首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Mutants of Neurospora crassa have been isolated that are highly resistant to inhibition by oligomycin, an inhibitor of mitochondrial ATPase activity. Dixon plots (Dixon, M., and Webb, E.C. (1964) Enzymes, 2nd Ed, pp. 328-330, Academic Press, New York) of oligomycin inhibition curves of the parent strain and the resistant mutants are linear, indicating that oligomycin interacts at a single site within the ATPase complex. The Ki values obtained from the mutants vary from 150 to 900 times greater than the Ki obtained for the parent strain. The parent strain and the oligomycin-resistant mutants are also inhibited by bathophenanthroline, a lipophilic chelating agent that inhibits F1 ATPase activity. Dixon plots of bathophenanthroline inhibition curves are also linear and Ki values obtained are all approximately equal. Crosses of the oligomycin-resistant mutants to the oligomycin-sensitive parent strain show a mendelian segregation of the resistance characteristic. These data show that mutations leading to oligomycin resistance in Neurospora are due to alterations in nuclear genes.  相似文献   

2.
Summary The mitochondrial ATPase from oligomycin-resistant mutants which map on different regions of an extrachromosomal DNA (01 and 011 class mutants) showed an increased resistance to oligomycin and venturicidin when assayed in vitro as compared to the sensitive strains.The resistance to oligomycin of the isolated mitochondrial ATPase from 01 class mutants was higher than that of the 011 class mutants.Cross resistance of the oligomycin-resistant mutants to the antibiotics peliomycin and ossamycin, which also inhibit phosphoryl transfer reactions in mitochondria (Walter et al., 1967), was observed, 01 mutants being more resistant to ossamycin than 011 class mutants. At the concentrations of peliomycin studied, no difference in sensitivity among both groups of oligomycin-resistant mutants could be detected.Mitochondrial respiration and isolated mitochondrial ATPase activity are sensitive to venturicidin, suggesting that the previously observed (Brunner et al., 1977) in vivo venturicidin resistance of K. lactis is probably due to an impairment of the influx of the drug at the level of the plasma membrane.  相似文献   

3.
The properties of a new type of oligomycin-resistant Chinese hamster ovary (CHO) cell line (Olir 2.2) are described in this paper. Olir 2.2 cells were approximately 50,000-fold more resistant to oligomycin than were wild-type CHO cells when tested in glucose-containing medium, but only 10- to 100-fold more resistant when tested in galactose-containing medium. Olir 2.2 cells grew with a doubling time similar to that of wild-type cells both in the presence or absence of oligomycin. Oligomycin resistance in Olir 2.2 cells was stable in the absence of drug. In vitro assays indicated that there was approximately a 25-fold increase in the resistance of the mitochondrial ATPase to inhibition by oligomycin in Olir 2.2 cells, with little change in the total ATPase activity. The electron transport chain was shown to be functional in Olir 2.2 cells. Olir 2.2 cells were cross-resistant to other inhibitors of the mitochondrial ATPase (such as rutamycin, ossamycin, peliomycin, venturicidin, leucinostatin, and efrapeptin) and to other inhibitors of mitochondrial functions (such as chloramphenicol, rotenone, and antimycin). Oligomycin resistance was expressed codominantly in hybrids between Olir 2.2 cells and wild-type cells. Cross-resistance to ossamycin, peliomycin, chloramphenicol, antimycin, venturicidin, leucinostatin, and efrapeptin was also expressed codominantly in hybrids. Fusions of enucleated Olir 2.2 cells with wild-type cells and characterization of the resulting cybrid clones indicated that resistance to oligomycin and ossamycin results from a mutation in both a nuclear gene and a cytoplasmic gene. Cross-resistance to efrapeptin, leucinostatin, venturicidin, and antimycin results from a mutation in only a nuclear gene.  相似文献   

