首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intracellular recordings were carried out on locust flight motoneurons after hemisection of individual thoracic ganglia. With the exception of minimal surgical manipulations, the animals were intact and able to perform tethered flight. Analysis of the synaptic drive recorded in the motoneurons during flight motor activity revealed the extent to which ganglion hemisection influenced the premotor rhythm generating network.
1.  Hemisection of the mesothoracic ganglion (Fig. 2) as well as hemisection of both the mesothoracic and the prothoracic ganglia (Fig. 3) had no significant effects on the pattern of synaptic input to the flight motoneurons. Thus the rhythm generating premotor network does not depend on commissural information transfer in the mesothoracic and the prothoracic ganglia. This conclusion was supported by experiments in which more extensive surgical isolations of thoracic ganglia were carried out (Fig. 5).
2.  Removal of input from wing receptors (deafferentation) in addition to hemisection of the mesothoracic ganglion (Fig. 4) resulted in rhythmic and coordinated oscillations of the motoneuron membrane potential which were indistinguishable from those observed in deafferented animals with all ganglia intact.
3.  Hemisection of the metathoracic ganglion had more pronounced effects on the patterns of synaptic drive to the flight motoneurons and their spike discharge. Rhythmic activity which was often subthreshold could, however, still be recorded following a metathoracic split (Fig. 6).
4.  No rhythmic synaptic input was observed after hemisection of both mesothoracic and metathoracic ganglia (Fig. 7).
  相似文献   

2.
1.  The activity of tympanal high- and low-frequency receptors in the migratory locustLocusta migratoria was recorded with glass capillary microelectrodes, and Lucifer Yellow was then injected through the microelectrode to reveal the cells' metathoracic projections.
2.  A photodetector device was used to monitor the abdominal respiratory movements, which caused clearly visible deflections of the tympanal membrane.
3.  The auditory receptors respond not only to sound stimuli but also to the respiratory movements; these phasic (Figs. 1–3) or tonic (Fig. 4) responses are especially pronounced during the inspiration and expiration movements, and less so during the constriction phases.
4.  The magnitude of the response to sound depends on the phase of the stimulus with respect to the respiratory movements. At certain phases sound elicits no response at all (Fig. 5).
  相似文献   

3.
1.  The reactions of tympanic nerve fibers ofLocusta migratoria were recorded by glass microelectrodes in the metathoracic ganglion.
2.  The units were classified by frequency-, intensity-, and directional characteristics as well as by their response pattern. The response to speciesspecific song is compared with the response to song ofEphippiger ephippiger.
3.  The physiological properties lead to a classification into three types of low-frequency neurons (characteristic frequency 3.5–4 kHz; 4kHz; 5.5–6 kHz) and one type of high-frequency neuron (12–20 kHz). This is similar to other species (Gray, 1960, Michelsen, 1971).
4.  Intensity-coding is done by sharp rising intensity characteristics and by different absolute thresholds of the units.
5.  There is a marked directional sensitivity with some differences between LF and HF units. In the low frequency range the tympanal organ seems to react as a pressure gradient receiver; for high frequencies another mechanism is discussed.
6.  No filtering of species-specific song takes place at the level of the receptor cells.
  相似文献   

4.
Locusts (Locusta migratoria) were stimulated with pulses of pure tones of frequencies between 5 kHz and 25 kHz. Interneurons responding to these stimuli (auditory interneurons) were recorded intracellularly and identified by dye injection. Their output functions were investigated by injection of depolarizing current during simultaneous registration of components of flight steering behavior of the animals, i.e. movements of the head and the abdomen and flight activity. Three different types of effects were found, corresponding to 3 functional classes of interneurons:
(1)  Auditory interneurons in the metathoracic ganglion can activate (Fig. 1) or inhibit (Fig. 2) the flight oscillator when depolarized.
(2)  Resting tethered locusts can perform lateral bending of the abdomen and, less prominent, head turns towards the sound source at frequencies between 5 and 15 kHz and at high intensities (70 dB and up, Fig. 3). Auditory interneurons were found which are sensitive to sound pulses with frequencies of 5 kHz to 15 kHz and some of them are directional (Fig. 4). Injection of depolarizing current into these cells causes movements of head and abdomen to the same side (Figs. 6, 7).
(3)  A third population of metathoracic and abdominal interneurons is also excited by pure tone pulses (Figs. 9, 11, 12). Current injected into these cells, and into a descending auditory interneuron (Fig. 8) results in spike activity, driving the head and the abdomen in opposite directions. These movements are components of the characteristic steering behavior seen in the negatively phonotactic response to pulsed ultrasound of intact tethered animals, which is thought to be involved in bat avoidance (Robert 1989).
The frequency responses of the interneurons and their output effects are discussed in the context of two basically different behaviors: a positive phonotaxis, which might be used during intraspecific communication, and an avoidance steering behavior to escape hunting bats.  相似文献   

