首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
lac permease with Ala in place of Glu325 was solubilized from the membrane, purified, and reconstituted into proteoliposomes. The reconstituted molecule is completely unable to catalyze lactose/H+ symport but catalyzes exchange and counterflow at least as well as wild-type permease. In addition, Ala325 permease catalyzes downhill lactose influx without concomitant H+ translocation and binds p-nitrophenyl alpha-D-galactopyranoside with a KD only slightly higher than that of wild-type permease. Studies with right-side-out membrane vesicles demonstrate that replacement of Glu325 with Gln, His, Val, Cys, or Trp results in behavior similar to that observed with Ala in place of Glu325. On the other hand, permease with Asp in place of Glu325 catalyzes lactose/H+ symport about 20% as well as wild-type permease. The results indicate that an acidic residue at position 325 is essential for lactose/H+ symport and that hydrogen bonding at this position is insufficient. Taken together with previous results and those presented in the following paper [Lee, J. A., Püttner, I. B., & Kaback, H. R. (1989) Biochemistry (third paper of three in this issue)], the findings are consistent with the idea that Arg302, His322, and Glu325 may be components of a H+ relay system that plays an important role in the coupled translocation of lactose and H+.  相似文献   

2.
The lac permease of Escherichia coli was modified by site-directed mutagenesis such that Arg-302 in putative helix IX was replaced with Leu. In addition, Ser-300 (helix IX) was replaced with Ala, and Lys-319 in putative helix X was replaced with Leu. Permease with Leu at position 302 manifests properties that are similar to those of permease with Arg in place of His-322 [Püttner, I. B., Sarkar, H. K., Poonian, M. S., & Kaback, H. R. (1986) Biochemistry 25, 4483]. Thus, permease with Leu-302 is markedly defective in active lactose transport, efflux, exchange, and counterflow but catalyzes downhill influx of lactose at high substrate concentrations without H+ translocation. In contrast, permease molecules with Ala at position 300 or Leu at position 319 catalyze lactose/H+ symport in a manner indistinguishable from that of wild-type permease. By molecular modeling, Arg-302 may be positioned in helix IX so that it faces the postulated His-322/Glu-325 ion pair in helix X. In this manner, the guanidino group in Arg-302 may interact with the imidazole of His-322 and thereby play a role in the H+ relay suggested to be involved in lactose/H+ symport [Carrasco, N., Antes, L. M., Poonian, M. S., & Kaback, H. R. (1986) Biochemistry 25, 4486].  相似文献   

3.
The lac permease of Escherichia coli was modified by site-directed mutagenesis such that His-205 or His-322 is replaced with either Asn or Gln. Permease with Asn or Gln in place of His-205 exhibits normal activity, while permease with Asn or Gln in place of His-322 exhibits no activity. The results are consistent with the interpretation that His-205 and His-322 play different roles in lactose/H+ symport, the former involving hydrogen bonding of the imidazole nitrogens and the latter requiring positive charge in the imidazole ring. In addition, it is demonstrated that permease with Arg in place of His-322 does not catalyze efflux, exchange, or counterflow. The observations, in conjunction with those in the accompanying paper [Carrasco, N., Antes, L. M., Poonian, M. S., & Kaback, H. R. (1986) Biochemistry (following paper in this issue)], suggest that His-322 plays an important role in H+ translocation, possibly as a component of a charge-relay system with Glu-325, a neighboring residue in helix 10.  相似文献   

4.
When Glu-325 in the lac permease of Escherichia coli is replaced with Ala, lactose/H+ symport is abolished. Thus, the altered permease catalyzes neither uphill lactose accumulation nor efflux. Remarkably, however, permease with Ala-325 catalyzes exchange and counterflow at completely normal rates. Taken together with the results presented in the accompanying paper [Püttner, I. B., Sarkar, H. K., Poonian, M. S., & Kaback, H. R. (1986) Biochemistry (preceding paper in this issue)], the findings suggest that the His-322 and Glu-325 may be components of a charge-relay system that plays an important role in the coupled translocation of lactose and H+.  相似文献   