4.
Summary The extranuclear mitochondrial oligomycin-resistant mutation ofAspergillus nidulans, (oliA1), was transferred asexually into four nuclear oligomycin-resistant strains of different phenotypes. In all four cases, the possession of the nuclear plus extranuclear mutation led to an increase in the in vivo level of oligomycin resistance. In two cases, the altered cytochrome spectrum and impaired growth ability determined by (oliA1) were suppressed by the nuclear mutations. In the third case, the in vitro oligomycin resistance of the double mutant ATPase was dramatically increased above that of either of the component single mutant strains, indicating a synergystic interaction between the nuclear and extranuclear gene products. In the fourth case, the double mutant became cold-sensitive.A new extranuclear mitochondrial oligomycin-resistant mutation (oliB332) is described. This mutant is phenotypically similar to, though not identical with, (oliA1) but is separable by recombination.A range of nuclear oligomycin-resistant mutants have been mapped. Despite presenting five distinctly different phenotypes, they all map at the same locus.  相似文献   

5.
Two classes ofSaccharomyces cerevisiae mutants resistant to oligomycin, an inhibitor of mitochondrial membrane bound ATPase are described. Biochemical analysis shows thatin vitro the mitochondrial ATPase of both types of mutant are sensitive to oligomycin.In vivo sensitivity of the mutants to oligomycin can be demonstrated following anaerobic growth of the cells, which grossly alters the mitochondrial membrane and renders the ATPase of the mutants sensitive to oligomycin. It is concluded that the mutation to oligomycin resistance in both mutant types is phenotypically expressed as a change in the mitochondrial membrane. The intact mitochondrial membrane in the wild type cell is freely permeable to oligomycin, whereas the resistant mutant is impermeable to oligomycin; alteration of the mitochondrial membrane during isolation of the organelle or physiological modification of the membranes of the mitochondria by anaerobic growth renders the membranes permeable.These mitochondrial membrane mutants differ in their cross-reference patterns and their genetics. One is resistant to oligomycin only, and behaves like previously reported cytoplasmic mutants. The other shows cross-resistance to inhibitors of mitochondrial protein synthesis as well as to oligomycin; although the mutant appears to arise from a single step mutation its genetic properties are complex and show part-nuclear and part-cytoplasmic characteristics. The implications of the observations are discussed.  相似文献   

6.
P Nagley  R M Hall  B G Ooi 《FEBS letters》1986,195(1-2):159-163
A series of isonuclear oligomycin-resistant mutants of Saccharomyces cerevisiae carrying mutations in the mitochondrial oli1 gene has been studied. DNA sequence analysis of this gene has been used to define the amino acid substitutions in subunit 9 of the mitochondrial ATPase complex. A domain of amino acids involved in oligomycin resistance can be recognized which encompasses residues in each of the two hydrophobic portions of the subunit 9 polypeptide that are thought to span the inner mitochondrial membrane. Certain amino acid substitutions also confer cross-resistance to venturicidin: these residues define an inner domain for venturicidin resistance. The expression of venturicidin resistance resulting from one particular substitution is modulated by nuclear genetic factors.  相似文献   

7.
We have determined the nucleotide sequence of the URF A6L and ATPase 6 genes of the mitochondrial DNA of wild-type Chinese hamster ovary (CHO) cells and of two independently isolated, cytoplasmically inherited CHO mutant cell lines that are resistant to oligomycin, an inhibitor of the mitochondrial ATP synthase (ATPase) complex. Comparison of the nucleotide sequences of the mutants with that of their parental cell line revealed a single nucleotide difference, a G-to-A transition at nucleotide 433 of the ATPase 6 gene. This single base pair change predicts a nonconservative amino acid change, with a glutamic acid residue being replaced by a lysine residue at amino acid 145 of the ATPase 6 gene product in the mutants. This glutamic acid residue and several others in the surrounding amino acid sequence are conserved among all species examined to date. Analyses of several of the biochemical properties of the oligomycin-resistant CHO mutants indicate that the glutamic acid residue at position 145 of subunit 6 of the mitochondrial ATP synthase complex is important for the binding of oligomycin to the enzyme complex, but is not essential for proton translocation.  相似文献   