5.
1.  Certain species of tiger moths emit clicks when stimulated by bat-like sounds. These clicks are generated by modified thoracic episterna (tymbals) (Fig. 1) and constitute a rhythmic behaviour activated by simple sensory input.
2.  Tymbal periods are indirectly related to stimulus intensity and periods (Fig. 3). Moths initiate sounds with the tymbal opposite to the stimulated ear and once a sequence commences it continues in an undisrupted fashion.
3.  The tymbal is innervated by a pleural branch (IIIN2a) of the metathoracic leg nerve, a similar anatomy to that in the unmodified episterna of silent moths (Fig. 5). Backfills of the IIIN2a in Cycnia tenera reveal sensory fibres and a cluster of 5–9 motor neurons with densely overlying dendritic fields (Fig. 6).
4.  Extracellular recordings of the IIIN2a reveal a large impulse preceding each tymbal sound (Fig. 7). I suggest that this impulse results from the synchronous firing of 2–3 motor neurons and is the motor output of the tymbal central pattern generator (CPG). The spikes alternate (Figs. 9, 10) and are bilaterally co-related (Fig. 11) but with an phase asymmetry of 2–3 ms (Fig. 12).
5.  Normal motor output continues in the absence of tymbal sounds (Fig. 13) and when all nerve-tymbal connections are severed (Fig. 14, Table 1) therefore this CPG operates independent of sensory feedback. A model is proposed for the tymbal circuitry based upon the present data and the auditory organization of related noctuid moths (Fig. 15). I propose that the tymbal response in modern arctiids evolved from either flight or walking CPGs and that preadaptive circuitry ancestral to tymbal movements still exists in modern silent Lepidoptera.
  相似文献   

6.
The caudal photoreceptors (CPRs) of crayfish (Procambarus clarkii) can trigger walking and abdominal movements by their response to light.
1.  In a restrained, inverted crayfish, illumination of A6 evoked a CPR discharge followed by leg movements and bursting from the abdominal tonic flexor (TF) motoneurons. Intracellular electrical stimulation of a single CPR at high frequency (80 Hz) evoked similar responses.
2.  Responses only occurred when a single CPR axon was driven at 60 Hz or more and outlasted the stimulus.
3.  CPR stimulation also excites the pattern-initiating network (Moore and Larimer 1987) in the abdomen.
4.  The axon of the CPR projects from ganglion A6 to the brain. Terminal branches occur in the subesophageal ganglion and the brain. A small descending interneuron is dye-coupled to CPR in the subesophageal ganglion.
5.  In animals with cut circumesophageal connectives, the CPRs can evoke walking and the abdominal motor pattern.
6.  The relationship of the abdominal motor pattern to walking is altered by restraint and/or inversion. In freely moving crayfish, the cyclic abdominal motor pattern is only observed with backward walking. In restrained, inverted crayfish, the motor pattern occurs with both forward or backward walking.
  相似文献   