5.
B Persson  P D Roepe  L Patel  J Lee  H R Kaback 《Biochemistry》1992,31(37):8892-8897
Lys319, which is on the same face of putative helix X as His322 and Glu325 in the lactose permease of Escherichia coli, has been replaced with Leu by oligonucleotide-directed, site-specific mutagenesis. Although previous experiments suggested that the mutation does not alter permease activity, we report here that K319L permease is unable to catalyze active lactose accumulation or lactose efflux down a concentration gradient. The mutant does catalyze facilitated influx down a concentration gradient at a significant rate; however, the reaction occurs without concomitant H+ translocation. The mutant also catalyzes equilibrium exchange at about 50% of the wild-type rate, but it exhibits poor counterflow activity. Finally, flow dialysis and photoaffinity labeling experiments with p-nitrophenyl alpha-D-galactopyranoside indicate that K319L permease probably has a markedly decreased affinity for substrate. The alterations described are not due to diminished levels of the mutated protein in the membrane, since immunological studies reveal comparable amounts of permease in wild-type and K319L membranes. It is proposed that Lys319, like Arg302, His322, and Glu325, plays an important role in active lactose transport, as well as substrate recognition.  相似文献   

6.
Lactose/H(+) symport by lactose permease of Escherichia coli involves interactions between four irreplaceable charged residues in transmembrane helices that play essential roles in H(+) translocation and coupling [Glu269 (helix VIII) with His322 (helix X) and Arg302 (helix IX) with Glu325 (helix X)], as well as Glu126 (helix IV) and Arg144 (helix V) which are obligatory for substrate binding. The conservative mutation Glu325-->Asp causes a 10-fold reduction in the V(max) for active lactose transport and markedly decreased lactose-induced H(+) influx with no effect on exchange or counterflow, neither of which involves H(+) symport. Thus, shortening the side chain may weaken the interaction of the carboxyl group at position 325 with the guanidino group of Arg302. Therefore, Gly-scanning mutagenesis of helices IX and X and the intervening loop was employed systematically with mutant Glu325-->Asp in an effort to rescue function by introducing conformational flexibility between the two helices. Five Gly replacement mutants in the Glu325-->Asp background are identified that exhibit significantly higher transport activity. Furthermore, mutant Val316-->Gly/Glu325-->Asp catalyzes active transport, efflux, and lactose-induced H(+) influx with kinetic properties approaching those of wild-type permease. It is proposed that introduction of conformational flexibility at the interface between helices IX and X improves juxtapositioning between Arg302 and Asp325 during turnover, thereby allowing more effective deprotonation of the permease on the inner surface of the membrane [Sahin-Tóth, M., Karlin, A., and Kaback, H. R. (2000) Proc. Natl. Acad. Sci. U.S.A. 97, 10729-10732.  相似文献   

