITC experiments.  相似文献   

14.
When azide ion reacts with methemoglobin in unbuffered solution the pH of the solution increases. This phenomenon is associated with increases in the pK values of heme-linked ionizable groups on the protein which give rise to an uptake of protons from solution. We have determined as a functional of pH the proton uptake, delta h+, on azide binding to methemoglobin at 20 degrees C. Data for methemoglobins A (human), guinea pig and pigeon are fitted to a theoretical expression based on the electrostatic effect of these sets of heme-linked ionizable groups on the binding of the ligand. From these fits the pK values of heme-linked ionizable groups are obtained for liganded and unliganded methemoglobins. In unliganded methemoglobin pK1, which is associated with carboxylic acid groups, ranges between 4.0 and 5.5 for the three methemoglobins; pK2, which is associated with histidines and terminal amino groups, ranges from 6.2 to 6.7. In liganded methemoglobin pK1 lies between 5.8 and 6.3 and pK2 varies from 8.1 to 8.5. The pH dependences of the apparent equilibrium constants for azide binding to the three methemoglobins at 20 degrees C are well accounted for with the pK values calculated from the variation of delta h+ with pH.  相似文献   

15.
Helianthinin is a multisubunit protein from Sunflower seeds. Caffeic acid (CA) and quinic acid (QA) are intrinsic ligands present in sunflower seeds. The mechanism of interaction of these ligands with multisubunit proteins is limited. The present study enables one to understand the mechanism of the interaction of these ligands with the protein helianthinin. From this study, it is shown that CA has two classes of binding sites on helianthinin. The high-affinity class of sites total six from 60+/-10 for both high-affinity and low-affinity sites. Tryptophan, tyrosine and lysine residues of the protein are mainly involved in the interaction with CA. The temperature dependence of the binding in the range 10-45 degrees C can be clearly described by an enthalpy-entropy compensation effect at the low-affinity class of sites, while it is described by positive DeltaC(p)(o) at the high-affinity class of sites. This positive DeltaC(p)(o) has a contribution to the protein stability. The binding strength of CA also has a positive cooperativity at higher protein concentration. QA has two classes of binding sites on the protein based on the strength of the interaction. The interaction of QA with the protein is predominantly described by positive DeltaC(p)(o) for both classes of affinity. This suggests predominance of ionic/hydrogen bonding in the interaction process. Differential scanning calorimetric measurements reveal that the binding of both CA and QA induces destabilisation of the subunit-subunit interaction. Human methaemoglobin (mHb) has two binding sites on the molecule for CA. Both CA and QA decrease the stability of mHb, as indicated by decreased T(m). This destabilisation is also accompanied by dissociation to the monomers with concomitant conformational changes.  相似文献   

16.
L J Hyland  T A Tomaszek  T D Meek 《Biochemistry》1991,30(34):8454-8463
The pH dependence of the peptidolytic reaction of recombinant human immunodeficiency virus type 1 protease has been examined over a pH range of 3-7 for four oligopeptide substrates and two competitive inhibitors. The pK values obtained from the pKis vs pH profiles for the unprotonated and protonated active-site aspartyl groups, Asp-25 and Asp-25', in the monoprotonated enzyme form were 3.1 and 5.2, respectively. Profiles of log V/K vs pH for all four substrates were "bell-shaped" in which the pK values for the unprotonated and protonated aspartyl residues were 3.4-3.7 and 5.5-6.5, respectively. Profiles of log V vs pH for these substrates were "wave-shaped" in which V was shifted to a constant lower value upon protonation of a residue of pK = 4.2-5.2. These results indicate that substrates bind only to a form of HIV-1 protease in which one of the two catalytic aspartyl residues is protonated. Solvent kinetic isotope effects were measured over a pH (D) range of 3-7 for two oligopeptide substrates, Ac-Arg-Ala-Ser-Gln-Asn-Tyr-Pro-Val-Val-NH2 and Ac-Ser-Gln-Asn-Tyr-Pro-Val-Val-NH2. The pH-independent value for DV/K was 1.0 for both substrates, and DV = 1.5-1.7 and 2.2-3.2 at low and high pH (D), respectively. The attentuation of both V and DV at low pH (D) is consistent with a change in rate-limiting step from a chemical one at high pH (D) to one in which a product release step or an enzyme isomerization step becomes partly rate-limiting at low pH (D). Proton inventory data is in accord with the concerted transfer of two protons in the transition state of a rate-limiting chemical step in which the enzyme-bound amide hydrate adduct collapses to form the carboxylic acid and amine products.  相似文献   