7.
The active reaction upon stimulation of the femoral chordotonal organ in stick insects is known to control velocity and endpoint of flexion movements of the femur-tibia joint (Bässler 1988). This article presents evidence that spiking interneurones in the ventral anterior median part of the adjacent ganglion participate in the generation of the active reaction as well as non-spiking interneurones in the dorsal lateral region do. Three different kinds of experiments lead to this conclusion:
–  - Ablation of the ventral anterior median part of the metathoracic ganglion ofExtatosoma did not qualitatively alter the resistance reflex in the inactive animal but abolished the active reaction.
–  - Recordings from spiking interneurones in the same region of the prothoracic ganglion ofCarausius show that some of these neurones responded to a chordotonal organ stimulus in a way, which depended on the behavioural state of the animal.
–  - Some non-spiking interneurones, which mediate the resistance reflex in the inactive animal, respond differently during an active reaction.
  相似文献   

8.
Deafferentation experiments during postembryonic development show morphological and/or physiological changes of receptor fibers and of identified auditory interneurons in the CNS of the locusts Locusta migratoria and Schistocerca gregaria after unilateral ablation of one tympanic organ either in the larva or the adult animal.
1.  In Locusta migratoria, 5 days after deafferentation, intact, contralateral receptor fibers had sprouted collaterals in the frontal acoustic neuropil of the metathoracic ganglion (Figs. 1, 2). Collateral sprouts were only rarely found in Schistocerca gregaria.
2.  After about 20 days the deafferented auditory interneurons receive new inputs from the contralateral receptors (Figs. 3, 5, 7, 10). This largely restores their thresholds and intensity/response functions. Collaterals from the first order interneurons cross the midline to the contralateral neuropil (BSN1 neuron, Fig. 4), which is never seen in intact animals. By contrast, in the TN1 neuron no consistent morphological change due to the deafferentation could be found (Fig. 6).
3.  Interneurons of higher order (AN1, TN3 neuron in locusts) regain their response pattern (Fig. 7) without morphological changes (Fig. 9). Bilateral recordings show that the deafferented interneurons respond more weakly to auditory stimuli than the intact neuron, but the response to vibration stimuli remains unchanged (TN3 neuron, Fig. 8).
  相似文献   

9.
1.  Coordinated movements of the wings during flight in the locust result from coordinated activity of flight neurons in the thoracic ganglia. Many flight interneurons and motoneurons fire synchronous bursts of action potentials during the expression of the flight motor pattern. The mechanisms which underlie this synchronous firing were investigated in a deafferented preparation of Locusta migratoria.
2.  Simultaneous intracellular recordings were taken from flight neurons in the mesothoracic ganglion using glass microelectrodes filled with fluorescent dye.
3.  Three levels of synchronous activity between synergistic motoneurons and between the right and left partners of bilaterally symmetrical pairs of interneurons were observed: bursting which was loosely in phase but which showed little correlation between the temporal parameters of individual bursts in the two neurons; bursting which showed synchrony of the beginning and end of bursts; and bursts which showed highly synchronous spike-for-spike activity.
4.  Direct interactions between the neurons had little or no part to play in maintaining any of the levels of synchrony, even in instances of very close synchrony (spikes in different neurons occurring within 1 ms of each other). Highly synchronous firing was a consequence of common synaptic input impinging on neurons with similar morphological and physiological properties.
  相似文献   

10.
Locusts (Locusta migratoria) were flown in a flight simulator which converts yaw torque into angular motion of the visual environment (Fig. 1). The modalities and the time-course of steering behavior under these closed-loop conditions have been investigated.
1.  Locusts flying under visual closed-loop conditions stabilize their visual environment by performing correctional steering manoeuvres. Besides torque production, due to differential wing movements and ruddering, correctional steering also involves head movements (Fig. 6).
2.  During open-loop steering, ruddering and yaw torque begin some 60 ms after the onset of the visually simulated deviation from course. Head movements occur some 90 ms after stimulus onset, i.e. some 30 ms later than yaw torque (Figs. 3, 5) and therefore do not initiate thoracic steering outputs.
3.  Open- and closed-loop correctional steering do not differ in their behavioral components or temporal organization (Figs. 2, 6, Table 1).
4.  In the absence of major disturbances, correctional steering under closed-loop conditions is performed with minimal ruddering (only a few degrees in amplitude), that probably produces little or no aerodynamic drag (Fig. 6).
5.  Locusts prevented from moving their heads still stabilize their visual environment in the closed-loop situation. However, the precision of steering is affected by this constraint (Figs. 8, 9, 10, 12). Head immobilization also alters the temporal coordination of correctional steering (Figs. 7, 11).
6.  These results show that head movements, in addition to their generally accepted role in vision improvement, also contribute to the precision and temporal coordination of correctional flight manoeuvres. The mechanism is partly via proprioceptive feedback.
  相似文献   

