首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Histidine decarboxylase (HisDCase) from Lactobacillus buchneri was purified to homogeneity. Its subunit structure, (alpha beta)6, and enzymatic properties resemble closely those of the immunologically cross-reactive HisDCase of Lactobacillus 30a (Recsei, P. A., and Snell, E. E. (1984) Annu. Rev. Biochem. 53, 357-387). The complete amino acid sequences of the beta chains of the HisDCase from L. buchneri (81 residues) and Clostridium perfringens (86 residues) were then determined to be a and b, respectively. (a) SEFDKKLNTLGVDRISVSPYKKWSRGYMEPGNIGNGYVSGLKVDAG VVDKTDDMVLDGIGSYDRAETKNAYIGQINMTTAS. (b) TLSEGIHKNIKNIKVRAP KIDKTAISPYDRYCDGYGMPGAYGDGYVSVLKVSVGTVKK TDDILLDGIVSYDRAEINDAYVGQINMLTAS. SEFDKKLNTLGVDRISVSPYKKWSRGYMEPGNIGNGYVSGLKVDAGVV. Although these sequences differ substantially near the NH2-terminal ends, there is striking homology near the COOH termini and also near the NH2 terminus of the two alpha chains (pyruvoyl-Phe-X-Gly-Val-, where X is Ser or Cys). If the four known pyruvoyl-dependent HisDCases arise from inactive proenzymes by the mechanism previously demonstrated for the HisDCase of Lactobacillus 30a (Recsei, P. A., Huynh, Q. K. and Snell, E. E. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 973-977), then each of these proenzymes has the sequence -Thr-Ala-Ser-Ser-Phe- at the activation site (where -Ser- becomes the COOH terminus of the beta chain and -Ser- becomes the pyruvoyl group blocking the NH2 terminus of the alpha chain), and the sequences around this activation site are highly conserved in all four enzymes. These facts support the assumptions that the four enzymes have evolved from a common ancestral protein, are formed from inactive pyruvate-free proenzymes by similar mechanisms, and have similar catalytic mechanisms.  相似文献   

3.
P D van Poelje  A V Kamath  E E Snell 《Biochemistry》1990,29(45):10413-10418
To clarify the mechanism of biogenesis and catalysis by the pyruvoyl-dependent histidine decarboxylase (HisDCase) from Clostridium perfringens, 12 mutant genes encoding amino acid substitutions at the active site of this enzyme were constructed and expressed in Escherichia coli. The resulting mutant proteins were purified to homogeneity, characterized, and subjected to kinetic analysis. The results (a) exclude all polar amino acid residues in the active site except Glu-214 as donor of the proton that replaces the carboxyl group of histidine during decarboxylation and, since E214I and E214H are nearly inactive, indicate that Glu-214 is the essential proton donor; (b) demonstrate the importance to substrate binding of hydrophobic interactions between Phe-98, Ile-74, and the imidazole ring of histidine, and of hydrogen bonding between Asp-78 and N2 of the substrate; and (c) demonstrate a significant unidentified role for Glu-81 in the maintenance of the active-site structure. The proposed roles of these amino acid residues are consistent with those assigned on the basis of crystallographic evidence to the corresponding residues at the active site of the related HisDCase from Lactobacillus 30a [Gallagher, T., Snell, E. E., & Hackert, M. L. (1989) J. Biol. Chem. 264, 12737-12743]. Of the residues altered, only Ser-97 was essential for the autocatalytic serinolysis reaction by which this HisDCase, (alpha beta)6, is derived from its inactive, pyruvate-free precursor, proHisDCase, pi 6.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The two cysteinyl residues present in histidine decarboxylase from Lactobacillus 30a differ greatly in reactivity. One (class 1) reacts readily in the native state with dithiobis-(2-nitrobenzoate) with complete loss of enzyme activity; the other (class 2) reacts only after denaturation of the enzyme (Lane, R. S., and Snell, E. E. (1976) Biochemistry 15, 4175-4179). These differences in reactivity permitted use of covalent (disulfide) chromatography to isolate separate peptides that contain these two residues. Sequence analysis showed that the class 1 cysteinyl residue is at position 147 in a hydrophilic portion of the alpha chain (Huynh, Q. K., Recsei, P. A., Vaaler, G. L., and Snell, E. E. (1984) J. Biol. Chem. 259, 2833-2839), while the class 2 cysteinyl residue is present at position 71, adjacent to a hydrophobic portion of the same chain. Cysteinyl peptides identical with or homologous to the class 2 cysteinyl peptide of the Lactobacillus 30a enzyme were isolated from the alpha subunits of histidine decarboxylases from Lactobacillus buchneri and Clostridium perfringens, respectively. The L. buchneri enzyme also contained a peptide homologous to the class 1 cysteinyl peptide from Lactobacillus 30a. However, no corresponding peptide was present in the enzyme from C. perfringens, in which the second cysteinyl residue of the alpha chain occupies position 3, very near the essential pyruvoyl residue. This enzyme, unlike those from Lactobacillus 30a or L. buchneri, also contains one cysteinyl residue in its beta chain. Although Cys 147 is an active site residue in histidine decarboxylase from Lactobacillus 30a, the absence of a corresponding residue in the C. perfringens enzyme confirms previous indications (Recsei, P. A., and Snell, E. E. (1982) J. Biol. Chem. 257, 7196-7202) that this SH group is not essential for decarboxylase action.  相似文献   