17.
The kinetics of binding and dissociation for the progesterone-binding globulin (PBG)-progesterone complex have been measured as a function of pH. The association rate constant appears to be independent of pH from pH to 10 with an average value of kon = 8.5 X 10(7)M-1 S-1. The dissociation rate constant is strongly pH dependent with the dependency defined by: koff = k0 (1 + [H+]/K1 + K2/[H+])(1 + K3*/[H+])/(1 + K3/[H+]). The best values for the various parameters were k0 = 0.0785 s-1, pK1 = 5.30, pK2 = 10.54, pK3* = 7.41, and pK3 = 7.21. Simpler expressions were inadequate to fit the data, and it was concluded that at least three ionizing residues are responsible for the stability of the PBG-progesterone complex. The affinity constant was determined by equilibrium dialysis over the range of pH 3 to 12. The ratio of the association and dissociation rate constants is in agreement with the affinity constant from pH 6.5 to 10.5. The influence of pH on the conformation and binding activity of PBG was also investigated. Denaturation by acid, base, or guanidine hydrochloride leads to a reversible loss of binding activity. Regain of binding activity in all cases is slow with half-times of 0.5 to 2.7 h, depending on conditions. The rate of acid denaturation was found to be incompletely protonated at pH 1.4, suggesting a buried carboxylic acid residue. The slow renaturation of PBG might be due to the difficulty of burying a charged residue in the protein's interior coupled with steric hindrance by the large carbohydrate moiety of PBG.  相似文献   

18.
The chiroptical, viscosity and titration studies of hyaluronic acid in mixed organic/water solvent show a reversible conformational transition of the molecule depending upon pH, solvent composition, temperature, and molecular weight. Neither methylhyaluronate nor chondroitin undergoes conformational transition of this type. These results indicate that hydrogen bonding between the protonated carboxylic group and carbonyl oxygen of the acetamido group is directly involved in the conformational change. Results with chondroitin provide further support for the 4-fold helical structure that we have proposed for hyaluronic acid in mixed organic/water solvent. The thermal stability of the conformation has been studied under various pH values and solvent compositions.  相似文献   

19.
4,6-Difluoroserotonin, a serotonin analog with an acidic 5-hydroxyl proton (pK alpha = 7.97) relative to serotonin (pK alpha = 10.73), was tested as a substrate for the biogenic amine transporter of bovine chromaffin granules and the plasma membrane serotonin transporter of human blood platelets. The platelet serotonin transporter transports this analog with identical rates as those for serotonin, both at pH 6.7, where the hydroxyl group is predominantly protonated and at pH 9, where it is largely dissociated. In contrast, the chromaffin granule biogenic amine transporter prefers the form of 4,6-difluoroserotonin with a protonated 5-hydroxyl group. Thus, the KM for 4,6-difluoroserotonin increases, and Vmax decreases (relative to the values for serotonin) as the pH increases from 7 to 9. This effect may reflect a specific requirement for the protonated hydroxyl group in substrate translocation, as opposed to binding, since the KI for 4,6-difluoroserotonin inhibition of serotonin transport is the same as the KM for serotonin from pH 7 to 9.  相似文献   

20.
The pH variation of the kinetic parameters for the oxidative decarboxylation of L-malate and decarboxylation of oxalacetate catalyzed by malic enzyme has been used to gain information on the catalytic mechanism of this enzyme. With Mn2+ as the activator, an active-site residue with a pK of 5.4 must be protonated for oxalacetate decarboxylation and ionized for the oxidative decarboxylation of L-malate. With Mg2+ as the metal, this pK is 6, and, at high pH, V/K for L-malate decreases when groups with pKs of 7.8 and 9 are deprotonated. The group at 7.8 is a neutral acid (thought to be water coordinated to Mg2+), while the group at 9 is a cationic acid such as lysine. The V profile for reaction of malate shows these pKs displaced outward by 1.4 pH units, since the rate-limiting step is normally TPNH release, and the chemical reaction, which is pH sensitive, is 25 times faster. TPN binding is decreased by ionization of a group with pK 9.3 or protonation of a group with pK 5.3. The pH variation of the Km for Mg shows that protonation of a group with pK 8.7 (possibly SH) decreases metal binding in the presence of malate by a factor of 1400, and in the absence of malate by a factor of 20. A catalytic mechanism is proposed in which hydride transfer is accompanied by transfer of a proton to the group with pK 5.4-6, and enolpyruvate is protonated by water coordinated to the Mg2+ (pK 7.8) after decarboxylation and release of CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号