11.
1.  Locusts (Locusta migratoria) flying under open-loop conditions respond to simulated course deviations (movements of an artificial horizon around the roll axis) with compensatory head movements and with steering reactions of wing muscles (Figs. 3, 4). Steering was quantified as shifts of the relative latency between spikes in the left and right M97 (first basalar muscle). For practical reasons these shifts are a more useful measure than corrective torque itself, to which they are linearly proportional over much of the range (Fig. 2).
2.  Steering in M97 is elicited visually (horizon movement) and by proprioceptive input reporting head movements (neck reflexes). Compensatory head movements reduce the strength of steering because the reduction in visual information signalling deviations is only partially balanced by proprioceptive input from the neck (Fig. 4C).
3.  Under closed-loop conditions, flying locusts stabilize the position of an artificial horizon against a constant bias (Figs. 5–7), the horizon oscillating slightly along the normal orientation. Head movements do not follow the horizon movements as closely as under open-loop conditions, but on average head movements are compensatory, i.e. the mean mismatch between head and horizon is less than the mean mismatch between body and horizon.
4.  The horizon position is stabilized when the head is free to move, but also when the head is immobilized. In the latter case the oscillations along the straight flight path are more pronounced (Fig. 7), indicating that the reduction of steering by compensatory head movements (as seen under open-loop conditions, Fig. 4C) reduces overshoot.
5.  The control and the significance of (compensatory) head movements for course control are discussed.
  相似文献   

12.
1.  The terminal ganglion ofLocusta migratoria contains a number of non-giant, wind-sensitive, ascending and local interneurones. Six ascending (Figs. 1, 2) and 6 local (Figs. 6, 7) interneurones have been identified morphologically on the basis of intracellular stains with Lucifer Yellow.
2.  The physiological responses of the various cell types were recorded as the cerci were exposed to sound, wind, or electrical stimulation (Figs. 3, 8). Some cells summate the input from both cerci (Fig. 3), while others are excited by input from one side and inhibited by input from the other (Fig. 8). Conduction velocities for several non-giant ascending interneurones range from 1.5 m/s (cell 1) –2.1 m/s (cell 25).
3.  The morphologies and physiological responses of giant (GIN 1) and non-giant ascending interneurones (cells la, b) with somata in cluster 1 of neuromere 9 were compared using simultaneous intracellular recordings (Figs. 2A, 4). These neurones have very similar dendritic arborizations (Fig. 4A, B), and respond almost identically to cercal stimulation (Fig. 4Ci), but there do not appear to be any connections with GIN 1 (Fig. 4Cii, iii).
4.  The morphology (Fig. 5A, C), and response to cercal stimulation by wind (Fig. 5B) of a nongiant interneurone (cell 7) with its soma in cluster 1 of segment 8 (Fig. 5), are very similar to those of cluster 1 cells such as GIN 1 in segment 9.
5.  Of the 6 local interneurones (Figs. 6, 7) all except one (cell 9) have bilateral arborizations which may extend over several neuromeres within the ganglion (cells 10, 22). Several of the interneurones (cells 5, 9, 24) do not produce action potentials in response to cercal stimulation (Figs. 8, 10) or injection of depolarizing current (Fig. 11).
6.  Simultaneous recordings from pairs of interneurones demonstrate that giants and locals (GIN 2/cell 5; GIN 1/cell 9), as well as different local interneurones (cell 24/cell 5), receive input from the same wind-sensitive filiform afferent (Fig. 9).
7.  Local interneurones 5 and 22 are in different neuromeres of the terminal ganglion but have a similar gross morphology (Figs. 6, 7, 10). Cell 5, however, has arborizations projecting into both posterior cercal glomeruli (Fig. 7 A, inset), whereas only the ipsilateral branches of cell 22 extend posteriorly to the cercal glomerulus (Fig. 10C). Physiologically, cell 5 is depolarized by wind directed at both cerci (Fig. 10 A), cell 22 mainly by wind directed at the ipsilateral cercus (Fig. 10C). Cell 5 does not produce action potentials in response to wind whereas cell 22 does.
8.  Cell 5 occurs as a bilateral pair in the terminal ganglion (Figs. 7B, inset; 11). Simultaneous recordings of the bilateral homologues show that they share the input of at least one wind-sensitive filiform afferent (Fig. 11D), and that there are no connections between them (Fig. 11E). Simultaneous penetrations of local interneurone 5 and giant interneurones demonstrate a short-latency excitatory connection from GIN 3 to cell 5 (Fig. 12 A), and a long-latency excitatory connection from GIN 2 to cell 5.
9.  The roles of giant and non-giant interneurones in transmitting information to thoracic motor centres are discussed.
  相似文献   

