首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 435 毫秒
1.
Beef liver mitochondrial fraction showed LDH activity (1.76 +/- 0.25 U/g pellet). Sixty seven% of the initial mitochondrial pellet LDH activity (almost M4 isoenzyme) was released when suspended in NaCl 0.15 M. When the washed particles were sonicated in a 0.15 M NaCl medium, the solubilized LDH activity (all five isoenzymes as cytosoluble fraction) was 5-fold higher than the initial pellet activity. The different isoenzymatic composition of intramitochondrial and externally bound forms of the enzyme should be taken into account when investigating the physiological role of intramitochondrial LDH. Beef liver cytosoluble LDH (very little content of M4 isoenzyme) showed no affinity for the beef liver mitochondrial fraction but purified M4-LDH isoenzyme was able to bind to the particulate fraction from the same source. This suggests an isoenzyme specificity for the interaction. The maximum amount of cytosoluble LDH bound to the mitochondrial fraction depends on the enzyme and the particulate fraction source. Therefore, binding capacity to the mitochondrial fraction depends not only on the net charge of LDH isoenzymes, which play a predominant role in the binding, but also on individual characteristics of the LDH isoenzymes and mitochondrial fractions from different sources. This suggests that electrostatic forces are not the only ones involved in the binding process.  相似文献   

2.
Summary Purified lactate dehydrogenase (LDH) isoenzyme 1 (H or B subunits) and isoenzyme 5 (M or A subunits) were used to prepare monoclonal antibodies (MAb) suitable for immunohistochemical detection on formalin fixed paraffin-embedded tissue sections. In the initial fusions, screening of the antibodies was based on enzyme linked immunosorbent assay (ELISA) against the immunogens. None of the antibodies obtained was satisfactory. There were various problems related to specificity, crossreactivity, affinity and also the properties of the monoclonal antibody itself. Using a combined system involving more than one method for screening, two suitable monoclonal antibodies, MAb65 (to H-type LDH) and MAb25 (to M-type LDH) were selected. Both antibodies reacted specifically with corresponding LDH isoenzymes as shown in a series of tests. Their reactivity in sections of formalin fixed paraffin-embedded tissue indicated that both antibodies are suitable reagents for immunohistochemical studies.  相似文献   

3.
A LDH inhibitor has been isolated from the LDH-free crude mitochondrial fraction of rabbit skeletal muscle. The inhibitor is only released after solubilization of the particle bound enzyme. It only interacts with soluble LDH, since the enzyme bound to the mitochondrial fraction was not inhibited. The inhibitor molecular weight is above 10,000 dalton, it is precipitated by 7.5% trichloroacetic acid or 80% (NH4)2SO4 saturation. It is highly stable to heat and pH variations. The inhibitor only interacts with the enzyme at ionic strengths below 20 mM and at pH 6.0 or less. The kinetic behavior of the inhibited enzyme is non-hyperbolic and is similar to the mitochondrial fraction bound enzyme.  相似文献   

4.
M L Sagrista  J Bozal 《Biochimie》1987,69(3):205-214
Chicken liver crude mitochondrial fraction showed lactate dehydrogenase activity (6.5% of cytoplasmic enzyme). Most of the mitochondrial lactate dehydrogenase was solubilized by sonication of the mitochondrial fraction in 0.15 M NaCl, pH 6. Total extracted lactate deshydrogenase activity was 3-fold higher than the initial pellet activity. Different isoenzymatic compositions were observed for cytosoluble and mitochondrial extracted lactate dehydrogenase. The pI, values of the 5 lactate dehydrogenase isoenzymes were found to be independent of their origin. The cytosoluble lactate dehydrogenase and the separated H4,H3M and H2M2 isoenzymes were able to bind to the chicken liver mitochondrial fraction in 5 mM sodium phosphate buffered medium, and could be solubilized afterwards with 0.15 M NaCl, pH 6. The enzyme bound to the mitochondrial fraction was less active than the soluble one. Particle saturation by the bound enzyme occurred with all mitochondrial fractions assayed. According to the Langmuir isotherm, the non-sonicated mitochondrial fractions contain a single type of binding sites for lactate dehydrogenase; in contrast, the sonicated mitochondrial fraction should contain different binding sites. Chicken liver crude or sonicated active mitochondrial fractions showed a hyperbolic behavior with respect to NADH and a non-hyperbolic one with respect to pyruvate. This mechanism is different from the bi-bi compulsory order mechanism of the soluble enzyme. With hydroxypyruvate as the substrate, the active mitochondrial fraction fit a sequential mechanism but lost the rapid-equilibrium characteristics of the soluble enzyme.  相似文献   