5.
The complete amino acid sequence of the alpha chain of histidine decarboxylase of Lactobacillus 30a has been established by isolation and analysis of the eight methionine-containing tryptic peptides of this chain. These peptides provide the overlaps required to order all nine peptides derived by complete cyanogen bromide cleavage of the alpha chain (Huynh, Q.K., Vaaler, G.L., Recsei, P.A., and Snell, E.E. (1984) J. Biol. Chem. 259, 2826-2832). Ordering of six of the latter peptides was confirmed by isolation and analysis of four peptides derived by incomplete cyanogen bromide cleavage. The alpha chain is composed of 226 residues and has a molecular weight of 24,892 calculated from the sequence. These results and the previously determined sequence of the beta chain (Vaaler, G.L., Recsei, P.A., Fox, J.L., and Snell, E.E. (1982) J. Biol. Chem. 257, 12770-12774) establish the complete amino acid sequence of the enzyme and of the pi chain of prohistidine decarboxylase. The latter is composed of 307 amino acids and has a calculated molecular weight of 33,731. Four segments of the pi chain sequence are repeated. The bond between Ser-81 and Ser-82 that is cleaved during proenzyme activation is in an uncharged portion of the sequence that is rich in serine and threonine residues and is predicted to be part of a beta sheet structure.  相似文献   

6.
S-Adenosylmethionine decarboxylase is one of a small group of enzymes that use a pyruvoyl residue as a cofactor. Histidine decarboxylase from Lactobacillus 30a, the best studied pyruvoyl-containing enzyme, has an (alpha beta)6 subunit structure with the pyruvoyl moiety linked through an amide bond to the NH2-terminal of the larger alpha subunit (Recsei, P. A., Huynh, Q. K., and Snell, E. E. (1983) Proc. Natl. Acad. Sci. U. S. A. 80, 973-977). To examine potential structural analogies between the two enzymes, we have isolated and partially characterized S-adenosylmethionine decarboxylase. The purified enzyme comprises equimolar amounts of two subunits of Mr = 14,000 and 19,000 (by sodium dodecyl sulfate-polyacrylamide gel electrophoresis) and has a native molecular weight of 136,000 (by gel filtration). Approximately 4 mol of [methyl-3H] adenosylmethionine are incorporated per mol of enzyme (Mr = 136,000) when the enzyme is inactivated with this substrate and NaCNBH3. These data suggest an (alpha beta)4 structure with 1 pyruvoyl residue for each alpha beta pair. The two subunits have been separated by reversed-phase high performance liquid chromatography after reduction and carboxymethylation. The smaller subunit (beta) has a free amino terminus. The amino terminus of the larger subunit (alpha) appears to be blocked by a pyruvoyl group; this subunit can be sequenced only after this group is converted to an alanyl residue by reduction with sodium cyanoborohydride in the presence of ammonium acetate. This work suggests that S-adenosylmethionine decarboxylase is structurally much more similar to histidine decarboxylase than previously thought.  相似文献   