13.
1.  An extracellular recording and staining technique has been used to study the structure of individual ventral-cord elements in the auditory pathway ofLocusta migratoria.
2.  Three groups of auditory ventral-cord neurons can be distinguished: (a) neurons ascending to the supraesophageal ganglion, (b) T-shaped neurons, and (c) neurons limited to the thoracic ventral cord.
3.  The ventral-cord neurons ascending to the supraesophageal ganglion link the auditory centers of the thorax to those of the supraesophageal ganglion. These are, at least in part, richly arborized neurons of large diameter.
4.  The ventral-cord neurons with T structure send equivalent signals along both arms of the T; they resemble the neurons of the first group in that they make synaptic connections in the supraesophageal ganglion, but they also conduct auditory information to caudal regions of the thorax via the descending trunk of the axon.
5.  In the supraesophageal ganglion there are several extensive projection areas of the auditory ventral-cord neurons. No direct connections to the mushroom bodies, the central body or the protocerebral bridge could be demonstrated.
6.  The thoracic ventral-cord neurons act as short segmental interneurons, providing a connection between the tympanal receptor fibers and the ascending and T-shaped ventral-cord neurons. They play a crucial role in auditory information processing.
7.  The possible functional properties of the various morphological sections of the auditory ventral-cord neurons are discussed, with reference to their connections with motor and other neuronal systems.
  相似文献   

14.
1.  The oscillations of the tympanal membrane of Locusta migratoria were analysed by combined laser vibrometry and interferometry. Simultaneously the activity in the tympanal nerve was recorded extracellularly. The animal was stimulated by sound pulses and one of the hindlegs was passively moved in a sinusoidal manner simulating stridulation. These stimuli were applied separately and in combination.
2.  Sound stimulation elicited high-frequency membrane oscillations, whereas leg movements induced slow rhythmic membrane displacements. During combined sound and movement stimulation these two types of oscillations superimposed without mutual interference.
3.  The tympanal nerve responded to sound with well synchronized receptor activity. The leg movement elicited less synchronized, phase-coupled activity. During combined sound and movement stimulation the responses to the two types of stimuli interfered strongly.
4.  The activity patterns of single receptor fibres and auditory interneurons were reanalysed from this point of view. The extent of synchronization of the receptors is found to be the major difference between the sound-induced and the movement-induced activation of the auditory system. A filter mechanism is postulated, consisting in the activation of some higher order auditory interneurons only by well-synchronized presynaptic activity, such as is induced by steeply rising sound pulses.
  相似文献   

