首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During the last decade, the role of radial glia has been radically revisited. Rather than being considered a mere structural component serving to guide newborn neurons towards their final destinations, radial glia is now known to be the main source of neurons in several regions of the central nervous system, notably in the cerebral cortex. Radial glial cells differentiate from neuroepithelial progenitors at the beginning of neurogenesis and share with their ancestors the bipolar shape and the expression of some molecular markers. Radial glia, however, can be distinguished from neuroepithelial progenitors by the expression of astroglial markers. Clonal analyses showed that radial glia is a heterogeneous population, comprising both pluripotent and different lineage-restricted neural progenitors. At late-embryonic and postnatal stages, radial glial cells give rise to the neural stem cells responsible for adult neurogenesis. Embryonic pluripotent radial glia and adult neural stem cells may be clonally linked, thus representing a lineage displaying stem cell features in both the developing and mature central nervous system. This work was supported by AIRC (Associazione Italiana per la Ricerca sul Cancro) NUSUG grant (In vivo screening for genes implicated in glioma formation and development of new animal models of glial tumors) and by Fondazione CARIGE grant (Basi molecolari e cellulari dei gliomi: individuazione di marcatori diagnostici e di nuovi bersagli terapeutici).  相似文献   

2.
Zhang QB  Ji XY  Huang Q  Dong J  Zhu YD  Lan Q 《Cell research》2006,16(12):909-915
Understanding of the differentiation profile of brain tumor stem cells (BTSCs), the key ones among tumor cell population, through comparison with neural stem cells (NSCs) would lend insight into the origin of glioma and ultimately yield new approaches to fight this intractable disease. Here, we cultured and purified BTSCs from surgical glioma specimens and NSCs from human fetal brain tissue, and further analyzed their cellular biological behaviors, especially their differentiation property. As expected, NSCs differentiated into mature neural phenotypes. In the same differentiation condition, however, BTSCs exhibited distinguished differences. Morphologically, cells grew flattened and attached for the first week, but gradually aggregated and reformed floating tumor sphere thereafter. During the corresponding period, the expression rate of undifferentiated cell marker CD 133 and nestin in BTSCs kept decreasing, but 1 week later, they regained ascending tendency. Interestingly, the differentiated cell markers GFAP and β-tubulinlII showed an expression change inverse to that of undifferentiated cell markers. Taken together, BTSCs were revealed to possess a capacity to resist differentiation, which actually represents the malignant behaviors of glioma.  相似文献   

3.
Chell JM  Brand AH 《Cell》2010,143(7):1161-1173
The systemic regulation of stem cells ensures that they meet the needs of the organism during growth and in response to injury. A key point of regulation?is the decision between quiescence and proliferation. During development, Drosophila neural stem cells (neuroblasts) transit through a period of quiescence separating distinct embryonic and postembryonic phases of proliferation. It is known that neuroblasts exit quiescence via a hitherto unknown pathway in response to a nutrition-dependent signal from the fat body. We have identified a population of glial cells that produce insulin/IGF-like peptides in response to nutrition, and we show that the insulin/IGF receptor pathway is necessary for neuroblasts to exit quiescence. The forced expression of insulin/IGF-like peptides in glia, or activation of PI3K/Akt signaling in neuroblasts, can drive neuroblast growth and proliferation in the absence of dietary protein and thus uncouple neuroblasts from systemic control.  相似文献   

4.

Background

Neural induction of human pluripotent stem cells often yields heterogeneous cell populations that can hamper quantitative and comparative analyses. There is a need for improved differentiation and enrichment procedures that generate highly pure populations of neural stem cells (NSC), glia and neurons. One way to address this problem is to identify cell-surface signatures that enable the isolation of these cell types from heterogeneous cell populations by fluorescence activated cell sorting (FACS).

