首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Morning levels of serum melatonin, FSH, LH, prolactin (PRL), progesterone and estradiol were studied by RIA during the ovarian cycle, perimenopause and menopause in 79 healthy women. FSH and LH levels showed a slight nonsignificant increase from the fertile period to perimenopause, exhibiting a significantly greater increase during menopause. PRL, progesterone and estradiol showed parallel changes, reaching lower levels during menopause. Serum melatonin levels decreased with age, attaining minimum levels in menopause. FSH and estradiol were significantly correlated with melatonin in the follicular phase, while in the luteal phase a negative correlation was found between melatonin, progesterone and estradiol. No significant correlations were noted between serum hormone levels during the perimenopausal period. In menopause, as during the follicular phase, melatonin and FSH were negatively correlated. As expected, a significant positive correlation was found between morning serum levels of melatonin and nocturnal urinary excretion of this indoleamine in all groups studied.  相似文献   

2.
Thymosin-beta 4 (ThB4) concentrations in the peripheral circulation of pigs were investigated during the first 30 days after weaning and after hypophyseal stalk transection of ovariectomized females. Significant increases in ThB4 were observed during the day of weaning, during follicular development, and during early luteal formation. During the first period of follicular development (Days 1 to 5 after weaning), ThB4 was uniformly elevated for 3 days whereas during the second period of follicular development (days 21 to 25 after weaning), the increase in ThB4 was bimodal. This period of bimodal secretion was closely associated with luteolysis. ThB4 concentrations were low during the luteal phase when progesterone concentrations were at their greatest. In ovariectomized pigs, ThB4 concentrations were not influenced acutely by a single intravenous injection (2 micrograms) of luteinizing hormone-releasing hormone in control (hypophyseal stalk intact) or hypophyseal stalk transected females. Both of these treatment groups responded to luteinizing hormone-releasing hormone with increased secretion of luteinizing hormone. These studies determined that ThB4 secretion changed dramatically throughout the estrous cycle of pigs but failed to identify an acute association between increased luteinizing hormone secretion and ThB4 in ovariectomized pigs. Our observations support the hypothesis that the thymus gland interacts with the hypothalamopituitary-ovarian axis primarily through changes in secretion of ovarian steroids.  相似文献   

3.
Concentrations of luteinizing hormone (LH), follicle stimulating hormone (FSH) and prolactin (PRL) were measured in jugular blood and those of oestradiol-17β (E217β) in utero-ovarian blood. Samples were taken from five intact gilts every 15 min for 108 h starting between day 15 and day 18 of the oestrous cycle. In the late luteal/early follicular phase, high pulsatile LH secretion, close to one pulse per hour, was observed. This could be the stimulus necessary for the final maturation of the ovarian follicles.Thereafter, frequency and amplitude of pulses, and the baseline value, decreased and were low at least between 36 and 12 h before the preovulatory LH surge. PRL and FSH concentrations also declined. This was probably due to the increase of oestrogen secretion. As E217β concentrations were still high, the surge of LH which was accompanied by increase in FSH and PRL, occurred for approximately 13 to 20 h. While LH and PRL mean levels decreased, FSH concentrations continued to increase. Peaks of PRL were observed during the late luteal/early follicular phase and during the LH discharge. During the period of estrus, each exposure to the boar was immediately followed by one of these peaks, which could play a role in the sexual behavior of the gilt.  相似文献   

4.
In order to elucidate the relationship between prolactin (PRL) levels and corpus luteum function in humans, assessment of temporal relationship between levels of PRL, LH, FSH, estradiol and progesterone was made in eleven normal cycling women and six short luteal women. All hormones were determined by specific radioimmunoassay. The mean PRL level in the luteal phase was higher than that in the follicular phase in normal women. On the other hand, no difference mean was seen between the PRL levels of follicular and luteal phases in short luteal women. In addition, follicular and luteal phase secretion of PRL in the short luteal phase (SLP) was lower than that in the normal control. LH and FSH in the follicular and luteal phases, estradiol secretion in the late follicular and early to mid-luteal phases in SLP were also lower than those in the control. These observations were consistent with the hypothesis that SLP is a sequel to aberrant folliculogenesis. In addition, it is inferred that low PRL levels in the SLP might be due to inadequate augmentation by estrogen, rather than giving PRL any positive controlling role in the maintenance of corpus luteum function.  相似文献   

