首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 71 毫秒
1.
In this paper we present evidence that a single low dose of the natural synthetic gonadotropin-releasing hormone (GnRH), inhibits ovulation induced by LH in proestrous-hypophysectomized rats. Rats hypophysectomized by the parapharyngeal route in the morning of proestrus received an intravenous injection of 100 or 300 ng GnRH at 1400 h immediately followed by 1.0 microgram LH per 100 g bw. In control groups, either one or both hormones were replaced with 0.9% NaCl. Ovulation was assessed the following morning by counting the ova present in oviductal flushings. All the rats treated with LH alone ovulated, and the addition of GnRH reduced significantly the number of ovulating rats and the number of ova per ovulating rat. In other groups of rats hypophysectomized in the morning of proestrus and treated in the same way, ovarian or adrenal secretory rates of estradiol and/or progesterone were measured after cannulation of the corresponding vein, in the afternoon of proestrus. In these animals, GnRH failed to inhibit either the ovarian progesterone surge observed 2 h after LH administration, or the adrenal progesterone secretion. All hypophysectomized rats showed lower ovarian secretory rate of estradiol than intact rats; this rate was not affected by treatment with LH or LH plus GnRH. The systemic estradiol levels in plasma of hypophysectomized rats were distributed within a range of 20 pg/ml to 50 pg/ml. The number of rats whose levels were above 21 pg/ml on estrus day was significantly higher in rats receiving 300 ng GnRH as compared to those receiving 100 ng GnRH, reaching values that surpassed the concentration found in intact, untreated animals at the same time of estrus. This effect did not depend on LH administration.  相似文献   

2.
Many mammals, including cattle, can develop ovarian follicular cysts, but the physiological mechanisms leading to this condition remain undefined. We hypothesized that follicular cysts can develop because estradiol will induce a GnRH/LH surge on one occasion but progesterone exposure is required before another GnRH/LH surge can be induced by estradiol. In experiment 1, 14 cows were synchronized with an intravaginal progesterone insert (IPI) for 7 days, and prostaglandin F(2alpha) was given on the day of IPI removal. Estradiol benzoate (EB; 5 mg i.m.) was given 3 days before IPI removal to induce atresia of follicles. Cows were given a second EB treatment 1 day after IPI removal to induce a GnRH/LH surge in the absence of an ovulatory follicle. All cows had an LH surge following the second EB treatment, and 10 of 14 cows developed a large-follicle anovulatory condition (LFAC) that resembled follicular cysts. These LFAC cows were given a third EB treatment 15 days later, and none of the cows had an LH surge or ovulation. Cows were then either not treated (control, n = 5) or treated for 7 days with an IPI (n = 5) starting 7 days after the third EB injection. Cows were treated for a fourth time with 5 mg of EB 12 h after IPI removal. All IPI-treated, but no control, cows had an LH surge and ovulated in response to the estradiol challenge. In experiment 2, cows were induced to LFAC as in experiment 1 and were then randomly assigned to one of four treatments 1) IPI + EB, 2) IPI + GnRH (100 microg), 3) control + EB, and 4) control + GnRH. Control and IPI-treated cows had a similar LH surge and ovulation when treated with GnRH. In contrast, only IPI-treated cows had an LH surge following EB treatment. Thus, an initial GnRH/LH surge can be induced with high estradiol, but estradiol induction of a subsequent GnRH/LH surge requires exposure to progesterone. This effect is mediated by the hypothalamus, as evidenced by similar LH release in response to exogenous GnRH. This may represent the physiological condition that underlies ovarian follicular cysts.  相似文献   

3.
At calving forty-eight Holstein and Guernsey cows were assigned according to age and breed to one of six postpartum periods (1 or 2, 3 or 4, 5 or 6, 7 or 8, 12 or 13 and 18 or 19 days postpartum). Thirty-six of the cows (6 cows per postpartum period) received a single intramuscular injection of 100 μg GnRH. The other twelve cows (2 cows per postpartum period) served as controls and received a single intramuscular injection of the carrier vehicle for GnRH.Four of 36 cows administered GnRH and three of the 12 control cows ovulated by the day following treatment. Four of the cows were 12 or 13 days postpartum (1 control and 3 GnRH treated) and three were 18 or 19 days postpartum (2 controls and 1 GnRH treated). Six of the seven cows that ovulated the day following treatment had a follicle > 1.0 cm the day prior to treatment. Follicular growth was detected in the earlier postpartum periods but ovulation the following day was not detected for either control or GnRH treated cows. Following estrus or silent estrus, plasma progesterone concentrations increased to about 4 ng/ml on day 13. However, in cows ovulating the day following GnRH treatment, plasma progesterone declined from about 3 ng/ml on day 9 to approximately 1 ng/ml on day 13 postestrus. In addition, LH in plasma was higher (P < .01) ? through 13 days following estrus or silent estrus in cows ovulating the day after GnRH treatment in comparison to cows during the first or subsequent postpartum estrous cycles.In summary, in addition to days postpartum other factors including follicular development and maturity are probably involved in GnRH induced ovulation.  相似文献   