7.
lac permease of Escherichia coli was modified by site-directed mutagenesis in order to investigate the effects of polarity, distance, and orientation between the components of a putative H+ relay system (Arg302/His322/Glu325) postulated to be involved in lactose-coupled H+ translocation. The importance of polarity between His322 and Glu325 was studied by interchanging the residues, and the modified permease--H322E/E325H--is inactive in all modes of translocation. The effect of distance and/or orientation between His322 and Glu325 was investigated by interchanging Glu325 with Val326, thereby moving the carboxylate one residue around putative helix X. The resulting permease molecule--E325V/V326E--is also completely inactive; control mutations, E325V [Carrasco, N., Püttner, I. B., Antes, L. M., Lee, J. A., Larigan, J. D., Lolkema, J. S., Roepe, P. D., & Kaback, H. R. (1989) Biochemistry (second paper of three in this issue)], and E325A/V326E, indicate that a Glu residue at position 326 inactivates the permease. The wild-type orientation between His and Glu was then restored by further mutation of E325V/V326E to introduce a His residue into position 323 or by interchanging Met323 with His322. The resulting permease molecules--M323H/E325V/V326E and H322M/M323H/E325V/V326E--contain the wild-type His/Glu orientation, but the His/Glu ion pair is rotated about the helical axis by 100 degrees relative to Arg302 in putative helix IX. Both mutants are inactive with respect to all modes of translocation. The results provide strong support for the contention that the polarity between His322 and Glu325 and the geometric relationship between Arg302, His322, and Glu325 are critical for permease activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
A mechanism proposed for lactose/H(+) symport by the lactose permease of Escherichia coli indicates that lactose permease is protonated prior to ligand binding. Moreover, in the ground state, the symported H(+) is shared between His322 (helix X) and Glu269 (helix VIII), while Glu325 (helix X) is charge-paired with Arg302 (helix IX). Substrate binding at the outer surface between helices IV (Glu126) and V (Arg144, Cys148) induces a conformational change that leads to transfer of the H(+) to Glu325 and reorientation of the binding site to the inner surface. After release of substrate, Glu325 is deprotonated on the inside due to re-juxtapositioning with Arg302. The conservative mutation Glu269-->Asp causes a 50-100-fold decrease in substrate binding affinity and markedly reduced active lactose transport, as well as decreased rates of equilibrium exchange and efflux. Gly-scanning mutagenesis of helix VIII was employed systematically with mutant Glu269-->Asp in an attempt to rescue function, and two mutants with increased activity are identified and characterized. Mutant Thr266-->Gly/Met267-->Gly/Glu269-->Asp binds ligand with increased affinity and catalyzes active lactose transport with a marked increase in rate; however, little improvement in efflux or equilibrium exchange is observed. In contrast, mutant Gly262-->Ala/Glu269-->Asp exhibits no improvement in ligand binding but a small increase in the rate of active transport; however, an increase in the steady-state level of accumulation, as well as efflux and equilibrium exchange is observed. Remarkably, when the two sets of mutations are combined, all translocation reactions are rescued to levels approximating those of wild-type permease. The findings support the contention that Glu269 plays a pivotal role in the mechanism of lactose/H(+) symport. Moreover, the results suggest that the two classes of mutants rescue activity by altering the equilibrium between outwardly and inwardly facing conformations of the permease such that impaired protonation and/or H(+) transfer is enhanced from one side of the membrane or the other. When the two sets of mutants are combined, the equilibrium between outwardly and inwardly facing conformations and thus protonation and H(+) transfer are restored.  相似文献   

9.
Lactose exchange catalyzed by purified lac permease reconstituted into proteoliposomes was analyzed with unequal concentrations of lactose on either side of the membrane and at low pH so as to prevent equilibration of the two pools. Exchange with external concentrations below 1.0 mM is a single-exponential process, and the apparent affinity constants for external and internal substrate are close to the apparent KMs reported for active transport and efflux, respectively [Viitanen, P.V., Garcia, M. L., & Kaback, H. R. (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 1629]. At external lactose concentrations above 1.0 mM, a second kinetic pathway becomes evident with an apparent affinity constant of about 6 mM which is similar to the apparent KM for facilitated influx. A second pathway is not observed with respect to internal lactose even when the concentration is increased up to 80 mM. Furthermore, high internal or external lactose concentrations do not inhibit the exchange reaction. Biphasic kinetics with respect to external lactose are retained in a mutant permease that catalyzes exchange but is defective in H(+)-coupled lactose transport. It is suggested that lac permease has more than one binding site and that this may be the underlying reason for the biphasic kinetics observed for both exchange and H(+)-coupled lactose transport.  相似文献   

10.
Purified lac permease and cytochrome o oxidase are functional as monomers   总被引:14,自引:0,他引:14  
Purified lac permease, the 46.5-kDa product of the lac Y gene that catalyzes lactose/H+ symport, or purified cytochrome o, a terminal oxidase of the Escherichia coli respiratory chain composed of four subunits with a composite molecular mass of 140 kDa, was reconstituted into proteoliposomes individually or in combination. The preparations were then examined by freeze-fracture electron microscopy employing conventional platinum/carbon replicas or by means of a new technique using thin tantalum replicas. In nonenergized proteoliposomes, both proteins appear to reconstitute as monomers based on (i) the variation of intramembrane particle density with protein concentration; (ii) the ratio of particles corresponding to each protein in proteoliposomes reconstituted with a known ratio of permease to oxidase; and (iii) the dimensions of the particles observed in tantalum replicas. The intramembrane particle diameters in tantalum replicas are about 20-25% smaller than those observed in conventional platinum/carbon replicas, indicating that the dimensions of the particles revealed with tantalum more accurately reflect the sizes of lac permease and cytochrome o. The diameters and heights of the permease and cytochrome o in tantalum replicas are 5.1 nm X 2.8 nm and 7.4 nm X 4.2 nm, respectively. Furthermore, a higher percentage of lac permease molecules exhibits a notch or cleft in tantalum replicas relative to platinum/carbon replicas. Importantly, the initial rate of lactose/H+ symport in proteoliposomes varies linearly with the ratio of lac permease to phospholipid, and no change is observed in either the size or distribution of lac permease molecules when the proteoliposomes are energized. The results taken as a whole provide a strong indication that both lac permease and cytochrome o reconstitute into proteoliposomes as monomers, that the permease does not dimerize in the presence of the H+ electrochemical gradient, and that both molecules are completely functional as monomers.  相似文献   