5.
Little is known about the regulation of temporal variations of progesterone over the 24-hr span in young cycling women as well as in postmenopausal women. The purpose of the present study was to investigate the relationships between diurnal variations of progesterone and diurnal variations of hormones of the gonadotropic and corticotropic axes, and to provide further information on the source of progesterone secretion under physiological conditions. Twenty-four-hour hormonal profiles were explored under well-controlled laboratory conditions in 10 healthy women (21–36 yr old) with normal ovulatory cycles during early-mid follicular and late luteal phases, and in 8 healthy postmenopausal women (48–74 yr old). In young cycling women, significant positive relationships were found between progesterone and follicle-stimulating hormone (FSH) – but not luteinizing hormone (LH) – profiles during late luteal phase. Conversely, during follicular phase, significant positive relationships were evidenced between progesterone and cortisol profiles, but not between progesterone and FSH or LH. In postmenopausal women, strong positive correlations were found between progesterone and corticotropin (ACTH) or cortisol profiles. The present results indicate that during late luteal phase, temporal progesterone profiles are associated with FSH rather than with LH profiles. They also provide evidence that adrenal cortex is a major – or possibly the only – source of progesterone production during the follicular phase of the normal ovulatory cycle, and probably the only source after menopause.  相似文献   

6.
Differences during the follicular and luteal phases in the secretion of pregnane compounds by rat ovaries were studied. Daily s.c. injections of 2 mg of progesterone that began at early diestrus prolonged the diestrus stage for the duration of the treatment. In the follicular phase, normal proestrus and proestrus delayed by progesterone treatment were examined. In the luteal phase, day 6 of pseudopregnancy was examined. 20 alpha-hydroxy-4-pregnen-3-one accounted for most of total amount of pregnane compounds secreted from ovaries in the follicular phase, and progesterone and 20 alpha-hydroxy-4-pregnen-3-one for most at the luteal phase. The levels of 5 alpha-pregnane compounds were low in both phases. Injection of 2 micrograms of luteinizing hormone (LH) before sample collection increased the secretion of progesterone in the follicular phase, but not in the luteal phase. The secretion of 5 alpha-pregnane-3,20-dione and 3 alpha-hydroxy-5 alpha-pregnan-20-one was increased by the injection of LH in either phase, but the ability of the ovaries to produce these steroids was low, suggesting that there was low 5 alpha-reductase activity in the ovaries of rats with delayed proestrus and pseudopregnant rats.  相似文献   

7.
Insulin-like growth factor I (IGF-I) is involved in paracrine/autocrine regulation of gonadal steroidogenesis and peptide hormone biosynthesis. This study was designed to determine whether IGF-I alone, or an interaction of IGF-I, is involved in augmenting the actions of luteinizing hormone (LH) and prolactin in controlling relaxin and progesterone secretion from ageing corpora lutea of hysterectomized gilts at days 110, 113 and 116 after oestrus. Luteal tissue slices were incubated for 8 h with IGF-I (0, 50, 300 ng ml-1), LH (0, 100, 1000 ng ml-1), and prolactin (0, 100, 1000 ng ml-1) alone or in combination. Progesterone and relaxin concentrations were determined by radioimmunoassay of spent medium and of homogenates from luteal tissue slices before and after incubation. Porcine luteal tissue from day 110 had a net output of 25 ng progesterone and 26 ng relaxin in the control and of 65 ng progesterone and 2125 ng relaxin in the combined IGF-I, LH and prolactin treatment mg-1 of luteal tissue, respectively. IGF-I, LH and prolactin alone or in combination significantly increased (P < 0.01) progesterone production by luteal tissue from day 110, but they were partially effective at day 113 and ineffective at day 116. By contrast, the same hormone treatments increased relaxin production by luteal tissue from days 110 and 113. Even at day 116, prolactin alone or with LH or IGF-I continued to stimulate relaxin production. In conclusion, IGF-I augments the ability of prolactin and LH to increase relaxin production by ageing corpora lutea; however, a decrease in progesterone secretion and an increase in relaxin secretion at day 113 indicate that different mechanisms control progesterone and relaxin secretion in pigs.  相似文献   