5.
Abstract— Lactate dehydrogenase and malate dehydrogenase isoenzyme patterns of chicken brain and retina have been investigated by cellulose acetate electrophoresis, during embryonic and post-hatching development. The proportion of M-type lactate dehydrogenase subunits decreases significantly in brain and retina with development. A marked increase in the H-type subunits is observed in retina. Lactate dehydrogenase isoenzyme distribution appears to change in both organs in parallel with the metabolic changes of differentiation.
Malate dehydrogenase isoenzyme patterns do not reveal any consistent change of the ratio between the mitochondrial and cytoplasmic forms.  相似文献   

6.
The regulation of mitochondrial-bound hexokinases in the liver   总被引:1,自引:0,他引:1  
A functional coupling between bound hexokinase and the inner mitochondrial compartment has been shown. It is based structurally on the binding of hexokinase to a pore protein which is present in zones of contact between the two boundary membranes. The latter was observed by electron microscopic localization of antiporin and hexokinase at the mitochondrial surface. The four isoenzymes present in liver differ considerably in their activity after binding to the mitochondrial surface. This was found by binding studies using the four isoenzymes isolated from the supernatant. Isoenzyme IV did not bind at all. Isoenzymes I-III did bind and became activated: I, 5.9-fold; II, 39-fold; and III, 1.3-fold. These results suggest that the in vivo activity of hexokinase in the mitochondrial fraction is much larger than so far observed. Furthermore the binding of isoenzymes was differently affected by metabolites. Glucose-6-phosphate exclusively desorbed isoenzyme I from the mitochondrial membrane whereas free fatty acids predominantly liberated isoenzymes II and III. A reciprocal change of the levels of free fatty acids and glucose 6-phosphate in livers of starved rats therefore, can explain why exclusively mitochondrial-bound isoenzymes II and III decreased 10-fold while at the same time isoenzyme I increased.  相似文献   

7.
Properties of the testicular lactate dehydrogenase isoenzyme.   总被引:2,自引:0,他引:2       下载免费PDF全文
1. Studies were carried out with pure lactate dehydrogenase isoenzymes C4 (LDH isoenzyme X), B4, (LDH isoenzyme 1) and A4 (LDH isoenzyme 5) isolated from mouse testis, heart and muscle tissue respectively; with LDH isoenzyme X purified from pigeon testes and with crude lysates of spermatozoa from man, bull and rabbit. 2. LDH isoenzyme X from all species showed greater ability than the other isoenzymes to catalyse the NAD+-linked interconversions of 2-oxobutanoate into 2-hydroxybutanoate and of 2-oxopentanoate into 2-hydroxypentanoate. 3. Mouse LDH isoenzyme X presented the broadest spectrum of substrate specificity. It exhibited very similar Km values for a variety of 2-oxo acids: 2-oxopropanoate (pyruvate), 2-oxobutanoate, 2-oxo-3-methylbutanoate, 2-oxopentanoate, 2-oxo-3-methylpentanoate, 2-oxo-4-methylpentanoate, 2-oxohexanoate and 2-oxo-3-phenylpropanoate (phenylpyruvate). The corresponding 2-hydroxy acids were also readily utilized in the reverse reaction. A strong inhibition by substrate and product was demonstrated for the direct reaction. 4. Intracellular distribution of LDH isoenzyme X was investigated in mouse testes. LDH isoenzyme X activity was located in the fraction of "heavy mitochondria" and in the soluble phase. 5. A possible functional role for LDH isoenzyme X is proposed: the redox couple-2-oxo acid-2-hydroxy acid could integrate a shuttle system transferring reducing equivalents from cytoplasm to mitochondria.  相似文献   

8.
Some lactate dehydrogenase modulator proteins have been isolated from the lactate dehydrogenase-free crude mitochondrial fraction of rabbit muscle, beef liver and chicken liver. It was shown that beef and chicken liver mitochondrial extracts exhibited activatory capacity in contrast to the inhibitory capacity of rabbit muscle mitochondrial extracts. All modulators can be precipitated by 80% ammonium sulphate saturation and show high anodic electrophoretic mobility and heat stability. Modulators have higher affinity for alkaline pI lactate dehydrogenase isoenzymes, independent of whether the M and H subunits are predominant. The inhibitor and the activator molecules compete for lactate dehydrogenase since their modulatory capacity was nullified when similar relative amounts were used. This study shows the existence of analogous proteins with an acidic pI in the different mitochondrial fractions which modify lactate dehydrogenase activity.  相似文献   