11.
Oligonucleotide-directed, site-specific mutagenesis has been utilized to modify the lac Y gene of Escherichia coli such that Cys148 in the lac permease is converted to Ser. A mutagenesis protocol is used that significantly improves the efficiency of mutant recovery by in vitro methylation of closed-circular heteroduplex DNA containing the mutation, followed by nicking with HindIII in the presence of ethidium bromide and heat denaturation prior to transfection. In contrast to Gly148 permease (Trumble, W.R., Viitanen, P.V., Sarkar, H.K., Poonian, M.S., and Kaback, H. R. (1984) Biochem. Biophys. Res. Commun. 119, 860-867), permease containing Ser at position 148 catalyzes active lactose transport at a rate comparable to wild-type permease. Like Gly148 permease, however, transport activity is less sensitive to inactivation by N-ethylmaleimide, and galactosyl-1-thio-beta-D-galactopyranoside affords no protection against inactivation. The observations provide strong support for the contention that Cys148 is obligatory for substrate protection against inactivation by sulfhydryl reagents, but does not play an essential role in lactose:H+ symport.  相似文献   

12.
Role of cysteine residues in the lac permease of Escherichia coli   总被引:3,自引:0,他引:3  
Oligonucleotide-directed, site-specific mutagenesis has been utilized to replace cysteine residues 117, 333, or 353 and 355 with serine in the lac permease of Escherichia coli. Replacement of Cys-117 or Cys-333 has no significant effect on permease activity, while permease with serine residues in place of Cys-353 and Cys-355 has about 50% of wild-type permease activity. The results provide a clear demonstration that cysteine residues at positions 117, 333, 353, and 355 are not obligatory for lactose/H+ symport. When considered in conjunction with previous findings, the results indicate that, of the eight cysteine residues in the lac permease, only Cys-154 is important for lactose transport. As discussed, the conclusion has important implications for the hypothesis that sulfhydryl-disulfide interconversion plays an important role in the symport mechanism.  相似文献   

13.
cys154 Is important for lac permease activity in Escherichia coli   总被引:2,自引:0,他引:2  
The lac Y gene of Escherichia coli which encodes the lac permease has been modified by oligonucleotide-directed, site-specific mutagenesis such that cys154 is replaced with either gly or ser. Permease with gly in place of cys154 exhibits essentially no transport activity, while substitution of cys154 with ser also causes marked, though less complete loss of activity. The findings suggest that cys154 plays an important role in lactose:H+ symport.  相似文献   