8.
We have reported that splenic macrophages play a role in the regulation of progestin secretion in rats. In this study, splenic macrophages were obtained from cycling rats at different estrous cycle stages and co-cultured with luteal cells from mid-pseudopregnant rats in the absence/presence of prolactin (PRL) or luteinizing hormone (LH). The effect of macrophages on the luteotropic action of PRL and LH was evaluated with 2 parameters, i.e. an increase in total progestin output (progesterone plus 20 alpha-hydroxyprgn-4-en-one [20 alpha-OHP]), and an increase in the progesterone to 20 alpha-OHP (P/20 alpha-OHP) secretion ratio. Splenic macrophages obtained from proestrous or metestrous rats enhanced the PRL action to increase the P/20 alpha-OHP secretion ratio, but those from estrous or diestrous donors did not. Only macrophages from proestrous donors enhanced the PRL action to increase the total progestin output. In contrast, the LH action increasing the P/20 alpha-OHP secretion ratio was enhanced by splenic macrophages regardless of the donors' estrous cycle stages. The LH action increasing the total progestin output was enhanced only by proestrous or metestrous macrophages. Therefore, if luteal cells are co-cultured with proestrous macrophages, the luteotropic actions of PRL and LH can be fully expressed. These results indicate that splenic macrophages directly act on luteal cells and enhance the luteotropic action of PRL and LH, and that this function of splenic macrophages is modified somehow according to the donors' estrous cycle stages.  相似文献   

9.
Chronic afternoon (PM) but not morning injections of melatonin (MEL) induced significant reductions in testicular and seminal vesicle weights as well as attenuating serum prolactin (PRL) and luteinizing hormone (LH) levels. Although there were no treatment-induced effects on hemipituitary weights, PM-Mel injections led to significant reductions in in vitro PRL secretion and tended to increase the ability of dopamine to inhibit PRL release. It was also shown that LH-releasing hormone (LHRH) could inhibit in vitro PRL release from hamster pituitaries. Basal or LHRH-stimulated LH secretion from incubated pituitaries was not affected by Mel in vivo. From these results we conclude that properly timed Mel injections do not reduce pituitary's ability to secrete LH but severely attenuate PRL secretion. These findings are similar to those observed in pituitaries from hamsters housed in short-photoperiod conditions.  相似文献   

10.
The relationship between prolactin (PRL) secretion and anovulation in lactating rats was studied. Normal lactating rats and lactating rats treated with antiserum against luteinizing hormone-releasing hormone at the time of postpartal ovulation were used. Normal lactating rats were treated with either a dopamine agonist (CB-154, 150 micrograms/rat) on Day 10 or 13, or pups removal on Day 7 or 10, and thereafter luteolysis and inhibition on PRL secretion were assessed. With the CB-154 treatment, the incidence of luteolysis increased as the lactational period advanced (42% vs 72%), whereas it decreased (73% vs 14%) with the pups removal. Thus, dopamine effectively inhibited PRL secretion during the later lactational stage, but could not do so during the earlier stage when there were mechanisms other than dopamine stimulating PRL secretion. Following luteal regression induced by CB-154, ovulation did not occur if the rats were treated with CB-154 on Day 10, whereas 50% of the rats ovulated within 4 days if treated on Day 13. Furthermore, in the lactating rats treated with anti-luteinizing hormone-releasing hormone serum during late pregnancy, ovulation was not observed until Day 10 of lactation. Since the serum progesterone levels were low in these rats due to the absence of ovulation and lactational corpora lutea, the blockade of ovulation was not due to elevated circulating progesterone during the early lactational period. The mechanism of ovulation blockade during lactation thus seems to shift from being progesterone independent to progesterone dependent at a similar period when the neuroendocrine control of PRL secretion shifts from dopamine independent to dependent.  相似文献   