7.
The smaller isoform of the GABA synthesizing enzyme glutamic acid decarboxylase, GAD65, is synthesized as a soluble protein that undergoes post-translational modification(s) in the NH2-terminal region to become anchored to the membrane of small synaptic-like microvesicles in pancreatic beta cells, and synaptic vesicles in GABA-ergic neurons. A soluble hydrophilic form, a soluble hydrophobic form, and a hydrophobic firmly membrane-anchored form have been detected in beta cells. A reversible and hydroxylamine sensitive palmitoylation has been shown to distinguish the firmly membrane-anchored form from the soluble yet hydrophobic form, suggesting that palmitoylation of cysteines in the NH2-terminal region is involved in membrane anchoring. In this study we use site-directed mutagenesis to identify the first two cysteines in the NH2-terminal region, Cys 30 and Cys 45, as the sites of palmitoylation of the GAD65 molecule. Mutation of Cys 30 and Cys 45 to Ala results in a loss of palmitoylation but does not significantly alter membrane association of GAD65 in COS-7 cells. Deletion of the first 23 amino acids at the NH2 terminus of the GAD65 30/45A mutant also does not affect the hydrophobicity and membrane anchoring of the GAD65 protein. However, deletion of an additional eight amino acids at the NH2 terminus results in a protein which is hydrophilic and cytosolic. The results suggest that amino acids 24-31 are required for hydrophobic modification and/or targeting of GAD65 to membrane compartments, whereas palmitoylation of Cys 30 and Cys 45 may rather serve to orient or fold the protein at synaptic vesicle membranes.  相似文献   

8.
Mutants of Lactobacillus 30a deficient in their ability to form an inducible histidine decarboxylase (EC 4.1.1.22) were selected by plating nitrosoguanidine-treated cultures on a medium containing histidine and methyl red. Wild-type organisms produce histamine, thus raising the pH and forming yellow colonies; mutant colonies remain red. In the presence of added histidine, decarboxylase-producing cultures grow more heavily than mutant cultures when the initial pH of the growth medium is low or when the lactic acid produced lowers the pH to growth-limiting values. Addition of the decarboxylation products, histamine and carbon dioxide, did not favor growth in crude medium.  相似文献   

9.
The genes coding for histidine decarboxylase from a wild-type strain and an autoactivation mutant strain of Lactobacillus 30a have been cloned and expressed in Escherichia coli. The mutant protein, G58D, has a single Asp for Gly substitution at position 58. The cloned genes were placed under control of the beta-galactosidase promoter and the products are natural length, not fusion proteins. The enzyme kinetics of the proteins isolated from E. coli are comparable to those isolated from Lactobacillus 30a. At pH 4.8 the Km of wild-type enzyme is 0.4 mM and the kcat = 2800 min-1; the corresponding values for G58D are 0.5 mM and 2750 min-1. The wild-type and G58D have autoactivation half-times of 21 and 9 h respectively under pseudophysiological conditions of 150 mM K+ and pH 7.0. At pH 7.6 and 0.8 M K+ the half-times are 4.9 and 2.9 h. The relatively slow rate of autoactivation for purified protein and the differences in cellular and non-cellular activation rates, coupled with the fact that wild-type protein is readily activated in wild-type Lactobacillus 30a but poorly activated in E. coli, suggest that wild-type Lactobacillus 30a contains a factor, possibly an enzyme, that enhances the activation rate.  相似文献   

10.
All fermented foods are subject to the risk of biogenic amine contamination. Histamine and tyramine are among the most toxic amines for consumers' health, exerting undesirable effects on the central nervous and vascular systems, but putrescine and cadaverine can also compromise the organoleptic properties of contaminated foods. These compounds are produced by fermenting microbial flora that decarboxylate amino acids to amines. Little is known of the factors which induce biosynthesis of decarboxylating enzymes and/or which modulate their catalytic activity: the accumulation of amines is generally considered to be a mechanism that contrasts an acidic environment and/or that produces metabolic energy through coupling amino acid decarboxylation with electrogenic amino acid/amine antiporters. Two Lactobacillus strains, Lactobacillus sp. 30a (ATCC 33222), and a Lactobacillus sp. strain (w53) isolated from amine-contaminated wine, carrying genetic determinants for histidine decarboxylase (HDC) and ornithine decarboxylase (ODC), were studied and the influence of some environmental and nutritional parameters on amine production and protein biosynthesis was analyzed through a proteomic approach; this is the first report of a proteomic analysis of amine-producing bacteria. HDC and ODC biosynthesis were shown to be closely dependent on the presence of high concentrations of free amino acids in the growth medium and to be modulated by the growth phase. The stationary phase and high amounts of free amino acids also strongly induced the biosynthesis of an oligopeptide transport protein belonging to the proteolytic system of Lactic Acid Bacteria. At least two isoforms of glyceraldehyde-3-phosphate dehydrogenase, with different M(r), pI and expression profiles, were identified from Lactobacillus sp. w53: the biosynthesis of one isoform, in particular, is apparently repressed by high concentrations of free amino acids. Other proteins were identified from the Lactobacillus proteome, affording a global knowledge of protein biosynthesis modulation during biogenic amine production.  相似文献   