4.
The objective of this study was to investigate the effect of somatic cell count (SCC), body condition score (BCS) or lameness score on ovarian follicular growth and ovulation in dairy cows. Seventy four animals 30-80 days post-partum were monitored for all three conditions before synchronization of ovarian follicular phases by administration of gonadotrophin releasing hormone (GnRH) followed seven days later with prostaglandin F2alpha (PG). Ultrasonography of both ovaries twice daily throughout the follicular phase revealed that fewer animals with combined high SCC and lameness (4/9) ovulated compared to healthy animals (19/21; P = 0.006) or animals with only high SCC (11/11; P = 0.004) or only lameness (21/27; P = 0.06). Overall, regardless of the presence of other concurrent conditions, fewer lame cows ovulated than Non Lame animals (30/42 and 30/32; P = 0.015). Mean follicular growth and maximum follicular diameter were unaffected by any of the three conditions. However, dominant follicle growth and maximum diameter were greater in the 60 animals that ovulated compared to the 14 that did not; 1.83 ± 0.16 versus 0.96 ± 0.26 mm/day (P = 0.014) and 19.4 ± 0.4 versus 16.4 ± 1.2 mm (P = 0.003), respectively. In conclusion, lameness reduced the proportion of cows that ovulated and the synergistic effect of high SCC and lameness reduced that proportion further. However, follicular growth and maximum follicular diameter were unaffected by high SCC, low BCS or lameness.  相似文献   

5.
Two experiments were conducted to determine the effect of days postpartum and exogenous gonadotropin releasing hormone (GnRH) on reproductive hormone and ovarian changes in postpartum suckled beef cows. In experiment 1, eight suckled cows were bled at .5 hour intervals for 4 hours on days 7, 14, 21 and 28 postpartum. Although mean concentrations of plasma luteinizing hormone (LH) were positively correlated with days postpartum, mean concentrations did not differ. The mean maximum change and the variance of plasma LH were low on days 7, 14, 21 and 28 postpartum. Although the number of cows with an ovarian follicle and follicular size increased with days postpartum, mean concentrations of estradiol-17beta did not change. The interval from parturition to the first detected ovarian follicle and the first postpartum estrus was 17.5 +/- 2.6 days and 36.0 +/- 2.2 days, respectively. An elevation in plasma progesterone was detected about one week prior to the first postpartum estrus in 6 of the eight cows in the absence of corpora lutea. In experiment 2, gonadotropin releasing hormone (GnRH) induced ovulation in 4 of the 8 cows treated on day 27, 28 or 29 postpartum whereas none of the 8 saline treated cows ovulated to treatment. The interval from parturition to first estrus and conception were similar for both groups (P >.10).  相似文献   

6.
Considering that there is limited information about the preovulatory LH surge in Zebu cattle (Bos indicus), the purpose of the present work was to assess the LH surge in Nelore cows during the estrous cycle and after ovarian superestimulation of ovarian follicular development with FSH. This information is particularly important to improve superovulatory protocols associated with fixed-time artificial insemination. Nelore cows (n=12) had their estrus synchronized with an intravaginal device containing progesterone (CIDR-B) associated with estradiol benzoate administration (EB, 2.5 mg, i.m., Day 0). Eight days later all animals were treated with PGF2alpha (Day 8) in the morning (8:00 h) and at night, when CIDR devices were removed (20:00 h). Starting 38h after the first PGF2alpha injection, blood sampling and ovarian ultrasonography took place every 4h, during 37 consecutive hours. Frequent handling may have resulted in a stress-induced suppression of LH secretion resulting in only 3 of 12 cows having ovulations at 46.7+/-4.9 and 72.3+/-3.8 h, respectively, after removal of CIDR-B. Thirty days later, the same animals received the described hormonal treatment associated with FSH (Folltropin), total dose=200 mg) administered twice a day, during 4 consecutive days, starting on Day 5. Thirty-six hours after the first injection of PGF2alpha, to minimize stress, only seven blood samples were collected at 4h interval each, and ultrasonography was performed every 12 h until ovulation. In 11 of 12 cows (92%) the LH surge and ovulation were observed 34.6+/-1.6 and 59.5+/-1.9 h, respectively, after removal of progesterone source. The maximum values for LH in those animals were 19.0+/-2.6 ng/ml (mean+/-S.E.M.). It is concluded that, in Nelore cows submitted to a ovarian superstimulation protocol, the LH surge occurs approximately 35 h after removal of intravaginal device containing progesterone, and approximately 12h before the LH surge observed after an induced estrus without ovarian superstimulation.  相似文献   