8.
Oligomycin-resistant clones were isolated from Chinese hamster ovary cells by treatment of cells with ethidium bromide, followed by mutagenesis with ethylmethane sulfonate and selection in oligomycin. One clone (Olir 8.1) was chosen for further study. Olir 8.1 cells grow with doubling time similar to that of wild-type cells, whether grown in the presence or absence of drug (doubling time of 13-14 h). In plating efficiency experiments, Olir 8.1 cells are approximately 100-fold more resistant to oligomycin than are wild-type cells. There is approximately a 32-fold increase in the resistance to inhibition by oligomycin of the mitochondrial ATPase from Olir 8.1 cells. The electron transport chain is functional in Olir 8.1 cells. Oligomycin resistance is stable in the absence of selective pressure. There is little or no cross-resistance of Olir 8.1 cells to venturicidin and dicyclohexylcarbodiimide, other inhibitors of the mitochondrial ATPase, or to chloramphenicol, an inhibitor of mitochondrial protein synthesis. Oligomycin resistance is dominant in hybrids between Olir 8.1 cells and wild-type cells. Fusions of enucleated Olir 8.1 cells with sensitive cells and characterization of the resulting "cybrid" clones indicates that oligomycin resistance in Olir 8.1 cells is cytoplasmically inherited.  相似文献   

9.
Mutations at either of the two OLI 1 and OLI 2 loci on mitochondrial DNA of Saccharomyces cerevisiae confer high oligomycin resistance to cell growth, but only moderate oligomycin resistance to the ATPase in isolated mitochondria, the degree of resistance being characteristic of each mutant. For the most highly resistant mutant (locus OLI 1) the moderate resistance of the ATPase reaction is considerably magnified at the coupling level in isolated mitochondria. For the mutant at locus OLI 2 the coupling properties exhibit the same oligomycin sensitivity as for the wild type, contrasting with the oligomycin resistance of the ATPase and of cell growth. A conformational hypothesis is proposed to account for this finding.  相似文献   

10.
Venturicidin is a specific inhibitor of aerobic growth of yeast and has no effect on fermentative growth, a result which is consistent with its known mode of action on mitochondrial oxidative phosphorylation. Venturicidin-resistant mutants of Saccharomyces cerevisiae have been isolated and form two general classes: class 1, nuclear mutants which are resistant to a variety of mitochondrial inhibitors and uncouplers, and class 2, mitochondrial mutants of phenotype VENR OLYR and VENR TETR in vivo. VENR OLYR mutants show a high degree of resistance to venturicidin and oligomycin at the whole cell and mitochondrial ATPase level but, in contrast, no resistance at the mitochondrial level is observed with VENR TETR mutants. Venturicidin resistance/sensitivity can be correlated with two binding sites on mitochondrial ATPase, one of which is common to the oligomycin binding site and the other is common to the triethyl tin binding site. Biochemical genetic studies indicate that two mitochondrial genes specify venturicidin resistance/sensitivity and that the mitochondrial gene products are components of the mitochondrial ATPase complex.  相似文献   

11.
Mutants of Saccharomyces cerevisiae resistant to triethyl tin sulphate have been isolated and are cross-resistant to other trialkyl tin salts. Triethyl-tin-resistant mutants fall into two general phenotypic classes: class 1 and class 2. Class 1 mutants are cross-resistant to a variety of inhibitors and uncoupling agents which affect mitochondrial membranes (oligomycin, ossamycin, valinomycin, antimycin, erythromycin, chloramphenicol, '1799', tetrachlorotrifluoromethyl benzimidazole carbonylcyanide-m-chlorophenylhydrazone and cycloheximide). Class 2 mutants are specifically resistant to trithyl tin and the uncoupling agent "1799' [bis-(hexafluoroacetonyl)-acetone]. Triethyl tin at neutral pH values is a specific inhibitor of mitochondrial energy conservation reactions and prevents growth on oxidisable substrates such as glycerol and ethanol. Triethyl-tin-resistant mutants grow normally on glucose and ethanol in the presence of triethyl tin (10 muM). Biochemical studies indicate that the mutation involves a modification of the triethyl tin binding site on the mitochondrial inner membrane, probably the ATP-synthetase complex. Triethyl tin resistance/sensitivity in yeast is determined by cytoplasmic (mitochondrial) and nuclear genes. The mutants fall into a nuclear and a cytoplasmic (mitochondrial) class corresponding to the phenotypic cross-resistance classes 1 and 2. In the cytoplasmic mutants the triethyl tin resistance segregates mitotically and the resistance determinat is deleted by the action of ethidium bromide during petite induction. Recombination studies indicate that the triethyl tin mutations are not allelic with the other mitochondrial mutations at the loci RI, RIII and OLI. This indicates that the binding or inhibitory sites of oligomycin and triethyl tin are not identical and that the triethyl tin binding site is located on a different mitochondrial gene product to those which are involved in oligomycin binding. Interaction and cooperative effects between different binding sites on the mitochondrial inner membrane have been demonstrated in studies of the effect of the insertion of the TETr phenotype into mitochondrial oligomycin-resistant mutants and provide an experimental basis for complementation studies at the ATP-synthetase level.  相似文献   