9.
The authors have studied the LDH isoenzymes distribution in the human Achilles tendons. Connection between the age, sex, and enzyme activity were not found. In the Achilles tendon were found strong activity of isoenzymes IV and V (M-type), and controversy them moderate activity of isoenzymes I and II (H-type).  相似文献   

10.
Rabbit skeletal muscle mitochondrial fraction shows LDH activity (212 +/- 43 U/g pellet). The majority of the mitochondrial enzyme was solubilized by washing with 0.15 M NaCl, pH 6, or by ultrasonic treatment in the same medium. It was also solubilized on increasing the ionic strength and the pH of the medium. Cytosoluble LDH was observed to bind in vitro to the particulate fraction and the enzyme bound was a sigmoidal function of the amount of soluble enzyme added. The bound enzyme is less active than the soluble one. Kinetically, active mitochondrial fraction or in vitro bound enzyme showed non-hyperbolic behavior which is different from the bi-bi sequential-ordered type mechanism of the soluble enzyme.  相似文献   

11.
After glucagon injection, rats showed virtually identical percentage increases in hepatic histidine-pyruvate aminotransferase and serine-pyruvate aminotransferase activities, both in the mitochondria and in the cytosol. Histidine-pyruvate aminotransferase isoenzyme 1, with pI8.0, was purified to homogeneity from the mitochondrial fraction of liver from glucagon-injected rats. The purified enzyme catalysed transamination between a number of amino acids and pyruvate or phenylpyruvate. For transamination with pyruvate, the activity with serine reached a constant ratio to that with histidine during purification, which was unchanged by a variety of treatments of the purified enzyme. Serine was found to act as a competitive inhibitor of histidine transamination, and histidine of serine transamination. These results suggest that histidine-pyruvate amino-transferase isoenzymes 1 is identical with serine-pyruvate aminotransferase. The enzyme is probably composed of two identical subunits with mol. wt. approx. 38000. The absorbance maximum at 410 nm and the inhibition by carbonyl reagents strongly indicate the presence of pyridoxal phosphate.  相似文献   

12.
The complete amino acid sequence of mitochondrial serine hydroxymethyltransferase from rabbit liver was determined. The sequence was obtained from analysis of peptides isolated from chymotryptic, cyanogen bromide, and limited acid cleavages of the protein. The enzyme consists of four identical subunits, each of 475 residues, i.e. 8 residues shorter than the subunit of the corresponding cytosolic isoenzyme. The sequences of the two rabbit proteins are easily aligned, provided a gap of 5 residues near the amino terminus and a gap of 3 residues near the carboxyl terminus are included in the mitochondrial sequence. The overall degree of identity between the two isoenzymes is 61.9%, whereas the structural identity of each eukaryotic isoenzyme with the corresponding Escherichia coli enzyme is about 40%. The rabbit isoenzymes are about 70 residues longer than the E. coli enzyme, with one-half of these residues accounted for by insertions in both isoenzymes near their carboxyl terminus. Predictions of secondary structure and calculations of hydropathy profiles are also presented, suggesting an even more extensive degree of identity in the three-dimensional folding of the three proteins, in accord with the known similarity of their catalytic properties. Evidence was obtained for the existence of additional molecular forms of the mitochondrial protein, differing in the absence of some amino acid residues at the amino terminus of the polypeptide chain.  相似文献   

13.
Summary Adult human testicular tissue contains up to six previously undescribed lactate dehydrogenase (LDH) isoenzymes in addition to the five LDH isoenzymes normally found and the sixth found in spermatogenic cells and spermatozoa, LDH-X. Additional LDH isoenzymes were also found in spermatozoa but not in seminal fluid or in serum. After electrophoresis one additional LDH isoenzyme of testicular tissue was localized between LDH-1 and LDH-2, two between LDH-2 and LDH-3, two between LDH-3 and LDH-4, and two between LDH-4 and LDH-5. These localizations indicate that the additional LDH isoenzymes are tetramers combining the A and B subunits of the five normal LDH isoenzymes and the C subunit of LDH-X. The additional LDH isoenzymes may be important in the metabolism of spermatogenic germ cells and spermatozoa.  相似文献   