7.
Fertility of Holstein cows has been decreasing for years and, to a lesser extent, the fertility of heifers too but more recently. A hypothesis to explain this phenomenon may be that the chronology of events leading to ovulation is different for those animals bred nowadays when compared to what was reported previously; this would result in an inappropriate time of insemination. Therefore, two experiments were designed to investigate the relationships among estrus behavior, follicular growth, hormonal events and time of ovulation in Holstein cows and heifers. In the first experiment, the onset of estrus, follicular growth, patterns of estradiol-17beta, progesterone and LH, and the time of ovulation were studied in 12 cyclic Holstein heifers that had their estrus synchronized using the Crestar method; this was done twice, 3 weeks apart. The intervals between estrus and ovulation, estrus and the LH peak, and between the LH peak and ovulation were, respectively, 38.5 h +/-3.0, 9.1 +/- 2.0 and 29.4 h +/-1.5 (mean+/- S.E.M). The variation in the interval between estrus and the LH peak explained 80.6% of the variation in the interval between estrus and ovulation. The intervals between estrus and the LH peak, and estrus and ovulation were correlated with estradiol-17beta peak value (r=-0.423, P <0.04 and r=-0.467, P<0.02, respectively). Positive correlation coefficients for the number of follicle larger than 5 mm, and negative correlation coefficients for the size of the preovulatory follicle with the intervals between estrus and LH peak, LH peak and ovulation, and estrus and ovulation suggest an ovarian control of these intervals. In respect to its role to explain the variation in the interval between estrus and ovulation, the variation in the interval between estrus and the LH peak was evaluated further in a second set of experiments utilizing 12 pubertal Holstein heifers and 35 Holstein cows. The duration of the interval between the beginning of estrus and the LH peak was longer in heifers than in cows (4.15 h versus -1.0 h; P <0.002); the variation for this interval was higher in cows than in heifers (S.E.M.= 1.2 h versus 0.8 h; P=0.01). According to the results of these studies it can be proposed that estradiol and other product(s) of ovarian origin regulate not only the duration of intervals between the onset of estrus and the LH surge but also between the LH surge and ovulation. From the results obtained in the first experiment, it may be postulated that differences observed between cows and heifers for the duration of the interval between onset of estrus and the LH surge as well as for the variation of this interval would be observed also for the interval between the onset of estrus and ovulation. Therefore, on a practical point of view, the long interval between the onset of estrus and ovulation and the high variation of this interval, especially in cows, may be a source of low fertility and should be considered when analysing reproductive disorders.  相似文献   

8.
Gonadotrophin releasing hormone (GnRH, 5 μg every 4 h) was administered to six dairy cows between days 5 and 10 post-partum and the release of luteinizing hormone (LH) and the onset of ovulation were determined. LH was measured using a specific radioimmunoassay and the occurrence of ovulation was assessed from changes in the concentration of progesterone in milk. Treatment with GnRH resulted in a median time of first ovulation of 17.0 days after calving. This was less (P < 0.05) than that observed for control cows (21.5 days, n = 7). Determinations of plasma LH concentrations over an 8-h period on days 6 and 10 post-partum indicated that there was a tendency for GnRH-treated cows to have higher levels of LH on these days. The 5 μg dose of GnRH did not repeatably induce a release of LH between days 6 and 10. Endogenous pulsatile release of LH did, however, increase in frequency from 3.18 pulses per 8 h on day 6 to 5.18 pulses per 8 h on day 14 post-partum (P < 0.01).In a second experiment groups of 20 cows were treated with either 5 μg GnRH every 4 h or 15 μg GnRH every 12 h from days 5 to 10 post-partum. Seventeen untreated cows served as controls. The median times to first ovulation were 27.0 days for the control cows, 22.5 days for those cows treated with 5 μg GnRH every 4 h and 17.0 days for cows treated with 15 μg every 12 h. The latter treatment significantly advanced the time of first ovulation (P < 0.05) relative to controls. This difference had, however, disappeared by the time of the second and third ovulations. Primiparous cows ovulated later (P < 0.01) than the pluriparous cows in the group treated with 5 μg GnRH every 4 h. This was a major reason for the lack of effect of this treatment. Some treated cows were blood sampled at frequent intervals on day 8 to evaluate the LH responses to GnRH injections. The administration of 5 μg GnRH on day 8 did not elicit a pulse of LH which could be distinguished from endogenous pulsatile secretion at this time. The dose of 15 μg on this day did, however, elicit a more defined pulse on some, but not all, occasions.The injection of a small dose of GnRH twice a day from day 5 to day 10 after calving, therefore, advanced the time of first ovulation in dairy cows by 10 days.  相似文献   