12.
Summary Spontaneous mutants of the petite-negative yeast Kluyveromyces lactis, resistant to the antibiotics chloramphenicol and oligomycin, were isolated and genetically characterized.Three chloramphenicol-resistant mutants showed non-Mendelian inheritance when crossed to sensitive parents.Of 5 oligomycin-resistant strains studied, three exhibited resistance due to the presence of an extrachromosomal mutation. The resistance of the other two deriving from a nuclear and recessive mutation.When two factor crosses in trans configuration were performed between two of the chloramphenicol and the five oligomycin-resistant mutants a polarity in recombination was observed with a predominance of sensitive (OSCS) over resistant (ORCR) reciprocal recombinants.Allelism tests carried out among the oligomycin-resistant mutants indicated the presence of at least two distinct extrachromosomal regions responsible for the resistance.  相似文献   

13.
Two independently isolated oligomycin resistant mutants of Saccharomyces cerevisiae have been studied. The oligomycin resistance is conferred in each case by a single mutation at an oliA locus. In both strains the proteolipid subunit of the mitochondrial ATPase (subunit 9) shows an apparent increase in molecular weight as judged by its mobility in sodium dodecyl sulphate polyacrylamide gel electrophoresis. Variable effects are seen on other subunits. These results suggest that oliA loci may play some role in the determination of proteolipid ATPase subunit.  相似文献   

14.
Several stable Chinese hamster ovary (CHO) mutants were selected after ethylmethane sulfonate mutagenesis for resistance to oligomycin, ruatmycin, venturicidin, or antimycin. These mutants shared a number of common properties. They exhibited cross-resistance to those drugs which act on oxidative phosphorylation, irrespective of the structure and site of action of the drug. All the mutants showed a reduced ability to grow in suspension and to reach high saturation densities. They were also unable to use galactose as a carbon source. The short lag period required for selection (10-15 days), the similarity of the mutation rates for resistance to each of the four drugs, the high variance/mean ratios in fluctuation tests, and the recessive behavior of the resistance marker in hybrids suggest that the mutations responsible for resistance to oxidative phosphorylation inhibitors in CHO cells are coded by nuclear DNA. Segregation experiments indicated no linkage between the oligomycin-resistant marker (OLG) AND Thg (thioguanine resistance). Oxidative phosphorylation, as measured by the rate of respiration coupled to phosphorylation in whole cells remained as sensitive to the drugs in the mutants as in the parental cell line. Glucose transport and the overall Krebs' cycle activities also appeared similar in the mutants and the wild type. All the mutants had an increased rate of lactic acid production (up to twofold), associated with increased specific activities for several glycolytic enzymes when assayed in cell-free extracts.  相似文献   