11.
Scottish Blackface ewes in high body condition (mean score = 2.86) had a higher mean ovulation rate (1.8 v. 0.9; P < 0.05) and more large (⪖ 4 mm diameter) follicles (4.6 v 2.2; P < 0.05) than ewes in low condition (mean score = 1.84) but similar numbers of small (1–4 mm diameter) follicles (6.3 v 6.0; NS). There was little difference in LH profiles with body condition but FSH and prolactin concentrations were significantly greater, during both luteal and follicular phases of the cycle, in ewes in high condition.Despite the relationships between body condition and ovulation rate and between condition and hormone concentrations, within the high condition groups, there was no significant difference in FSH levels with ovulation rate. Prolactin levels were higher in ewes with a single ovulation than in ewes with two or three ovulations. There was a trend towards a higher mean LH pulse frequency in the luteal phase and a higher mean LH pulse amplitude in the follicular phase in ewes with multiple ovulations compared with ewes with a single ovulation. During oestrus, only circulating prolactin concentrations differed with body condition, being significantly higher in ewes in high condition, but mean LH concentrations were higher and FSH concentrations lower in ewes with multiple ovulations. Subsequent luteal function, as measured by circulating progesterone concentrations, was normal in all ewes. It is concluded that body condition affected the size of the large follicle (⪖ 4 mm diameter) population through changes in FSH and possibly pulsatile LH secretion and prolactin secretion during the luteal and follicular phases of the cycle and that the number of follicles that were potentially ovulatory was probably determined during the luteal phase of the cycle. However, their ability to undergo the final stages of development and to ovulate may be related to the amount of LH secreted during the follicular phase.  相似文献   

12.
Daily measurement of serum luteinizing hormone, estradiol-17beta, and progesterone were made during the menstrual cycle in nine pigtail macaques (Macaca nemestrina). All data were normalized to the day of the luteinizing hormone peak. Serum estradiol-17beta increased from approximately 100 pg/ml during the early follicular phase to 442 +/- 156 pg/ml during the maximum midcycle concomitant with the luteinizing hormone peak, and a small increase in serum estradiol-17beta was observed during the luteal phase coincident with the progesterone peak. Serum progesterone values increased slightly at the time of the luteinizing hormone peak and increased from 0.2-0.3 ng/ml during the midfollicular phase to peak levels of 8.3 +/- 1.75 ng/ml 9 days after the luteinizing hormone surge. Serum luteinizing hormone remained low and relatively constant throughout the early and midcycle, then sharply increased approximately four-fold to peak values of 6.25 +/- 0.9 ng/ml. Sex skin swelling increased slowly during the follicular phase and declined slowly throughout the early luteal phase. Rectal temperature did not change significantly throughout the menstrual cycle. The similarity of plasma sex hormone changes during the menstrual cycle between women and the pigtail macaque suggested that this nonhuman primate should be a useful animal model for studying human reproduction.  相似文献   