9.
Two experiments were conducted to determine whether treatments with gonadotropin releasing hormone (GnRH) during the early postpartum period in suckled cows would induce ovulation and initiate regular estrous cycles. In Experiment I, 0, 100 or 200mug of GnRH was given to 22 suckled Angus x Holstein cows at three and again at five weeks postpartum. Serum luteinizing hormone (LH) responses did not differ between cows given 100 or 200mug of GnRH. Treatment with GnRH tended to increase the percentage of cows exhibiting estrus by 30 and 60 days postpartum, but reproductive performance during the breeding season did not differ among groups. In Experiment II, 70 suckled Hereford cows were given either no treatment or 200mug of GnRH at 7 weeks postpartum. Cows given GnRH received either no treatment prior to GnRH or were separated from their calves for 24 hr prior to GnRH treatment. Half of the cows that were separated from their calves also received progesterone via a progesterone intravaginal device (PRID) for 12 days prior to calf removal. Treatment with GnRH alone tended to increase the percentage of anestrous cows which ovulated by 8 days after treatment. Calf removal did not increase the ovulatory response to GnRH, but PRID treatment did. More estrous periods were detected in GnRH-treated cows than in control cows during 20 days after GnRH treatment.  相似文献   

10.
Twenty lactating Holstein and Guernsey cows, diagnosed by rectal palpation as having ovarian cysts, were randomly divided within breed into two groups to receive either a single intramuscular injection of 100 μg of synthetic gonadotropin releasing hormone (GnRH) or an intravenous injection of 10,000 IU of human chorionic gonadotropin (HCG). The objective was to compare hormonal and clinical changes in cows with ovarian cysts following treatment with GnRH and HCG. Eight of ten and nine of ten cows given either GnRH and HCG, respectively, responded to treatment and subsequent fertility was not different between the two groups. Pre-injection plasma levels of LH, progesterone, and estradiol were highly variable. Mean plasma levels of LH, progesterone and estradiol did not differ between groups either following treatment (days 1–17 post-treatment), at the subsequent estrus, or during days 1–13 following the subsequent estrus. Mean LH levels did not differ significantly on the days either post-treatment or post-estrus except that levels were higher (P < .01) at the subsequent estrus as compared to the other days. Mean progesterone levels increased after treatment with either GnRH or HCG and were higher on days 5, 9 and 13 post-estrus and post-treatment as compared to the subsequent estrus. Mean levels of estradiol were higher (P < .05) at the subsequent estrus than any other time post-treatment or post-estrus. No other days were significantly different. In conclusion, GnRH and HCG are effective treatments for ovarian cysts in cattle. Endocrine response on days following treatment are similar for both compounds.  相似文献   

11.
The effect of intramammary (IMM) or intravenous (IV) administration of E. coli endotoxin (LPS), at the onset of estrus, at the time of ovulation was examined. Steroid and gonadotropin concentrations around ovulation were also determined. Lactating Holstein cows (n=33) were assigned to saline-controls (n=12) and treated with LPS-IV (0.5mug/kg; n=13) or LPS-IMM (10mug; n=8). Synchronized cows were observed continuously for estrus. LPS (or saline) was injected within 30min from the onset of standing estrus, at peak estradiol concentrations. The typical rise of body temperature, somatic cell count, cortisol, and NAGase activity was noted. One-third of both LPS-IV- and LPS-IMM-treated cows were manifested by an extended estrus to ovulation (E-O) interval of around 75h or did not ovulate, compared with about 30h in the other 2/3 of LPS cows and all controls. Estradiol concentrations 24h before and after LPS did not differ between groups. However, LPS-IV cows with extended intervals exhibited another estrus and an additional rise of estradiol followed by delayed ovulation. LPS-treated cows with a delayed E-O interval had low or delayed LH surge; two LPS-treated cows did not exhibit LH surge and did not ovulate. All control cows exhibited normal hormone levels. Delayed ovulation was associated with a delayed rise of luteal progesterone. The results indicated that exposing cows to endotoxin during estrus induced a decreased and delayed LH surge in one-third of the cows. This was associated with delayed ovulation, which reduces the chances of successful fertilization.  相似文献   