15.
Successful intra- and interspecific mitochondrial transfers were performed by polyethylene glycol (PEG)-induced protoplast fusion among incompatible strains belonging to the Aspergillus niger species aggregate. The mitochondrial DNAs (mtDNAs) of the strains examined were of three main types based on their restriction fragment length polymorphism (RFLP) profiles. mtDNA types 1 and 2 correspond to A. niger and A. tubingensis species, respectively, while type 3 is represented by some Brazilian wild-type isolates (possibly a distinct species or subspecies). mtDNA types 1 and 2 could be further divided into several subgroups (1a–1e and 2a–2f?). All these strains, representing different RFLP groups or subgroups, were fully incompatible with respect to nuclear complementation. The transfer experiments were carried out under selection pressure, using a mitochondrial oligomycin-resistant mutant of mtDNA type 1a as donor. Following fusion mitochondrial oligomycin-resistant progenies were recovered in the presence of oligomycin by selecting for the nuclear phenotypes of the oligomycin-sensitive recipient strains. All attempted transfers were successful, and resulted in different varieties of resistant recombinant mitochondrial progenies at various frequencies. Within the group of strains of mtDNA type 1, the transfer of oligomycin-resistant mitochondria resulted in the appearance of a single recombinant type of RFLP profile in each case. The recombination events were more complex when the transfer of oligomycin resistance occurred between strains representing different species (mtDNA groups 1a→2 and 1a→3). A great variety of recombinant mtDNA RFLP profiles appeared. Explanation for this phenomenon are discussed on the basis of preliminary physical mapping data.  相似文献   

16.
1. Peroxisomes were isolated from bovine and rat liver by use of differential and density gradient centrifugations. 2. In the final density gradient (Nycodenz) a distinct peak of ATPase activity codistributed with the peroxisome marker catalase and was well separated from the bulk of the ATPase activity and from markers for other subcellular organelles. 3. The peroxisome-associated ATPase had a pH optimum of 7.5 and was inhibited by N-ethylmaleimide, by N,N'-dicyclohexylcarbodiimide and by 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole, but was unaffected by up to 30 microM n-tributyltin chloride. 4. Prolonged incubation with oligomycin at high concentrations indicated that 50% of peroxisomal ATPase was resistant to this inhibitor. The oligomycin-sensitive ATPase activity required at least a four-fold higher ratio of inhibitor to protein for inhibition than mitochondrial ATPase did. It was concluded that oligomycin-sensitive and oligomycin-resistant ATPase may be associated with liver peroxisomes.  相似文献   

17.
Summary The isolation and characterisation of a mutant affecting the assembly of mitochondrial ATPase is reported. The mutation confers resistance to oligomycin and venturicidin and sensitivity of growth on nonfermentable substrates to low temperature (19°). Genetic analysis indicates that the phenotype is due to a single mutation located on the mitochondrial DNA which is probably allelic with the independently isolated oligomycin resistance mutation [oli1-r].Growth of the mutant at the non-restrictive temperature (28°) yields mitochondria in which the ATPase appears more sensitive to oligomycin than that of the sensitive parental strain. However, when the enzyme is isolated free from the influence of the membrane strong resistance to oligomycin is evident. These data suggest that the component responsible for the oligomycin resistance of the ATPase is part of or subject to interaction with the mitochondrial inner membrane.Measurements of the ATPase content of mitochondria indicate that ATPase production is impaired during growth at 19° C. In addition, studies of the maximum inhibition of mitochondrial ATPase activity by high concentrations of oligomycin suggest a selective lesion in ATPase assembly at low temperature. The nett result is that during growth at 19° only about 10% of the normal level of ATPase is produced of which less than half is membrane integrated and thus capable of oxidative energy production.We propose that the mutation affects a mitochondrially synthesised membrane sector peptide of the ATPase which defines the interaction of F1 ATPase with specific environments on the mitochondrial inner membrane.  相似文献   