14.
Average lactate dehydrogenase (LDH) isoenzyme patterns the content of H subunits, total LDH activity, total malate dehydrogenase (MDH) activity and the m- MDH/s-MDH ratio were determined in twelve muscles and the male genital tract of the rabbit. LDH(1) was the predominant form in the heart, soleus and masseter muscles, LDH(3) in the lingual muscles and LDH(5) in the other muscles analysed. In the muscles, an increase in the percentual proportion of M subunits was accompanied, by a proportional increase in total LDH activity and a decrease in total MDH activity, especially m-MDH. LDH isoenzyme patterns and LDH and MDH activities are useful for obtaining some idea about the proportion of individual muscle fibres. Activity accounted for by H subunits was roughly the same in all the muscles analysed, indicating that the synthesis of H subunits is independent of the type of muscle fibre and of the oxygen supply of the muscular tissue, and also that isoenzymes composed chiefly of H subunits are not localized preferentially in the mitochondria. Similar relationships between LDH isoenzymes and LDH and MDH activities were found in the testicular and epididymal tissues. The tests and the head of the epididymis mainly contain LDH isoenzymes composed of H subunits. The total LDH activity in these tissues is relatively low and their MDH activity is relatively high compared with the body and tail of the epididymis. The proportion of H subunits in the ampulla, the seminal vesicles, the coagulating glands and the prostate is also high. Cowper's glands have a high LDH(5) and LDH(4) concentration. One of two LDHx isoenzymes were found in the testes and spermatozoa.  相似文献   

15.
The distribution of aspartate aminotransferase activity in yeasts was determined. The number of species of the enzyme in each yeast was determined by zymogram analysis. All the yeasts, except for the genus Saccharomyces, showed two or three activity bands on a zymogram. From among the strains, Rhodotorula minuta [corrected] and Torulopsis candida were selected for examination of the existence of yeast mitochondrial isoenzymes, because these strains showed two clear activity bands on the zymogram and contained a high amount of the enzyme. Only one aspartate aminotransferase was purified from T. candida: the component in the minor band on the zymogram was not an isoenzyme of aspartate aminotransferase. On the other hand, two aspartate aminotransferases were purified to homogeneity from R. minuta [corrected]. The components in the main and minor activity bands on the zymogram were identified as the mitochondrial and cytosolic isoenzymes, respectively, in a cell-fractionation experiment. The enzymatic properties of these isoenzymes were determined. The yeast mitochondrial isoenzyme resembled the animal mitochondrial isoenzymes in molecular weight (subunits and native form), absorption spectrum, and substrate specificity. The amino acid composition was closely similar to that of pig mitochondrial isoenzyme. Rabbit antibody against the yeast mitochondrial isoenzyme, however, did not form a precipitin band with the pig mitochondrial isoenzyme.  相似文献   

16.
Electrophoretic polymorphism of lactate dehydrogenase (LDH, EC 1.1.1.27) from abdominal muscle is reported in the northern krill Meganyctiphanes norvegica. In the population, from the Gullmarsfjord (west coast of Sweden), LDH was encoded for by two different Ldh-A* and -B* loci. The isoenzymes were named according to their electrophoretic mobilities. Ldh-A* locus was polymorphic. The allelic frequencies were a=0.99, a'=0.002, a"=0.004, a"'=0.004. The level of LDH polymorphism is low. Most individuals possess the same amount of two LDH homopolymers (LDH-A*(4) and LDH-B*(4)). The Meganyctiphanes norvegica LDH-A*(4) and LDH-B*(4) isoenzymes and the predominant LDH-A*(4) isoenzyme from Euphausia superba were purified to specific activities of 294, 306 and 464 micromol NADH min(-1) mg(-1), respectively. In both species the LDH isoenzymes were separated by chromatofocusing. All three isoenzymes are L-specific tetramers with molecular weight of approximately 160 kDa. Northern krill LDH-A*(4) has higher affinity for pyruvate and lactate and is more thermostable than LDH-B*(4). Both isoenzymes are inhibited significantly by high concentration of pyruvate but not lactate. Antarctic krill isoenzyme exhibits high substrate affinities, high NAD inhibition, high inhibition at 10 mM pyruvate, lack of lactate inhibition, and high heat stability and resembles northern krill LDH-A*(4) isoenzyme.  相似文献   

17.
Liver cell-free extracts of fish (Mugil sp.) from polluted environments show new Cu, Zn-SOD isoenzymes when analyzed by polyacrylamide gel electrophoresis or isoelectrofocusing followed by in situ staining for SOD activity. The most active isoenzymes, with pI 6.1 and 5.1, were present both in control and problem samples while the isoenzymes of intermediate pI value showed significant differences. Fish from control areas showed three intermediate isoenzymes with pI 5.7, 5.5 and 5.4 (the last one quite faint) while polluted animals showed three bands of pI 5.9, 5.45 and 5.35, this last very intense. To further characterize their utility as biomarkers, Cu, Zn-SOD isoenzymes from polluted fish livers were purified to homogeneity. Five superoxide dismutase peaks were purified, named thereafter I (pI 6.1) to V (pI 5.1) respectively. Isoenzymes I and V displayed the highest specific activity. Upon incubation with moderate H2O2 concentrations, pure isoenzyme I yielded more acidic bands with pI 5.5, 5.45 and 5.35, this last being predominant. The pure isoenzyme V generated only a new band of pI 5.0. Concomitant with oxidation, the activity of peaks I and V was lost in a H2O2 concentration-dependent manner. The pattern of the new acidic bands generated upon the oxidixing treatment of isoenzyme I closely resembles that observed in crude extracts from polluted animals.  相似文献   