12.
Two experiments were conducted to investigate the use of a bioabsorbable implant of the GnRH agonist deslorelin to temporarily delay the resumption of postpartum ovulatory cycles in Holstein cows. In Experiment 1, recently calved cows were paired and received either a single implant (Ovuplant); Peptech Animal Health, Sydney, NSW, Australia) within 48 h of parturition (OVP; n=17), or remained as untreated controls (CON; n=17). Blood samples were collected for plasma progesterone assay three times weekly for 6 weeks to profile the pattern of resumption of ovulatory cycles. In Experiment 2, there were 15 CON and 15 OVP cows initially treated as for Experiment 1 as well as 15 OVP+SYNCH cows. Each cow in the CON and OVP+SYNCH groups received a progesterone vaginal insert (CIDR); Genetics Australia, Bacchus Marsh, Vic., Australia) for 7 days at 23 days postpartum (23 dpp) to synchronise estrus in cycling animals or to induce an ovulation with estrus in anestrus animals. Blood samples were collected weekly until removal of the CIDR insert, and then twice weekly until 56 dpp to monitor plasma P4 for retrospective determination of ovulation. Milk yield was monitored by twice daily electronic volume measurements and milk composition with once weekly milk composition analysis.In Experiment 1, CON cows began ovulating from 9 dpp; 15 of 17 had ovulated by the end of blood sampling at 42 dpp. None of the OVP cows ovulated until at least 24 dpp, and only 6 of 17 had ovulated by 42 dpp. The average day of first ovulation was extended from 22.4+/-2.7 dpp to 39.3+/-2.7 dpp (P<0.05). In Experiment 2, ovulation had occurred in 8 of 15 CON cows at the time of CIDR insertion (23 dpp), 0 of 15 OVP cows and 1 of 15 OVP+SYNCH cows. By 40 dpp (or 10 days following removal of the CIDR insert) every CON cow (15/15) had ovulated, but only 2 of 15 OVP+SYNCH cows and 1 of 15 OVP cows. None of these effects of treatment was associated with any changes in milk yield or composition in either experiment.In conclusion, inserting a bioabsorbable implant of deslorelin within 48 postpartum extended the interval to first ovulation to at least 24 dpp in 46 of 47 cows. Recovery periods were highly variable. This variability was not reduced by using a form of intravaginal progesterone supplementation that did produce a synchronised estrus with ovulation in anestrus animals that had not been treated with deslorelin.  相似文献   

13.
Hypothalamic unresponsiveness to an estradiol surge appears to be an underlying cause of large follicle anovular condition (follicular cysts), but progesterone exposure for 7 days resolves this condition. In this study, dairy cows with induced (Experiment 1) or naturally occurring (Experiment 2) follicular cysts were treated for different times with progesterone. In Experiment 1, 16 of 26 cows (62%) were induced into anovulation by causing a GnRH/LH surge when no ovulatory follicle was on the ovary. Anovular cows (n = 16) were assigned to one of four treatment groups ( 0, 1, 3, or 7 days of progesterone treatment) using an intravaginal, progesterone-releasing implant (CIDR). All anovular cows had low circulating progesterone concentrations before controlled internal drug releasing (CIDR) and greater concentrations that reached steady state (1.3 +/- 0.1 ng/mL progesterone) by 3 h after CIDR insertion. Circulating progesterone decreased to basal concentrations by 4 h after CIDR removal. Cows were treated with 5mg estradiol benzoate (EB) 12 h after CIDR removal. None (n = 4) of the control cows (0 day) had an LH surge after EB. All of the 3 days (5/5) and 7 days (4/4) CIDR-treated cows had an LH surge following EB, but only one of the 1 day (1/3) CIDR-treated cows. Magnitude of the LH peak was similar in the 3 and 7 days cows. All cows treated for 7 days ovulated (4/4), whereas, ovulation occurred in only 3/5, 1/3, and 0/4 of the cows treated for 3, 1, and 0 day, respectively. The two cows in the 3 days group that did not ovulate had a normal LH surge, but these two cows had a smaller maximal follicle size than cows that ovulated. In Experiment 2, naturally anovular lactating dairy cows (24 of 248) were identified using weekly ultrasonography. All anovular cows grew follicles to >12 mm, with 54% (13 of 24) having follicles larger than ovular size (15-24 mm) and 33% (8 of 24) having follicles that would be considered cystic (>25 mm). Anovular cows were randomly assigned to CIDR treatment for 0, 1, or 3 days. All (7/7) of 3 days, 33% (3/9) of 1 day, and 25% (2/8) of control (0 day) cows ovulated by 1 week after CIDR removal. Thus, 3 days but not 1 day of progesterone exposure appears to be sufficient to reinitiate estradiol responsiveness of the hypothalamus.  相似文献   