18.
1.A single-gene nuclear mutant of Saccharomyces cerevisiae, isolated as oligomycin-resistant, exhibits in vivo cross-resistance to venturicidin and collateral sensitivity to Synthalin. All three compounds are inhibitors of mitochondrial oxidative phosphorylation. Oligomycin resistance and Synthalin sensitivity are recessive, while venturicidin resistance is dominant. 2. Acytoplasmic mutant, also isolated as oligomycin-resistant, shows collateral sensitivity to both Synthalin and venturicidin. All three traits undergo mitotic segregation in diploids formed by crossing mutant and normal halpoids. 3. A novel nucleocytoplasmic interaction is observed in diploids formed by crossing haploid strains containing the nuclear and the cytoplasmic mutations, respectively. The dominant venturicidin resistance determined by the nuclear gene undergoes mitotic segregation, which results from a suppression of the nuclear phenotype by the cytoplasmic mutation. When a diploid mitotic segregant contains primarily mutant-type mitochondria, venturicidin resistance is completely suppressed. In haploids containing both the nuclear and cytoplasmic mutations, suppression is only partial. 4. Oxidative phosphorylation and ATPase in mitochondrial fractions isolated fromcytoplasmic mutant cells are less sensitive to inhibition by oligomycin than normal, but in vitro sensitivity to venturicidin is not significantly changed. In similar mitochondrial fractions isolated from normal and nuclear mutant cells, no significant differences in sensitivity to either inhibitor are detected. 5. The molecular basis for the nucleocytoplasmic suppression of venturicidin resistance may involve participation of mitochondrial membrane, plasma membrane or both. Either mitochondria can undergo changes in venturicidin sensitivity upon isolation, or the molecular entity which controls access of venturicidin to the mitochondria resides outside of the organelles. 6. Our data establish that aspects of the response in vivo of both venturicidin and Snythalin are controlled by the mitochondrial genome. 7. The nucleocytoplasmic interaction described here is the first example in which a specific restricted mitochondrial mutation modifies the phenotypic expression of a nuclear gene.  相似文献   

19.
Successful intra- and interspecific mitochondrial transfers were performed by polyethylene glycol (PEG)-induced protoplast fusion among incompatible strains belonging to the Aspergillus niger species aggregate. The mitochondrial DNAs (mtDNAs) of the strains examined were of three main types based on their restriction fragment length polymorphism (RFLP) profiles. mtDNA types 1 and 2 correspond to A. niger and A. tubingensis species, respectively, while type 3 is represented by some Brazilian wild-type isolates (possibly a distinct species or subspecies). mtDNA types 1 and 2 could be further divided into several subgroups (1a–1e and 2a–2f ). All these strains, representing different RFLP groups or subgroups, were fully incompatible with respect to nuclear complementation. The transfer experiments were carried out under selection pressure, using a mitochondrial oligomycin-resistant mutant of mtDNA type 1a as donor. Following fusion mitochondrial oligomycin-resistant progenies were recovered in the presence of oligomycin by selecting for the nuclear phenotypes of the oligomycin-sensitive recipient strains. All attempted transfers were successful, and resulted in different varieties of resistant recombinant mitochondrial progenies at various frequencies. Within the group of strains of mtDNA type 1, the transfer of oligomycin-resistant mitochondria resulted in the appearance of a single recombinant type of RFLP profile in each case. The recombination events were more complex when the transfer of oligomycin resistance occurred between strains representing different species (mtDNA groups 1a→2 and 1a→3). A great variety of recombinant mtDNA RFLP profiles appeared. Explanation for this phenomenon are discussed on the basis of preliminary physical mapping data. Received: 16 July 1996 / Accepted: 2 December 1996  相似文献   

20.
The nucleotide sequence of the oli1 gene encoding mitochondrial ATPase subunit 9 (76 amino acids) has been determined for five oligomycin-resistant mutants of Saccharomyces cerevisiae. Three of the mutations affect amino acids in the vicinity of the glutamic acid residue 59 at which dicylohexyl carbodiimide binds. Two other mutations lead to substitution of amino acid 23, which would lie very close to residue 59 in the folded hairpin conformation that this protein is thought to adopt in the inner mitochondrial membrane. The apposition of residues 23 and those adjacent to residue 59, lying respectively in the two hydrophobic membrane-spanning arms of subunit 9, is considered to constitute an oligomycin-binding domain. By consideration of the amino acid substitutions in those mutants cross-resistant to venturicidin, a domain of resistance for venturicidin is defined to lie within the oligomycin-binding domain, also centered on residues 23 and 59. These data also clarify the genetic recombination behaviour of alleles previously defined to form part of the oli3 locus (mutants characterized by resistance to both oligomycin and venturicidin) together with alleles defined to form part of the oli1 locus (mutants not cross-resistant to venturicidin). The oli1 and oli3 loci can now be seen to form two overlapping extended groups within the oli1 gene, with sequenced oli3 mutations being as far apart as 125 nucleotides within the subunit 9 coding region of 231 nucleotides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号