13.
In higher primates, increased circulating follicle‐stimulating hormone (FSH) levels seen during late menstrual cycle and during menstruation has been suggested to be necessary for initiation of follicular growth, recruitment of follicles and eventually culminating in ovulation of a single follicle. With a view to establish the dynamics of circulating FSH secretion with that of inhibin A (INH A) and progesterone (P4) secretions during the menstrual cycle, blood was collected daily from bonnet monkeys beginning day 1 of the menstrual cycle up to 35 days. Serum INH A levels were low during early follicular phase, increased significantly coinciding with the mid cycle luteinizing hormone (LH) surge to reach maximal levels during the mid luteal phase before declining at the late luteal phase, essentially paralleling the pattern of P4 secretion seen throughout the luteal phase. Circulating FSH levels were low during early and mid luteal phases, but progressively increased during the late luteal phase and remained high for few days after the onset of menses. In another experiment, lutectomy performed during the mid luteal phase resulted in significant decrease in INH A concentration within 2 hr (58.3±2 vs. 27.3±3 pg/mL), and a 2‐ to 3‐fold rise in circulating FSH levels by 24 hr (0.20±0.02 vs. 0.53±0.14 ng/mL) that remained high until 48 hr postlutectomy. Systemic administration of Cetrorelix (150 µg/kg body weight), a gonadotropin releasing hormone receptor antagonist, at mid luteal phase in monkeys led to suppression of serum INH A and P4 concentrations 24 hr post treatment, but circulating FSH levels did not change. Administration of exogenous LH, but not FSH, significantly increased INH A concentration. The results taken together suggest a tight coupling between LH and INH A secretion and that INH A is largely responsible for maintenance of low FSH concentration seen during the luteal phase. Am. J. Primatol. 71:817–824, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
The effect of exogenous dehydroepiandrosterone-sulfate (DHAS) on luteinizing hormone (LH), follicle-stimulating hormone (FSH), prolactin (PRL) and thyroid-stimulating hormone (TSH) pituitary secretion was studied in 8 normal women during the early follicular phase. The plasma levels of these hormones were evaluated after gonadotropin-releasing hormone (GnRH)/thyrotropin-releasing hormone (TRH) stimulation performed after placebo or after 30 mg DHAS i.v. administration. The half-life of DHAS was also calculated on two subjects; two main components of decay were detected with half-times of 0.73-1.08 and 23.1-28.8 h. The results show an adequate response of all hormones to GnRH or TRH tests which was not significantly modified, in the case of LH, FSH and PRL, when performed in the presence of high levels of DHAS. However, the TSH response to TRH was significantly less suppressed (p less than 0.05) (39%) after DHAS administration than during repeated TRH stimulation without DHAS (51%). The data support the hypothesis that DHAS does not affect LH, FSH and PRL secretion, while TSH seemed to be partially influenced.  相似文献   

15.
In the current study, to characterize TCDD action during luteal phase of the ovarian cycle, the direct effect of TCDD was investigated in vitro using a system of monolayer cell culture. Luteal cells isolated from mid-developing corpora lutea were cultured with four different doses of TCDD (0.1, 1.0, 10.0 and 100 nM). The dose of 0.1nM TCDD had no effect on progesterone (P4) secretion by luteal cells while the doses of 10nM and 100nM in the same, statistically significant manner decreased P4 secretion (p <0.05). The inhibitory effect of TCDD was dependent not only on doses by also on experimental conditions. In cells treated every day for 72 hrs of culture with 0.1nM TCDD, P4 secretion was 71% of basal secretion. 100nM TCDD added only at the beginning of the culture and nor repeated when medium was changed every 24 hrs decreased P4 secretion to 81.8% of basal secretion. The most inhibitory effect was observed in experiments in which 100nM TCDD was added at the beginning of the culture and medium was not changed for 72 hrs. Secretion of P4 was only 33.9% of that by control cultures. In order to show the time-dependent response to TCDD in terms of P4 secretion, luteal cells were cultured for 24,48, 72 hrs with 0.1 and 100nM TCDD. 85%, 75% and 72% of basal progesterone secretion was noted after 24, 48 and 72h respectively in 0.1nM TCDD-treated cells. In 100nM TCDD treated cells the decrease of progesterone secretion was 57%, 67% and 82% of basal secretion after 24, 48 and 72 hrs of culture. These experiments suggest that TCDD by suppressing progesterone secretion by corpora lutea can cause adverse reproductive effects such as early pregnancy failure. Endocrine disrupters that interfere with progesterone production can act as abortifacients.  相似文献   

16.
Prolactin as a luteotrophin   总被引:1,自引:0,他引:1  
This review summarizes evidence suggesting a direct luteotrophic role for the hypophyseal hormone prolactin (PRL). This direct role consists of the capability to stimulate progesterone synthesis in vitro, the capability to maintain the membrane fluidity and receptors for luteinizing hormone and the capability to import substrate for progesterone synthesis. The time required for PRL-induced luteotrophic events is in the order of hours and sometimes days, and it appears that the effects are not associated with acute intracellular changes. The relatively slow responses and the stimulation of specific protein synthesis by PRL in target tissues other than the ovary suggest that PRL may function primarily through activation of the genome. PRL may induce the synthesis of specific luteal proteins, including enzymes for the regulation of intracellular substrate pools, membrane receptors for LH, or receptor proteins for lipoproteins, a major extracellular source of substrate.  相似文献   