14.
Pituitary and ovarian responses to subcutaneous infusion of GnRH were investigated in acyclic, lactating Mule ewes during the breeding season. Thirty postpartum ewes were split into 3 equal groups; Group G received GnRH (250 ng/h) for 96 h; Group P + G was primed with progestagen for 10 d then received GnRH (250 ng/h) for 96 h; and Group P received progestagen priming and saline vehicle only. The infusions were delivered via osmotic minipumps inserted 26.6 +/- 0.45 d post partum (Day 0 of the study). Blood samples were collected for LH analysis every 15 min from 12 h before until 8 h after minipump insertion, then every 2 h for a further 112 h. Daily blood samples were collected for progesterone analysis on Days 1 to 10 following minipump insertion, then every third day for a further 25 d. In addition, the reproductive tract was examined by laparoscopy on Day -5 and Day +7 and estrous behavior was monitored between Day -4 and Day +7. Progestagen priming suppressed (P < 0.05) plasma LH levels (0.27 +/- 0.03 vs 0.46 +/- 0.06 ng/ml) during the preinfusion period, but the GnRH-induced LH release was similar for Group G and Group P + G. The LH surge began significantly (P < 0.05) earlier (32.0 +/- 3.0 vs 56.3 +/- 4.1 h) and was of greater magnitude (32.15 +/- 3.56 vs 18.84 +/- 4.13 ng/ml) in the unprimed than the primed ewes. None of the ewes infused with saline produced a preovulatory LH surge. The GnRH infusion induced ovulation in 10/10 unprimed and 7/9 progestagen-primed ewes, with no significant difference in ovulation rate (1.78 +/- 0.15 and 1.33 +/- 0.21, respectively). Ovulation was followed by normal luteal function in 4/10 Group-G ewes, while the remaining 6 ewes had short luteal phases. In contrast, each of the 7 Group-P + G ewes that ovulated secreted progesterone for at least 10 d, although elevated plasma progesterone levels were maintained in 3/7 unmated ewes for >35 d. Throughout the study only 2 ewes (both from Group P + G) displayed estrus. These data demonstrate that although a low dose, continuous infusion of GnRH can increase tonic LH concentrations sufficient to promote a preovulatory LH surge and induce ovulation, behavioral estrus and normal luteal function do not consistently follow ovulation in the progestagen-primed, postpartum ewe.  相似文献   

15.
Administering gonadotropin-releasing hormone (GnRH) improved conception rates in our previous studies. Our objective was to determine if the effect of GnRH was mediated through serum luteinizing hormone (LH) and/or by altered secretion of serum progesterone (P) and estradiol-17 beta (E) during the periestrual and post-insemination periods. Cattle were given either GnRH (n = 54) or saline (n = 55) at 72 h and inseminated artificially (AI) 80 h after the second of two injections of either prostaglandin F2 alpha or its analog, cloprostenol. Progesterone and E were measured in blood serum collected during 3 wk after AI (estrus) from 60 females. Blood was collected for LH determinations via indwelling jugular cannulae from 14 cows and 11 heifers. Collections were taken every 4 h from 32 to 108 h after the second PGF injection (PGF-2) (periestrual period) and at more frequent intervals during 240 min after administration of GnRH (n = 18) or saline (n = 7). Ten females had a spontaneous preovulatory LH surge before GnRH treatment (GnRH-spontaneous), whereas GnRH induced the preovulatory LH surge in six females. A spontaneous LH surge appeared to be initiated in two heifers at or near the time of GnRH treatment (spontaneous and/or induced). The remaining seven cows had spontaneous LH surges with no subsequent change in LH after saline treatment. Serum P during the 21 days after estrus was lower (p less than 0.05) in both pregnant and nonpregnant (open) cattle treated previously with GnRH compared with saline. Serum P during the first week after estrus was greater (p less than 0.01) and increased (p less than 0.05) more rapidly in saline controls and in GnRH-spontaneous cattle than in those exhibiting GnRH-induced or GnRH-spontaneous and/or-induced surges of LH. Conception rate of cattle receiving GnRH was higher (p = 0.06) than that of saline-treated controls. These data suggest that GnRH treatment at insemination initiated the preovulatory LH surge in some cattle, but serum P in both pregnant and open cows was compromised during the luteal phase after GnRH treatment. Improved fertility may be associated with delayed or slowly rising concentrations of serum progesterone after ovulation.  相似文献   