15.
1.  The excitatory and inhibitory influences on the gill ofAplysia Juliana, which are mediated by the branchial nerve, were studied by means of electrophysiological techniques. Excitatory and inhibitory pathways in the nerve were stimulated simultaneously or selectively.
2.  The branchial nerve was found to contain both excitatory and inhibitory pathways which did not contain synapses in the branchial ganglion. The excitatory pathways caused longitudinal shortening of the gill along the efferent branchial vessel and the inhibitory pathways were modulatory, depressing the longitudinal shortening.
3.  Branchial nerve stimulation elicited two types of excitatory junctional potential (EJP), which were not mediated by the branchial ganglion, in a muscle cell of the efferent branchial vessel. One type was attributed to the central motor neuron and the other type to a motor neuron which is probably situated in the neural plexus of the gill periphery.
4.  Four inhibitory pathways from the central nervous system to the gill were found.
5.  Inhibitory junctional potentials (IJPs) recorded from muscle cells of the efferent branchial vessel in response to branchial nerve stimulation did not have monosynaptic characteristics. It is thought that inhibitory motor neurons which were activated by the branchial nerve might exist at the neural plexus of the gill.
6.  A single EJP which has been induced by a stimulus pulse applied to the excitatory pathway of the branchial nerve may be depressed in an all-or-none manner by a stimulus pulse applied to the inhibitory pathway, if this is done within a distinct short period prior to or after the stimulus inducing the EJP. This indicates that the central motor neuron receives presynaptic inhibition at its periphery.
7.  The motor neurons of the neural plexus seem to receive inhibitory innervation. Suppression of endogenous EJPs in the efferent vessel persisted for a long period even after cessation of stimulation.
8.  A certain branchioganglionic neuron (BGN) was found to receive inhibitory postsynaptic potential (IPSP) inputs from the branchial nerve.
9.  The multimodality of both the excitatory and the inhibitory pathways in the branchial nerve may explain the compound neural modulations of gill movements.
  相似文献   

16.
1.  We recorded compensatory eye stalk movements in response to pitch and roll stimulation of the visual, statocyst, and leg-proprioceptive systems in different species of crabs (Carcinus maenas, Heloecius cordiformis, Pachygrapsus marmoratus) (Fig. 2).
2.  The relative contribution of visual, statocyst and leg-proprioceptive inputs to eye stabilization in space varies greatly among different species (Fig. 3).
3.  We suggest that for stabilizing the eyes in space, the contribution of various sensory inputs in different species of crabs correspond to the availability of cues in their habitat. Semiterrestrial crabs living in a habitat with well defined and predictable visual geometry stabilize their eye stalks mainly by visual cues. Crabs living on solid substrate make strong use of leg proprioceptive input. Swimming crabs, and other predominantly aquatic crabs, rely mainly on their statocysts.
  相似文献   

17.
1.  The swimmerets ofJasus lalandii, in contrast to those well known in the nephropid lobsters (e.g.Homarus) and astacurans (crayfish), do not display spontaneous antero-posterior beating, but are either apposed actively to the ventral surface of the abdomen, or rotated outward (Fig. 2). These movements are imposed by the geometrical arrangement of the bicondylar joints at the base of the swimmeret (Fig. 3), and involve contraction of either the remotor muscle, or the promotor-rotator muscles (Figs. 2, 3). Each swimmeret includes a short, thick blade-like exopodite that contains two antagonistic muscles, a large curler and a small adductor muscle (Fig. 3). Each swimmeret is innervated by 80 motor neurons (MNs) which are disposed in two clusters in the ganglion.
2.  The modulation of the tonic discharge of the muscles which maintain the swimmeret position at rest (remotor and curler) has been studied in two situations: body rolling (Fig. 4) and walking activity (Fig. 5). In the female, in which the most anterior pair of swimmerets are biramous, both endopodite and exopodite curler muscles display the same responses to body rolling (Fig. 4). In all these situations no overt swimmeret movement occurs.
3.  Nevertheless, rhythmicity exists inJasus, but it is limited to the gravid female when the swimmerets bear the eggs (Fig. 6). In contrast to other decapod Crustacea, this swimmeret beating is not metachronous (Fig. 6).
4.  Movement monitoring (Fig. 7) and EMG recordings (Figs. 9, 10) have demonstrated the involvement of the swimmerets in the three phases of the tail flick response (preparation, flexion, extension). During the preparatory phase, in response to mechanical stimulation of the legs, the swimmerets open on the stimulated side (on both sides in the case of a symmetrical stimulation) (Fig. 7). During the rapid abdominal flexion of the tail flick all swimmerets open fully regardless of the stimulus (Figs. 7, 8). Two different units in the rotator muscle EMG are responsible for swimmeret opening during the preparatory and the flexion phases of the tail flick (Figs. 9, 10).
5.  The curler muscle of the endopodite in the female displays antagonistic activities to that of the exopodite during tail flicks (Fig. 10).
6.  Selective swimmeret blockage demonstrates that they contribute to the thrust efficacy in tail flicks. In particular they are responsible for the variation of the maximal force produced at its onset. This effect could be interpreted as a consequence of force redistribution by the swimmerets acting on water flow (produced by the tail fan). This mechanism implies a functional role for the swimmerets in righting and steering responses (Fig. 11).
  相似文献   