18.
Direct IAP binding protein with low pI/second mitochondrial activator of caspases, HtrA2/Omi and GstPT/eRF3 are mammalian proteins that bind via N-terminal inhibitor of apoptosis protein (IAP) binding motifs (IBMs) to the baculoviral IAP repeat (BIR) domains of IAPs. These interactions can prevent IAPs from inhibiting caspases, or displace active caspases, thereby promoting cell death. We have identified several additional potential IAP antagonists, including glutamate dehydrogenase (GdH), Nipsnap 3 and 4, CLPX, leucine-rich pentatricopeptide repeat motif-containing protein and 3-hydroxyisobutyrate dehydrogenase. All are mitochondrial proteins from which N-terminal import sequences are removed generating N-terminal IBMs. Whereas most of these proteins have alanine at the N-terminal position, as observed for previously described antagonists, GdH has an N-terminal serine residue that is essential for X-linked IAP (XIAP) interaction. These newly described IAP binding proteins interact with XIAP mainly via BIR2, with binding eliminated or significantly reduced by a single point mutation (D214S) within this domain. Through this interaction, many are able to antagonise XIAP inhibition of caspase 3 in vitro.  相似文献   

19.
Glutathione S-transferase was isolated from supernatant of camel kidney homogenate centrifugation at 37, 000 xg by glutathione agarose affinity chromatography. The enzyme preparation has a specific activity of 44 μ;mol/min/mg protein and recovery was more than 85% of the enzyme activity in the crude extract. Glutathione agarose affinity chromatography resulted in a purification factor of about 49 and chromatofocusing resolved the purified enzyme into two major isoenzymes (pI 8.7 and 7.9) and two minor isoenzymes (pI 8.3 and 6.9). The homogeneity of the purified enzyme was analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and gel filtration on Sephadex G-100.

The different isoenzymes were composed of a binary combination of two subunits with molecular weight of 29, 000 D and 26, 000 D to give a native molecular weight of 55, 000 D.

The substrate specificities of the major camel kidney glutathione S-transferase isoenzymes were determined towards a range of substrates. l-chloro-2, 4-dinltrobenzene was the preferred substrate for all the isoenzymes. Isoenzyme III (pI 7.9) had higher specific activity for ethacrynic acid and isoenzyme II (pI 8.3) was the only isoenzyme that exhibited peroxidase activity. Ouchterlony double-diffusion analysis with rabbit antiserum prepared against the camel kidney enzyme showed fusion of precipitation lines with the enzymes from camel brain, liver and lung and no cross reactivity was observed with enzymes from kidneys of sheep, cow, rat, rabbit and mouse.

Different storage conditions have been found to affect the enzyme activity and the loss in activity was marked at room temperature and upon repeated freezing and thawing.  相似文献   

20.
The primary structure of mitochondrial aspartate aminotransferase from chicken is reported. The enzyme is a dimer of identical subunits. Each subunit contains 401 amino acid residues; the calculated subunit molecular weight of the apoform is 44,866. The degree of sequence identity with the homologous cytosolic isoenzyme from chicken is 46%. A comparison of the primary structures of the mitochondrial and the cytosolic isoenzyme from pig and chicken shows that 40% of all residues are invariant. The degree of interspecies sequence identity both of the mitochondrial and the cytosolic isoenzyme from chicken and pig (86% and 83%, respectively) markedly exceeds that of the intraspecies identity between mitochondrial and cytosolic aspartate aminotransferase in chicken (46%) or in pig (48%). Based on these values, the duplication of the aspartate aminotransferase ancestral gene is estimated to have occurred approximately 1000 million years ago, i.e. at the time of the emergence of eukaryotic cells. By sequence comparison it is possible to identify amino acid residues and segments of the polypeptide chain that have been conserved specifically in the mitochondrial isoenzyme during phylogenetic evolution. These segments comprise about a third of the total polypeptide chain and appear to cluster in a certain surface region. The cluster carries an excess of positively charged residues which exceeds the overall charge difference between the cytosolic (pI approximately 6) and the mitochondrial isoenzyme (pI approximately 9).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号