16.
Beginning in December, pony mares were placed under a schedule of increasing light. Starting in February, onset of estrus was checked by daily teasing with a stallion. Mares were randomly assigned to one of three treatments (6 mares per group) administered in March. Treatments were: Group I — 75 mg progesterone injected intramuscularly every day for 10 days in combination with a 1.25 mg injection of PGF2α on day 7 of progesterone treatment and a 2,000 IU injection of HCG on day 2 of estrus; Group II — a norgestomet ear implant inserted for 10 days in combination with 1.25 mg PGF2α given 7 days after insertion and 2,000 IU HCG administered on day 2 of estrus; and Group III — same as II except that 2 mg of GnRH rather than HCG were administered on day 2 of estrus. Blood plasma for radioimmunoassay of progesterone, LH and estradiol was collected from the first day of treatment until 14 days after the end of estrus. Also in March, 6 mares were bled daily from the first day of estrus until subsequent estrus or day 21 (control estrus). Although estrus was detected in all mares, 14 of 18 mares ovulated subsequent to treatments and four of the six control estrus mares ovulated. Only among HCG treated mares was the ovulation rate higher (P < .05) than it was in the control estrus group. The interval from last progesterone injection or norgestomet implant removal to estrus did not differ between treatment groups. Concentrations of estradiol and LH were increased for several days around the time of ovulation and tended to be positively correlated with each other. In the mares that did not ovulate, concentrations of LH and estradiol appeared to be lower than in mares that ovulated. In summary, progestins in combination with PGF2α and increasing light will synchronize estrus in mares during late winter and HCG will hasten ovulation in some mares.  相似文献   

17.
Poor estrus expression and the difficulty encountered in predicting the time of ovulation compromise the reproductive efficiency of Murrah buffalo cows. Synchronization of ovulation and timed artificial insemination are able to precisely control the time of ovulation and thus avoid the need for estrus detection. Recently, the Estradoublesynch protocol (administration of a PGF2α injection 2 days before Heatsynch protocol; GnRH 0, PGF2α 7, estradiol benzoate [EB] 8) was developed that precisely synchronized ovulation twice, i.e., after GnRH and EB injections and resulted in satisfactory pregnancy rates in Murrah buffaloes. The present study was conducted on 104 cycling and 31 anestrus buffaloes to compare (1) the endocrine changes, timing of ovulations, ovarian follicular growth, and efficacy of Estradoublesynch and Heatsynch protocols in cycling and (2) the efficacy of Estradoublesynch and Heatsynch protocols for the improvement of fertility in cycling and anestrus Murrah buffalo cows. Ovulation was confirmed after all GnRH and EB treatments by ultrasonographic examination at 2-hour intervals. Plasma progesterone and total estrogen concentrations were determined in blood samples collected at daily intervals, beginning 2 days before the onset of protocols until the day of second ovulation detection. Ovulatory follicle size was measured by ultrasonography at six time points (first PGF2α administration of Estradoublesynch protocol every 2 days before the onset of Heatsynch protocol, GnRH administration of both protocols, 2 hours before ovulation detection after GnRH administration of both protocols, second PGF2α injection of Estradoublesynch protocol, PGF2α injection of Heatsynch protocol, EB injection of both protocols and, 2 hours before ovulation detection after EB administration of both protocols). Plasma LH, total estrogen, and progesterone concentrations were determined in blood samples collected at 30-minute intervals for 8 hours, beginning GnRH and EB injections, and thereafter at 2-hour intervals until 2 hours after the detection of ovulation. The first ovulatory rate was significantly higher (P < 0.05) in the Estradoublesynch protocol (84.6%) than that in the Heatsynch protocol (36.4%). The first LH peak concentration (74.6 ± 10.4 ng/mL) in the Estradoublesynch protocol was significantly higher (P < 0.05) than that of the Heatsynch protocol (55.3 ± 7.4 ng/mL). In Estradoublesynch protocol, the total estrogen concentration gradually increased from the day of GnRH administration coinciding with LH peak, and then gradually declined to the basal level until the time of ovulation detection. However, in Heatsynch protocol, the gradual increase in total estrogen concentration after GnRH administration was observed only in those buffalo cows, which responded to treatment with ovulation. In both Estradoublesynch and Heatsynch protocols, ovulatory follicle size increased by treatment with GnRH and EB until the detection of ovulation. The pregnancy rate after the Estradoublesynch protocol (60.0%) was significantly higher (P < 0.05) than that achieved after the Heatsynch protocol (32.5%). Satisfactory success rate using the Estradoublesynch protocol was attributed to the higher release of LH after treatment with GnRH, leading to ovulation in most of the animals and hence creating the optimum follicular size at EB injection for ovulation and pregnancy to occur.  相似文献   