Methodology/Principal Findings

We performed an unbiased FACS- and image-based immunophenotyping analysis using 190 antibodies to cell surface markers on naïve human embryonic stem cells (hESC) and cell derivatives from neural differentiation cultures. From this analysis we identified prospective cell surface signatures for the isolation of NSC, glia and neurons. We isolated a population of NSC that was CD184+/CD271/CD44/CD24+ from neural induction cultures of hESC and human induced pluripotent stem cells (hiPSC). Sorted NSC could be propagated for many passages and could differentiate to mixed cultures of neurons and glia in vitro and in vivo. A population of neurons that was CD184/CD44/CD15LOW/CD24+ and a population of glia that was CD184+/CD44+ were subsequently purified from cultures of differentiating NSC. Purified neurons were viable, expressed mature and subtype-specific neuronal markers, and could fire action potentials. Purified glia were mitotic and could mature to GFAP-expressing astrocytes in vitro and in vivo.

Conclusions/Significance

These findings illustrate the utility of immunophenotyping screens for the identification of cell surface signatures of neural cells derived from human pluripotent stem cells. These signatures can be used for isolating highly pure populations of viable NSC, glia and neurons by FACS. The methods described here will enable downstream studies that require consistent and defined neural cell populations.  相似文献   

5.
6.
Oxygen is a fundamental element for all living organisms, and modifications in its concentration influence several physiological and pathological events such as embryogenesis, development and also aging. Regulation of oxygen levels is an important factor in neural stem cell biology (e.g. differentiation, growth and the capacity to generate more differentiated cells). Studies on neural stem cells in culture have deepened our knowledge of their survival, proliferation and differentiation pathways. However, traditional cell culture for neural stem cells is performed employing environmental oxygen levels of 20%, while the effective oxygen concentration in the developing and adult brain is significantly lower; this results in an important alteration of the in vivo conditions. Several data indicate that a so called "physiologic hypoxic condition" could strongly influence the growth of neural stem cells and their differentiation mechanisms both in vivo and in vitro. The present overview deals with the different mechanisms utilized by invertebrate and vertebrate organisms to respond to hypoxic conditions. It highlights how the adaptations and responses to different oxygen concentrations have changed along the developmental route and underlines the importance of oxygen concentration in neural physiology and differentiation, with a final hint to the involvement of hypoxia in brain cancer stem cells.  相似文献   

7.
The phenomenon of adult neurogenesis has been demonstrated in most mammals including humans. At least two regions of the adult brain maintain stem cells throughout life; the subgranular zone (SGZ) of the hippocampal dentate gyrus, and the subventricular zone (SVZ) of the lateral ventricle wall. Both regions continuously produce neurons that mature and become integrated into functional networks that are involved in learning and memory and odor discrimination, respectively. Apart from these well‐studied regions neurogenesis has been reported in a number of other brain regions, such as amygdala and cortex. However, these studies have been contested and there is currently no well‐postulated function for non‐SVZ/SGZ neurogenesis. The studies of the regional localization of neurogenesis in the brain have been made possible due to several methods for detecting adult neurogenesis including; bromodeoxyuridine labeling (BrdU) together with markers of mature neurons, genetic labeling, by mouse transgenesis, or with the use of viral vectors. These techniques are already put to creative use and will be essential for the discovery of the nature of the adult neural stem cells. In this mini‐review, we will discuss the localization of neural stem/progenitor cells in the brain and their implications as well as discussing the pro's and con's of stem cell labeling techniques. J. Cell. Physiol. 226: 1–7, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
Although the local environment is known to regulate neural stem cell (NSC) maintenance in the central nervous system, little is known about the molecular identity of the signals involved. Chondroitin sulfate proteoglycans (CSPGs) are enriched in the growth environment of NSCs both during development and in the adult NSC niche. In order to gather insight into potential biological roles of CSPGs for NSCs, the enzyme chondroitinase ABC (ChABC) was used to selectively degrade the CSPG glycosaminoglycans. When NSCs from mouse E13 telencephalon were cultivated as neurospheres, treatment with ChABC resulted in diminished cell proliferation and impaired neuronal differentiation, with a converse increase in astrocytes. The intrauterine injection of ChABC into the telencephalic ventricle at midneurogenesis caused a reduction in cell proliferation in the ventricular zone and a diminution of self-renewing radial glia, as revealed by the neurosphere-formation assay, and a reduction in neurogenesis. These observations suggest that CSPGs regulate neural stem/progenitor cell proliferation and intervene in fate decisions between the neuronal and glial lineage.  相似文献   