14.
Right-side-out cytoplasmic membrane vesicles from Escherichia coli ML 308-22, a mutant "uncoupled" for beta-galactoside/H+ symport [Wong, P. T. S., Kashket, E. R., & Wilson, T. H. (1970) Proc. Natl. Acad. Sci. U.S.A. 65, 63], are specifically defective in the ability to catalyze accumulation of methyl 1-thio-beta-D-galactopyranoside (TMG) in the presence of an H+ electrochemical gradient (interior negative and alkaline). Furthermore, the rate of carrier-mediated efflux under nonenergized conditions is slow and unaffected by ambient pH from pH 5.5 to 7.5, and TMG-induced H+ influx is only about 15% of that observed in vesicles containing wild-type lac permease (ML 308-225). Alternatively, ML 308-22 vesicles bind p-nitrophenyl alpha-D-galactopyranoside and monoclonal antibody 4B1 to the same extent as ML 308-225 vesicles and catalyze facilitated diffusion and equilibrium exchange as well as ML 308-225 vesicles. When entrance counterflow is studied with external substrate at saturating and subsaturating concentrations, it is apparent that the mutation simulates the effects of deuterium oxide [Viitanen, P., Garcia, M. L., Foster, D. L., Kaczorowski, G. J., & Kaback, H. R. (1983) Biochemistry 22, 2531]. That is, the mutation has no effect on the rate or extent of counterflow when external substrate is saturating but stimulates the efficiency of counterflow when external substrate is below the apparent Km. Moreover, although replacement of protium with deuterium stimulates counterflow in ML 308-225 vesicles when external substrate is subsaturating, the isotope has no effect on the mutant vesicles under the same conditions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The double mutant of the lactose permease containing Val177/Asn319 exhibits proton leakiness by two pathways (see Brooker, R. J. (1991) J. Biol Chem. 266, 4131-4138). One type of H+ leakiness involves the uncoupled influx of H+ (leak A pathway) while a second type involves the coupled influx of H+ and galactosides in conjunction with uncoupled galactoside efflux (leak B pathway). In the current study, 14 independent lactose permease mutants were isolated from the Val177/Asn319 parent which were resistant to thiodigalactoside growth inhibition but retained the ability to transport maltose. All of these mutants contained a third mutation (besides Val177/Asn319) at one of two sites. Eight of the mutants had Ile303 changed to Phe, while six of the mutants had Tyr236 changed to Asn or His. Each type of triple mutant was characterized with regard to sugar transport, H+ leakiness, and sugar specificity. Like the parental strain, all three types of triple mutant showed moderate rates of downhill lactose transport and were defective in the uphill accumulation of sugars. However, with regard to proton leakiness, the triple mutants fell into two distinct categories. The mutant containing Phe303 was generally less H+ leaky than the parent either via the leak A or leak B pathway. In contrast, the triple mutants containing position 236 substitutions (Asn or His) were actually more H+ leaky via the leak A pathway and exhibited similar H+ leakiness via the leak B pathway at high thiodigalactoside concentrations. The ability of the position 236 mutants to grow better than the parent in the presence of low concentrations of thiodigalactoside appears to be due to a decrease in affinity for this particular sugar rather than a generalized defect in H+ leakiness. Finally, the triple mutants showed a sugar specificity profile which was different from either the Val177/Asn319 parent, the single Val177 mutant, or the wild-type strain. These results are discussed with regard to the effects of mutations on both the sugar and H+ transport pathways.  相似文献   

16.
Lactose/H+ symport in Escherichia coli is catalysed by a hydrophobic transmembrane protein encoded by the lacY gene that has been purified to homogeneity, reconstituted into proteoliposomes and shown to be completely functional as a monomer. Circular dichroic studies and hydropathy profiling of the amino-acid sequence of this 'lac' permease suggest a secondary structure in which the polypeptide consists of 12 hydrophobic segments in alpha-helical conformation that traverse the membrane in zig-zag fashion connected by shorter, hydrophilic domains with most of the charged residues and many of the residues commonly found in beta-turns. Support for certain general aspects of the model has been obtained from other biophysical studies, as well as biochemical, immunological and genetic approaches. Oligonucleotide-directed, site-specific mutagenesis is currently being utilized to probe the structure and function of the permease. Application of the technique provides an indication that Arg302 (putative helix IX), His322 (putative helix X) and Glu325 (putative helix X) may be sufficiently close to hydrogen-bond and that these residues play a critical role in lactose-coupled H+ translocation, possibly as components of a charge-relay type of mechanism. In contrast, Cys residues, which were long thought to play a central role in the mechanism of lactose/H+ symport, do not appear to be involved in either substrate binding or H+ translocation.  相似文献   

17.
lac permease mutated at each of the 8 cysteinyl residues in the molecule was solubilized from the membrane, purified, and reconstituted into proteoliposomes. The transport activity of proteoliposomes reconstituted with each mutant permease relative to the wild-type is virtually identical with that reported for intact cells and/or right-side-out membrane vesicles. Moreover, a double mutant containing Ser in place of both Cys148 and Cys154 exhibits significant ability to catalyze active lactose transport. The results provide strong confirmation for the contention that cysteinyl residues in lac permease do not play an important role in the transport mechanism. The effect of sulfhydryl oxidant 5-hydroxy-2-methyl-1,4-naphthoquinone on lactose transport in proteoliposomes reconstituted with wild-type or mutant permeases was also investigated, and the results indicate that inactivation is probably due to formation of a covalent adduct with Cys148 and/or Cys154 rather than disulfide formation. Thus, it seems unlikely that sulfhydryl-disulfide interconversion functions to regulate permease activity.  相似文献   