18.
Progesterone Releasing Intravaginal Devices (Prids) were inserted into six post-partum beef cows for nine days and 0.5 mg cloprostenol was injected i m on day eight. Blood samples were taken via jugular venous catheters at frequent intervals for seven days after Prid removal and assayed for LH, FSH and progesterone. The induced pre-ovulatory type LH and FSH surges occurred between 35 and 123h after Prid withdrawal in five of the cows. In four cows which underwent surges during the time of most intensive sampling, LH levels were significantly higher during the 30h period prior to the LH surge than during the 30h period after the surge. FSH values were low for the 30h period preceding and the 14h period following the time of maximum FSH/LH concentrations. 16 - 30h after the FSH and LH surges, FSH values were again significantly raised compared with the period immediately after the surge. Despite the success of this Prid/PG regime in inducing ovulation, the variability in time between progestagen withdrawal and the LH surge and ovulation is such that the use of fixed time artificial insemination may give poor results.  相似文献   

19.
Three groups of 4 ewes were passively immunised against estradiol 17β during days 2 through 7, 10 through 17 and 15 through 20 of the estrous cycle respectively. The effects of the neutralisation of estradiol 17β at these specific times, on corpus luteum function, plasma concentrations of luteinising hormone (LH), estrus, and ovulation were observed.Passive immunisation at any phase of the oestrous cycle did not appear to effect the appearance of large ovarian follicles (5–15 mm diameter) at the next time of expected estrus, or the lifespan of the corpus luteum of that cycle. Treatment from day 15 to 20 of the cycle appeared to inhibit estral activity, ovulation and the preovulatory LH surge. Treatment from day 10 to 17 was less disruptive although some extension of the length of the estrous cycle was indicated, and treatment from day 2 to 7 produced little interference with cyclic reproductive activity.  相似文献   

20.
Estrous cycles of 10 postpartum cyclic Holstein cows were synchronized using prostaglandin f(2alpha) (PGF(2alpha)) given twice 12 d apart to study the relationship of the onset of estrus, body temperature, milk yield, luteinizing hormone (LH) and progesterone concentration to ovulation. Blood samples and body temperatures (vaginal and rectal) were taken every 4 h until ovulation, starting 4 h prior to the second PGF(2alpha) treatment. All cows were observed for estrus following the second administration of PGF(2alpha). Ultrasound scanning of the ovaries commenced at standing estrus and thereafter every 2 h until the disappearance of the fluid filled preovulatory follicle (ovulation). Two cows failed to ovulate and became cystic following the second PGF(2alpha) treatment. The remaining eight cows exhibited a decline in progesterone to <1.0 ng/ml within 28 h, standing estrus and a measurable rise (> 1.0 degrees C) in vaginal but not rectal temperature, and ovulated 90 +/- 10 h after the second PGF(2alpha) treatment. Onset of standing estrus, LH peak and vaginal temperature were highly correlated (P<0.05) with time of ovulation (0.82, 0.81 and 0.74, respectively). Intervals to ovulation tended to depend upon parity. Pluriparous (n = 4) and biparous (n = 4) cows ovulated within 24 and 30 +/- 3 h from the onset of standing estrus; 22 and 31 +/- 2 h from the LH peak; and 22 and 27 +/- 3 h from peak vaginal temperature (mean +/- standard error of the mean), respectively. The results indicated that the onset of standing estrus and rise in vaginal temperature are good practical parameters for predicting ovulation time in dairy cattle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号