17.
Interleukin 8 (IL-8) is a chemoattractant involved in the recruitment and activation of neutrophils and is associated with the ovulate process. We examined the possible role of IL-8 in steroid production by bovine granulosa cells before and after ovulation. The concentration of IL-8 in the follicular fluid of estrogen-active dominant (EAD) and pre-ovulatory follicles (POF) was higher than that of small follicles (SF). CXCR1 mRNA expression was higher in the granulosa cells of EAD and POF than that of SF. In contrast, CXCR2 mRNA expression was lower in granulosa cells of EAD and POF than in SF. IL-8 inhibited estradiol (E2) production in follicle-stimulating hormone (FSH)-treated granulosa cells at 48 h of culture. IL-8 also suppressed CYP19A1 mRNA expression in FSH-treated granulosa cells. IL-8 stimulated progesterone (P4) production in luteinizing hormone (LH)-treated granulosa cells at 48 h of culture. Although IL-8 did not alter the expression of genes associated with P4 production, it induced StAR protein expression in LH-treated granulosa cells. The expression of CXCR1 mRNA in corpus luteum (CL) did not change during the luteal phase. In contrast, the expression of CXCR2 mRNA in middle CL was significantly higher than in early and regression CL during the luteal phase. In luteinizing granulosa cells, an in vitro model of granulosa cell luteinization, CXCR2 mRNA expression was downregulated, whereas CXCR1 mRNA expression was unchanged. IL-8 also stimulated P4 production in luteinizing granulosa cells. These data provide evidence that IL-8 functions not only as a chemokine, but also act as a regulator of steroid synthesis in granulosa cells to promote luteinization after ovulation.  相似文献   

18.
Our previous in vivo and in vitro studies revealed that prolactin (PRL) affected luteal function during the first days of the porcine estrous cycle. Since the mechanism by which the luteotrophic action of PRL might be mediated was not elucidated, the goal of the present study is to investigate the effects of short term, in vivo administration of PRL on in vitro functions of hypothalamic explants, adenohypophyseal cells and luteal cells of sows. Injections of PRL or saline (performed every 2h) started shortly after the preovulatory LH surge and lasted for 2 or 3 days. Peripheral blood plasma for determination of LH, PRL and progesterone (P(4)) was sampled at 4h intervals. Ovaries, pituitaries and the stalk median eminence (SME) dissected after slaughter were used for in vitro studies. Luteal and adenohypophysial cells as well as hypothalamic tissue were incubated/cultured with different treatments. Medium and plasma levels of GnRH, LH and P(4) were quantified by radioimmunoassays (RIAs). Corpora lutea (CL) were used for LH/human chorionic gonadotrophin (hCG) receptor analysis. In vivo and in vitro treatment with PRL increased the in vitro GnRH release by hypothalamic explants (P<0.05). GnRH-stimulated LH production was enhanced in PRL-treated sows compared to that of control sows (P<0.05). PRL injections had no effect on plasma P(4) concentrations during the treatment period. However, luteal secretion of P(4) (P=0.06) and LH/hCG receptor concentration (P=0.079) tended to be higher in PRL-treated sows in comparison to those of controls. The results indicate that PRL may be involved in the regulation of the hypothalamic-pituitary-ovarian axis at the beginning of the luteal phase of the porcine estrous cycle.  相似文献   