9.
10.
内源性神经干细胞与脑老化的治疗   总被引:1,自引:0,他引:1  
近十几年研究发现成年人脑神经元可以再生,使人们重新认识老年脑神经细胞的可塑性,它为脑损伤的修复带来新的希望。最新研究表明,神经再生可被调控,是一种新的修复机制。这使得利用内源性神经干细胞治疗老龄相关的神经退行性疾病成为可能。  相似文献   

11.
Pathways of dehydroepiandrosterone formation in rat brain glia   总被引:4,自引:0,他引:4  
In peripheral steroidogenic tissues, dehydroepiandrosterone (D) is formed from pregnenolone (P) by the microsomal cytochrome P450c17 enzyme. Although some steroidogenic P450s have been found in brain tissue, no enzyme has been shown to possess P450c17 activity. We recently demonstrated the presence of an alternative, Fe(2+)-dependent pathway responsible for D formation from alternative precursors in rat glioma cells. We and others could not find P450c17 mRNA and protein in rat brain, but demonstrate herein the presence of Fe(2+)-dependent alternative pathway for D formation in rat brain cortex microsomes. Using primary cultures of differentiating rat glial cells, we observed that P450c17 mRNA and protein were present in O-2A oligodendrocyte precursors and mature oligodendrocytes. In the presence of P, O-2A and mature oligodendrocytes formed D. Addition of Fe(2+) together with submaximal concentrations of P increased D formation by these cells. Treatment of oligodendrocytes with the P450c17 inhibitor SU 10603 in the presence or absence of P failed to inhibit D production. These data suggest that D formation in oligodendrocytes occurs independently of the P450c17 protein present in the cells. In isolated type I astrocytes we did not find neither P450c17 mRNA nor protein. These cells responded to Fe(2+) by producing D and addition of P together with Fe(2+) further increased D synthesis. SU 10603 failed to inhibit D formation by astrocytes. Taken together these results suggest that in differentiating rat brain oligodendrocytes and astrocytes D is formed via a P450c17-independent and oxidative stress-dependent alternative pathway.  相似文献   

12.
Recent work in neuroscience has shown that the adult central nervous system (CNS) contains neural progenitors, precursors and stem cells that are capable of generating new neurons, astrocytes and oligodendrocytes. While challenging the previous dogma that no new neurons are born in the adult mammalian CNS, these findings bring with them the future possibilities for development of novel neural repair strategies. The purpose of this review is to present the current knowledge about constitutively occurring adult mammalian neurogenesis, highlight the critical differences between 'neurogenic' and 'non-neurogenic' regions in the adult brain, and describe the cardinal features of two well-described neurogenic regions-the subventricular zone/olfactory bulb system and the dentate gyrus of the hippocampus. We also provide an overview of presently used models for studying neural precursors in vitro, mention some precursor transplantation models and emphasize that, in this rapidly growing field of neuroscience, one must be cautious with respect to a variety of methodological considerations for studying neural precursor cells both in vitro and in vivo. The possibility of repairing neural circuitry by manipulating neurogenesis is an intriguing one, and, therefore, we also review recent efforts to understand the conditions under which neurogenesis can be induced in non-neurogenic regions of the adult CNS. This work aims towards molecular and cellular manipulation of endogenous neural precursors in situ, without transplantation. We conclude this review with a discussion of what might be the function of newly generated neurons in the adult brain, and provide a summary of present thinking about the consequences of disturbed adult neurogenesis and the reaction of neurogenic regions to disease.  相似文献   

13.
Neural cancers display cellular hierarchies with self-renewing tumorigenic cancer stem cells (CSCs) at the apex. Instructive cues to maintain CSCs are generated by both intrinsic networks and the niche microenvironment. The CSC-microenvironment relationship is complex, as CSCs can modify their environment and extrinsic forces induce plasticity in the cellular hierarchy.  相似文献   