11.
Bovine neurophysin-I (bNP-I) is the first neurophysin protein which contains histidine and possesses an acidic COOH-terminal segment for which the complete amino acid sequence is presented: NH2-Ala-Val-Leu-Asp-Leu-Asp-Val-Arg-Thr-Cys-Leu-Pro-Cys-Gly-Pro-Gly-Gly-Lys-Gly-Arg-Cys-Phe-Gly-Pro-Ser-Ile-Cys-Cys-Gly-Asp-Glu-Leu-Gly-Cys-Phe-Val-Gly-Thr-Ala-Glu-Ala-Leu-Arg- Cys-Gln-Glu-Glu-Asn-Tyr-Leu-Pro-Ser-Pro-Cys-Gln-SerGly-Gln-Lys-Pro-Cys-Gly-Ser- Gly-Gly-Arg-Cys-Ala-Ala-Ala-Gly-Ile-Cys-Cys-Ser-Pro-Asp-Gly-Cys-His-Glu-Asp-Pro-Ala-Cys-Asp-Pro-Glu-Ala-Ala-Phe-Ser-Leu-COOH. Determination of the structure was greatly facilitated by new procedures used for the isolation of bNP-I and of its tryptic peptide fragments. bNP-I isolated from freshly frozen bovine posterior pituitaries is composed of 93 residues, but some preparations contain neurophysin protein with NH2- and COOH-terminal truncated sequences. bNP-I differs from bovine neurophysin-II, the second major neurophysin of cow, in 20 residue positions, and several of the differences cannot be accounted for by single nucleotide replacements in the genes coding for these two neurophysin proteins. The results reported in this study support our earlier hypothesis that neurophysin-gene duplication preceded species divergence.  相似文献   

12.
A mutant of Escherichia coli strain K12S, neaR301, resistant to the antibiotic neamine was found to have an altered 30 S ribosomal protein S17. The modification involves a change in the electrophoretic mobility of this protein. S17 proteins wore purified from the mutant and the parental strain, respectively, and the amino acid compositions of all tryptic peptides were compared. The results show that the mutational alteration involves a replacement of histidine by proline in peptide T8 from mutant neaR301. The amino acid replacement is located at position 30 of the S17 protein chain. We conclude, therefore, that the mutation neaR301 affects the structural gene for protein S17 (rps Q).  相似文献   

13.
On the basis of the comparison of the nucleotide sequences of the histidine decarboxylase genes ( hdc A) of Lactobacillus 30A and Clostridium perfringens and the amino acid sequences of these histidine decarboxylases and those of Lactobacillus buchneri and Micrococcus , oligonucleotides unique to the hdc A genes were synthesized and used in PCR. All histidine-decarboxylating lactic acid bacteria gave a signal with primer set JV16HC/JV17HC in PCR. In addition to this primer set, CL1/CL2 and CL1/JV17HC were also useful for the detection of histamine-forming Leuconostoc œnos strains in PCR. The 150 base pair amplification product of the decarboxylating Leuc. œnos strain generated with primer set CL1/CL2 was sequenced. Alignment studies showed a high degree of relatedness among the hdc A gene products of Gram-positive bacteria.
The amplification products of the hdc A genes from Lact. buchneri and Leuc. œnos were used to serve as a DNA probe in hybridization studies. All histidine-decarboxylating lactic acid bacteria gave a hybridization signal with the DNA probes. In hybridization only one false-positive signal with a Lactobacillus lindneri strain was observed, which was anticipated to contain a truncated hdc A gene.
In addition to these DNA probe tests, a simple and reliable activity test is presented, which can be used during starter selection to test strains for histidine decarboxylase activity.  相似文献   

14.
Our studies, which are aimed at understanding the catalytic mechanism of the beta subunit of tryptophan synthase from Salmonella typhimurium, use site-directed mutagenesis to clarify the functional roles of several putative active site residues. Although previous chemical modification studies have suggested that histidine 86, arginine 148, and cysteine 230 are essential residues in the beta subunit, our present findings that beta subunits with single amino acid replacements at these positions have partial activity show that these 3 residues are not essential for catalysis or substrate binding. These conclusions are consistent with the recently determined three-dimensional structure of the tryptophan synthase alpha 2 beta 2 complex. Amino acid substitution of lysine 87, which forms a Schiff base with pyridoxal phosphate in the wild type beta subunit, yields an inactive form of the beta subunit which binds alpha subunit, pyridoxal phosphate, and L-serine. We also report a rapid and efficient method for purifying wild type and mutant forms of the alpha 2 beta 2 complex from S. typhimurium from an improved enzyme source. The enzyme, which is produced by a multicopy plasmid encoding the trpA and trpB genes of S. typhimurium expressed in Escherichia coli, is crystallized from crude extracts by the addition of 6% poly(ethylene glycol) 8000 and 5 mM spermine. This new method is also used in the accompanying paper to purify nine alpha 2 beta 2 complexes containing mutant forms of the alpha subunit.  相似文献   