18.
1.  The actions of GABA on three classes of visual interneurons in crayfish, Procambarus clarkii, medulla externa are examined. The effect of GABA on the visual response is compared to GABA's action on agonist-elicited responses purported to mediate the visual response.
2.  GABA produces a shunting type of inhibition in medullary amacrine cells which is associated with a small depolarization (Figs. 2, 3), a large increase in input conductance (Gn) and a reversal potential close to rest (Fig. 4). GABA is a potent antagonist to the depolarizing action of acetylcholine (ACh) (Fig. 5).
3.  GABA depolarizes dimming fibers (Fig. 2), and the response is mediated by an increase in Gn (Fig. 6). GABA antagonizes the light-elicited IPSP and the hyperpolarizing action of ACh (Fig. 7).
4.  Sustaining fibers (SF) do not appear to have GABA receptors but GABA inhibits the excitatory visual input pathway to the SFs (Fig. 8). Conversely, the GABA antagonist, bicuculline, potentiates the SF light response (Fig. 9).
5.  GABA has at least three different modes of antagonist action in the medulla: i) Increased conductance and depolarization in dimming fibers and medullary amacrine neurons; ii) Decreased chloride conductance in tangential cells; and iii) An inhibitory action on the visual pathway which drives SFs.
  相似文献   

19.
1.  While collecting nectar in hovering flight the European hawk moth Macroglossum stellatarum efficiently regulates its distance relative to flowers that are shaken by wind. This can be demonstrated in laboratory experiments by moving dummy flowers (blue cardboard disks) towards and away from the feeding animal (Fig. 1).
2.  Distance regulation is predominantly mediated by visual cues. Mechanoreceptors on the proboscis appear to contribute little to the response.
3.  Movements of dummy flowers can be simulated by expanding and contracting a pattern projected onto a screen. With this technique we investigated the dynamical properties of the servo mechanism underlying distance regulation. The system behaves as a bandpass filter with corner frequencies of 0.15 and 5 Hz (Figs.2,3).
4.  When a high-speed ramp-like movement of the flower is simulated, there is an asymmetry in the response. During simulated approach the reaction is phasic-tonic with a pronounced overshoot at the beginning, during simulated retraction it remains tonic (Fig.5B,C).
5.  During distance regulation the animals compensate for the speed of the edge of the projected pattern. Distance regulation improves substantially when the number of stimulated elementary movement detectors is increased through increasing the number of contour lines by projecting concentric rings instead of a homogeneous disk (Figs.7, 8).
  相似文献   

20.
In response female pheromone the male gypsy moth flies a zigzagging path upwind to locate the source of odor. He determines wind direction visually. To learn more about the mechanism underlying this behavior, we studied descending interneurons with dye-filled micro-electrodes. We studied the interneuronal responses to combinations of pheromone and visual stimuli.
1.  We recorded 5 neurons whose directionally selective visual responses to wide field pattern movement were amplified by pheromone (Figs. 2–6).
2.  The activity of the above neurons was more closely correlated with the position of the moving pattern than with its velocity (Fig. 4).
3.  One neuron showed no clearly directional visual response and no response to pheromone. Yet in the presence of pheromone it showed directionally selective visual responses (Fig. 6).
4.  We recorded 4 neurons whose directionally selective visual responses were not modulated by pheromone (Fig. 7), ruling out the possibility that the effect of the pheromone was simply to raise the activity of all visual neurons.
5.  Our results suggest that female pheromone amplifies some neural pathways mediating male optomotor responses, especially the directionally selective responses to the transverse movement of the image, both below and above the animal.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号