14.
Balancing self-renewal and differentiation of stem cells is an important issue in stem cell and cancer biology. Recently, the Drosophila neuroblast (NB), neural stem cell has emerged as an excellent model for stem cell self-renewal and tumorigenesis. It is of great interest to understand how defects in the asymmetric division of neural stem cells lead to tumor formation. Here, we review recent advances in asymmetric division and the self-renewal control of Drosophila NBs. We summarize molecular mechanisms of asymmetric cell division and discuss how the defects in asymmetric division lead to tumor formation. Gain-of-function or loss-of-function of various proteins in the asymmetric machinery can drive NB overgrowth and tumor formation. These proteins control either the asymmetric protein localization or mitotic spindle orientation of NBs. We also discuss other mechanisms of brain tumor suppression that are beyond the control of asymmetric division.  相似文献   

15.
神经干细胞研究进展   总被引:8,自引:0,他引:8  
神经干细胞研究是当今生命科学研究的热点之一。神经干细胞是神经系统发育过程中保留下来的具有自我更新和多分化潜能的原始细胞。随着对神经干细胞认识的不断深入,其临床应用前景与价值得到了越来越多研究者的肯定。从神经干细胞的生物学特征、来源、培养鉴定、分化及应用等几个方面对目前的研究做一概述。  相似文献   

16.
17.
18.
19.

Background

Aberrational epigenetic marks are believed to play a major role in establishing the abnormal features of cancer cells. Rational use and development of drugs aimed at epigenetic processes requires an understanding of the range, extent, and roles of epigenetic reprogramming in cancer cells. Using ChIP-chip and MeDIP-chip approaches, we localized well-established and prevalent epigenetic marks (H3K27me3, H3K4me3, H3K9me3, DNA methylation) on a genome scale in several lines of putative glioma stem cells (brain tumor stem cells, BTSCs) and, for comparison, normal human fetal neural stem cells (fNSCs).

Results

We determined a substantial “core” set of promoters possessing each mark in every surveyed BTSC cell type, which largely overlapped the corresponding fNSC sets. However, there was substantial diversity among cell types in mark localization. We observed large differences among cell types in total number of H3K9me3+ positive promoters and peaks and in broad modifications (defined as >50 kb peak length) for H3K27me3 and, to a lesser extent, H3K9me3. We verified that a change in a broad modification affected gene expression of CACNG7. We detected large numbers of bivalent promoters, but most bivalent promoters did not display direct overlap of contrasting epigenetic marks, but rather occupied nearby regions of the proximal promoter. There were significant differences in the sets of promoters bearing bivalent marks in the different cell types and few consistent differences between fNSCs and BTSCs.

Conclusions

Overall, our “core set” data establishes sets of potential therapeutic targets, but the diversity in sets of sites and broad modifications among cell types underscores the need to carefully consider BTSC subtype variation in epigenetic therapy. Our results point toward substantial differences among cell types in the activity of the production/maintenance systems for H3K9me3 and for broad regions of modification (H3K27me3 or H3K9me3). Finally, the unexpected diversity in bivalent promoter sets among these multipotent cells indicates that bivalent promoters may play complex roles in the overall biology of these cells. These results provide key information for forming the basis for future rational drug therapy aimed at epigenetic processes in these cells.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-724) contains supplementary material, which is available to authorized users.  相似文献   

20.
Conceptual and technical advances in neural stem cell biology are being applied to the study of human brain tumours. These studies suggest that human brain tumours are organized as a hierarchy and are maintained by a small number of tumour cells that have stem cell properties. Most of the bulk population of human brain tumours comprise cells that have lost the ability to initiate and maintain tumour growth. Although the cell of origin for human brain tumours is uncertain, recent evidence points towards the brain's known proliferative zones. The identification of brain tumour stem cells has important implications for understanding brain tumour biology and these cells may be critical cellular targets for curative therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号