19.
Oxytocin (OT) is involved in the stimulation of secretion of anterior pituitary hormones in females during the periovulatory and periparturient periods. In the present study we examined the role of OT in control of ACTH, beta-endorphin, LH and PRL secretion in vitro from dispersed anterior pituitary cells collected from gilts during the luteal (Days 10-12; n=6) and follicular (Days 18-20; n=5) phases of the estrous cycle. Isolated anterior pituitary cells (1 x 10(6)/ml) were transferred into 24-well plates, separately for each animal, and were pre-incubated for three days at 37 degrees C in atmosphere of 5% CO(2) and 95% air. The cells which attached to the dishes were incubated (3.5 h, 37 degrees C) in McCoy's medium in the absence (control) or in the presence of the following factors: CRH alone (10(-10), 10(-9), 10(-8), 10(-7) M), OT alone (10(-8), 10(-7), 10(-6) M), LVP alone (10(-7) M), OT (10(-7) M) plus CRH (10(-9) M) and LVP (10(-7) M) plus CRH (10(-9) M) for studying ACTH and beta-endorphin secretion; OT alone (10(-8), 10(-7), 10(-6) M), GnRH alone (100 ng/ml), CRH alone (10(-9) M), OT (10(-7) M) plus GnRH (100 ng/ml) and OT (10(-7) M) plus CRH (10(-9) M) for studying LH and PRL secretion. Concentrations of the studied hormones in media were analyzed by RIA. Oxytocin alone increased ACTH (at doses 10(-7), 10(-6) M), beta-endorphin (at dose 10(-8) M), LH (at dose 10(-8) M) and PRL (at doses 10(-7), 10(-6) M) secretion by pituitary cells isolated only from luteal-phase gilts. None of the studied hormone concentrations in the medium was increased in response to OT when pituitary cells of follicular-phase gilts were examined. Oxytocin in combination with CRH exerted an additive effect on beta-endorphin secretion during the luteal phase. Summarizing, in the present study the stimulatory effect of oxytocin on ACTH, beta-endorphin, LH and PRL secretion by pituitary cells isolated from gilts during the luteal phase was demonstrated. However, the cells collected from follicular-phase gilts appeared to be unresponsive to OT. Moreover, interaction between OT and CRH in affecting beta-endorphin secretion was shown. These results suggest that OT may be transiently involved in the modulation of anterior pituitary hormone secretion in cyclic pigs.  相似文献   

20.
Transrectal ovarian ultrasonography was conducted in six Western white-faced ewes for 35 days from the last oestrus of the breeding season, to record the number and size of all ovarian follicles > or = 3 mm in diameter and luteal structures. Blood samples were collected once a day for estimation of serum concentrations of follicle-stimulating hormone (FSH), oestradiol and progesterone. Each ewe had five follicular waves (follicles growing from 3 to > or = 5 mm in diameter) over the scanning period. The duration of the growth phase of the largest ovarian follicles did not differ (P > 0.05) between waves, but follicular static and regressing phases decreased significantly (P < 0.05) after the decline in serum progesterone concentrations at the end of the last luteal phase of the breeding season. The intervals between the five follicular waves were: 9.2+/-0.4, 5.2+/-0.7, 8.3+/-0.8 and 5.8+/-0.7 days; the two shorter intervals differed (P < 0.05) from the two longer intervals. Using the cycle-detection program, rhythmic increases in serum FSH concentrations were detected in all ewes; the amplitude, duration and periodicity of FSH fluctuations did not vary (P > 0.05) throughout the period of study. The number of identified FSH peaks (7.8+/-0.5 peaks per ewe, per scanning period) was greater (P < 0.05) than the number of emerging follicular waves. Serum concentrations of oestradiol remained low (< or = 1 pg/ml) on most days, in five out of the six ewes studied, and sporadic elevations in oestradiol secretion above the non-detectable level were not associated with the emergence of follicular waves. The ovulation rate was lower than that seen during the middle portion of the breeding season (November-December) in white-faced ewes but the transitional ewes had larger corpora lutea (CL). Maximal serum concentrations of progesterone appeared to be lower and the plateau phase of progesterone secretion appeared to be shorter during the last luteal phase of the ovulatory season in comparison to the mid-breeding season of Western white-faced ewes. During the transition into anoestrus in ewes, the endogenous rhythm of FSH release is remarkably robust but the pattern of emergence of sequential follicular waves is dissociated from FSH and oestradiol secretion. Luteal progesterone secretion is suppressed because of fewer ovulations and diminished total luteal volume, but it may also result from diminished gonadotropic support. These season-related alterations in the normal pattern of ovine ovarian cycles appear to be due to reduction in ovarian responsiveness to gonadotropins and/or attenuation in secretion of luteinizing hormone (LH) occurring at the onset of the anovulatory season in ewes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号