15.
An acid DNase (DNase II) from porcine spleen was purified by sequential chromatography over carboxymethyl-cellulose, blue dextran-Sepharose, hydroxylapatite, and sulfoxyethyl-cellulose. The purified enzyme shows two polypeptide bands on sodium dodecyl sulfate-polyacrylamide gel electrophoresis at Mr 35,000 (alpha chain) and 10,000 (beta chain). The sum of the two molecular weights is that of the native enzyme (45,000). Thus, the DNase II molecule is an alpha,beta dimer. The two polypeptides are not joined by disulfide bonds, but can be cross-linked chemically with dimethyl suberimidate. They are dissociable in 8 M urea, after which they can be isolated by gel filtration on Sephadex G-100, eluting with 1 M acetic acid. Once dissociated, the two polypeptides cannot be reassociated to regenerate DNase II activity. The sum of the amino acid compositions of the two polypeptides is that of the native enzyme, and both contain carbohydrate. The beta chain is devoid of histidine, half-cystine, valine, and methionine. The NH2-terminal amino acid of the alpha chain is leucine, while that of the beta chain cannot be identified by either dansylation or Edman degradation. Alkylation of an essential histidine residue of DNase II occurs on incubation of the enzyme with [2-14C] ICH2COOH (Oshima, R. G., and Price, P. A. (1973) J. Biol. Chem. 248, 7522-7526). Radioactivity is found only in the alpha chain. After hydrolysis of the alpha chain with trypsin, chymotrypsin, and thermolysin, radioactive peptides were isolated by gel filtration on Sephadex G-25 and reversed-phase high performance liquid chromatography. Sequence analyses of the radioactive peptides show alkylation of 1 of 9 histidines in the entire amino acid sequence of DNase II. The sequence around this histidine, determined by manual microsequencing and by the release of amino acids with carboxypeptidases A and B, is Ala-Thr-Glu-Asp-His-Ser-Lys-Trp.  相似文献   

16.
E P Garvey  C R Matthews 《Biochemistry》1989,28(5):2083-2093
We have made multiple replacements (alanine, arginine, cysteine, histidine, isoleucine, serine, tyrosine) of valine-75 in dihydrofolate reductase from Escherichia coli to examine the relative importance to protein folding of the position that is substituted and the specific character of the amino acid replacement. Valine-75 is part of the eight-stranded beta sheet that forms the structural core of the protein. The isopropyl side chain participates in van der Waals interactions with a number of nonpolar residues, helping to establish a large hydrophobic cluster. Equilibrium studies showed that arginine, histidine, isoleucine, serine, and tyrosine destabilize the protein by 1.9-2.8 kcal mol-1. Alanine and cysteine substitutions have little or no effect. Contrary to other recent studies of the effect of multiple replacements at a hydrophobic site, there is no observed correlation between the changes of the free energy of folding and the changes of the free energy of transfer for the individual amino acids from water to an organic solvent when they are inserted into this site. The effects observed in kinetic studies are both consistent with and extend the equilibrium results; these data indicate that position 75 participates in a rate-limiting step of folding. Some of the equilibrium and kinetic properties of the tyrosine-75 mutant deviated significantly from those of wild-type protein and the other mutants at position 75. (1) The tyrosine variant displayed a complex banding pattern when analyzed by native gel electrophoresis; the wild-type protein and all other mutants at position 75 migrated as single, discrete bands. (2) Comparison of the difference ultraviolet and circular dichroism transition curves showed that a third species is populated at equilibrium; the wild-type protein and all other mutants at position 75 follow a two-state model involving only native and unfolded forms. (3) A third kinetic phase appeared in the unfolding reaction; the wild-type protein and all other mutants at position 75 only showed two kinetic phases in unfolding. Properties 1 and 3 suggest that the tyrosine mutation significantly alters the distribution of native conformers in the protein. These effects on the equilibrium and kinetic data readily display an overriding pattern: residues that would require hydrogen bonding or lead to an expansion of the tightly packed hydrophobic environment in which valine-75 resides destabilize the protein and alter relaxation times of kinetic phases in a consistent manner.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Histamine production from histidine in fermented food products by lactic acid bacteria results in food spoilage and is harmful to consumers. We have isolated a histamine-producing lactic acid bacterium, Lactobacillus hilgardii strain IOEB 0006, which could retain or lose the ability to produce histamine depending on culture conditions. The hdcA gene, coding for the histidine decarboxylase of L. hilgardii IOEB 0006, was located on an 80-kb plasmid that proved to be unstable. Sequencing of the hdcA locus disclosed a four-gene cluster encoding the histidine decarboxylase, a protein of unknown function, a histidyl-tRNA synthetase, and a protein, which we named HdcP, showing similarities to integral membrane transporters driving substrate/product exchange. The gene coding for HdcP was cloned downstream of a sequence specifying a histidine tag and expressed in Lactococcus lactis. The recombinant HdcP could drive the uptake of histidine into the cell and the exchange of histidine and histamine. The combination of HdcP and the histidine decarboxylase forms a typical bacterial decarboxylation pathway that may generate metabolic energy or be involved in the acid stress response. Analyses of sequences present in databases suggest that the other two proteins have dispensable functions. These results describe for the first time the genes encoding a histamine-producing pathway and provide clues to the parsimonious distribution and the instability of histamine-producing lactic acid bacteria.  相似文献   