18.
Using a functional lactose permease mutant devoid of Cys residues (C-less permease), each amino-acid residue in putative transmembrane helices IX and X and the short intervening loop was systematically replaced with Cys (from Asn-290 to Lys-335). Thirty-four of 46 mutants accumulate lactose to high levels (70-100% or more of C-less), and an additional 7 mutants exhibit lower but highly significant lactose accumulation. As expected (see Kaback, H.R., 1992, Int. Rev. Cytol. 137A, 97-125), Cys substitution for Arg-302, His-322, or Glu-325 results in inactive permease molecules. Although Cys replacement for Lys-319 or Phe-334 also inactivates lactose accumulation, Lys-319 is not essential for active lactose transport (Sahin-Tóth, M., Dunten, R.L., Gonzalez, A., & Kaback, H.R., 1992, Proc. Natl. Acad. Sci. USA 89, 10547-10551), and replacement of Phe-334 with leucine yields permease with considerable activity. All single-Cys mutants except Gly-296 --> Cys are present in the membrane in amounts comparable to C-less permease, as judged by immunological techniques. In contrast, mutant Gly-296 --> Cys is hardly detectable when expressed at a relatively low rate from the lac promoter/operator but present in the membrane in stable form when expressed at a high rate from T7 promoter. Finally, studies with N-ethylmaleimide (NEM) show that only a few mutants are inactivated significantly. Remarkably, the rate of inactivation of Val-315 --> Cys permease is enhanced at least 10-fold in the presence of beta-galactopyranosyl 1-thio-beta-D-galactopyranoside (TDG) or an H+ electrochemical gradient (delta mu-H+). The results demonstrate that only three residues in this region of the permease -Arg-302, His-322, and Glu-325-are essential for active lactose transport. Furthermore, the enhanced reactivity of the Val-315 --> Cys mutant toward NEM in the presence of TDG or delta mu-H+ probably reflects a conformational alteration induced by either substrate binding or delta mu-H+.  相似文献   

19.
The Escherichia coli strain carrying the lac Y54-41 gene encodes a mutant lactose permease which carries out normal downhill transport of galactosides but is defective in uphill accumulation. In this study, the mutant lac Y54-41 gene was cloned onto the multicopy vector pUR270. As expected, the cloned gene was shown to express normal downhill transport activity but was markedly defective in the uphill transport of methyl-beta-D-thiogalactopyranoside. Direct measurements of H+ transport revealed that the mutant permease can transport H+ with methyl-beta-D-thiogalactopyranoside but at a significantly reduced capacity compared to the wild-type strain. However, under conditions where the mutant and wild-type strains both transport lactose at similar rates, no detectable H+ transport was observed in the mutant strain. The entire cloned lac Y54-41 gene was subjected to DNA sequencing, and a single base substitution was found which replaces glycine 262 in the protein with a cysteine residue. Inhibition experiments showed that the mutant permease is dramatically more sensitive to three different sulfhydryl reagents: N-ethylmaleimide, p-hydroxymericuribenzoate, and p-hydroxymercuriphenylsulfonic acid. However, the lactose analogue, thiodigalactoside, was only marginally effective at protecting against inhibition in the mutant strain. The results are consistent with the idea that the sulfhydryl reagents are inhibiting the mutant permease activity by reacting with cysteine 262.  相似文献   

20.
The lac Y gene of Escherichia coli was modified by oligonucleotide-directed, site-specific mutagenesis so that Gln-60 is replaced with Glu. Although the replacement introduces a negative charge into a putative hydrophobic, transmembrane alpha-helical segment of the lac permease, lactose/H+ symport is unimpaired. However, the modified permease is more susceptible to heat inactivation. That is, upon incubation at 45 degrees C, Glu-60 permease loses activity with a t1/2 of 20 min relative to a t1/2 of 50 min with wild-type permease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号