18.
Lactobacillus buchneri ST2A vigorously decarboxylates histidine to the biogenic amine histamine, which is excreted into the medium. Cells grown in the presence of histidine generate both a transmembrane pH gradient, inside alkaline, and an electrical potential (delta psi), inside negative, upon addition of histidine. Studies of the mechanism of histidine uptake and histamine excretion in membrane vesicles and proteoliposomes devoid of cytosolic histidine decarboxylase activity demonstrate that histidine uptake, histamine efflux, and histidine/histamine exchange are electrogenic processes. Histidine/histamine exchange is much faster than the unidirectional fluxes of these substrates, is inhibited by an inside-negative delta psi and is stimulated by an inside positive delta psi. These data suggest that the generation of metabolic energy from histidine decarboxylation results from an electrogenic histidine/histamine exchange and indirect proton extrusion due to the combined action of the decarboxylase and carrier-mediated exchange. The abundance of amino acid decarboxylation reactions among bacteria suggests that this mechanism of metabolic energy generation and/or pH regulation is widespread.  相似文献   

19.
Summary Ribosomes were isolated from two E. coli revertants from streptomycin dependence to independence, N660 and d1023. After separation of subunits, proteins were extracted from ribosomal 30S subunits and separated by CM-cellulose column chromatography and gel filtration. Pure S5 and S12 proteins of the two mutants were digested with trypsin and all resulting peptides were isolated by column and paper chromatography. The amino acid compositions of the peptides from the four mutant proteins were compared with the corresponding peptides of the wild type strain A19. The amino acid sequences of non-identical peptides were determined.The following amino acid replacements were found: Glycine by arginine in peptide T2 of protein S5 from mutant N660 and glycine by aspartic acid in peptide T15 of protein S12 from the same mutant. In the other mutant, d1023, arginine in peptide T2 of protein S5 was replaced by leucine and furthermore arginine by serine in peptide T10 of protein S12. Besides the single amino acid replacements mentioned above which are compatible with alterations of single nucleotides, a rather drastic difference between peptides T15 of proteins S12 isolated from strain A19 and mutant d1023 has been detected.The results presented in this paper are compared with amino acid replacements in proteins S5 and S12 from other ribosomal mutants of E. coli.Paper No. 62 on Ribosomal Proteins. Preceding paper is by Wittmann et al., Molec. gen. Genet., in press.  相似文献   

20.
gamma-Carboxymuconolactone decarboxylase (EC 4.1.1.44) and beta-ketoadipate succinyl coenzyme A transferase (EC 2.8.3.6) mediate different steps in the beta-ketoadipate pathway. Antisera prepared against the Pseudomonas putida transferase cross-reacted immunologically with the decarboxylase from the same organism. The transferase is formed by association of two nonidentical protein subunits. The NH2-terminal amino acid sequences of the two nonidentical transferase subunits resembled each other and also were similar to the NH2-terminal amino acid sequence of the decarboxylase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号