首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Testicular tissues from Anolis lineatopus were examined histologically to determine testicular structure, germ cell morphologies, and the germ cell development strategy employed during spermatogenesis. Anoles (N = 36) were collected from southern Jamaica from October 2004 to September 2005. Testes were extracted and fixed in Trump's fixative, dehydrated, embedded in Spurr's plastic, sectioned, and stained with basic fuchsin/toluidine blue. The testes of Jamaican Anoles were composed of seminiferous tubules lined with seminiferous epithelia, similar to birds and mammals, and were spermatogenically active during every month of the year. However, spermatogenic activity fluctuated based on morphometric data for February, May and June, and September-December. Sequential increases for these months and decreases in between months in tubular diameters and epithelial heights were due to fluctuations in number of elongating spermatids and spermiation events. Cellular associations were not observed during spermatogenesis in A. lineatopus, and three or more spermatids coincided with mitotic and meiotic cells within the seminiferous epithelium. Although the germ cell generations were layered within the seminiferous epithelium, similar to birds and mammals, the actual temporal development of germ cells and bursts of sperm release more closely resembled that reported recently for other reptilian taxa. All of these reptiles were temperate species that showed considerable seasonality in terms of testis morphology and spermatogenesis. The Jamaican Gray Anole has continuous spermatogenesis yet maintains this temporal germ cell development pattern. Thus, a lack of seasonal spermatogenesis in this anole seems to have no influence on the germ cell development strategy employed during sperm development.  相似文献   

2.
The cytological changes to germ cells were investigated within the seminiferous epithelium of the American alligator (Alligator mississippiensis). Testicular tissues were collected, embedded in plastic, sectioned on an ultramicrotome, and stained with the periodic acid–Schiff+ procedure followed by a haematoxylin counterstain. Alligators have a prenuptial pattern of germ cell development, where spermatogenesis begins in early spring and sperm is mature by the time mating begins in May. Consistent spatial relationships between germ cells are absent within the seminiferous epithelium of the alligator. Their germ cells progress through the phases of spermatogenesis as a single cohort, leading to one continuous spermiation event that occurs during their mating season (May–June). This temporal germ cell development is different from the consistent spatial development seen within seasonally breeding birds and mammals but is similar to the recently described germ cell development strategies of two other temperate breeding reptiles, the slider turtle and the European wall lizard. The germ cell development strategy shared by these three temperate reptiles representing three different taxa within the class Reptilia is reminiscent of the temporal strategy seen within the anamniotic testis. Thus, alligators and at least two other temperate reptiles exhibit primitive spermatogenic cycles within derived amniotic testes and may be consider intermediates in terms of testicular organization, which may have significance phylogenetically.  相似文献   

3.
The germ cell development strategy during spermatogenesis was investigated in the black swamp snake (Seminatrix pygaea). Testicular tissues were collected, embedded in plastic, sectioned by ultramicrotome, and stained with methylene blue and basic fuchsin. Black swamp snakes have a postnuptial pattern of development, where spermatogenesis occurs from May to July and spermiation is completed by October. Though spatial relationships are seen between germ cells within the seminiferous epithelium during specific months, accumulation of spermatogonia and spermatocytes early in spermatogenesis and the depletion of spermatocytes and accumulation of spermatids late in spermatogenesis prevent consistent cellular associations. This temporal germ cell development within an amniotic testis is consistent with that seen in other recently studied temperate reptiles (slider turtle and wall lizard). These reptiles’ temporal development is more similar to the developmental strategy found in anamniotes than the spatial germ cell development that characterizes birds and mammals. Our findings also imply that a third germ cell development strategy may exist in temperate breeding reptiles. Because of the phylogenetic position of reptiles between anamniotes and other terrestrial amniotes, this common germ cell development strategy shared by temperate reptiles representing different orders may have significant implications as far as the evolution of sperm development within vertebrates.  相似文献   

4.
5.
Zhang L  Han XK  Qi YY  Liu Y  Chen QS 《Theriogenology》2008,69(9):1148-1158
To elucidate the processes involved in the spatial and temporal maturation of spermatogenic cells in the testes of the soft-shelled turtle, Pelodiscus sinensis, we used a histological morphology method, TdT-mediated dUTP nick end-labeling (TUNEL) assay, the proliferating-cell nuclear antigen (PCNA), and electron microscopy. Seminiferous tubules from 100 turtles, normal for size of testes and semen quality, were collected during 10 months of a complete annual cycle (10 turtles/month). The seminiferous epithelium was spermatogenically active through the summer and fall, but quiescent throughout the rest of the year; germ cells progressed through spermatogenesis in a temporal rather than a spatial pattern, resulting in a single spermatogenic event that climaxed with one massive sperm release in November. The TUNEL method detected few apoptotic cells in spermatogenic testis, with much larger numbers during the spermatogenically quiescent phase. Spermatocytes were the most common germ cell types labeled by the TUNEL assay (a few spermatogonia were also labeled). Apoptotic spermatocytes had membrane blebbing and chromatin condensation during the resting phase, but not during active spermatogenesis. We inferred that accelerated apoptosis of spermatogonia and spermatocytes partly accounted for germ cell loss during the nonspermatogenic phase. The PCNA was expressed in nuclei of spermatogonia and primary spermatocytes during the spermatogenically active phase. During the regressive phase, PCNA-positive cells also included spermatogonia and spermatocytes, but the number of positive spermatocytes was less than that during the spermatogenically active phase. We concluded that seasonal variations in spermatogenesis in the soft-shelled turtle were both stage- and process-specific.  相似文献   

6.
To examine the spermatogenesis (and spermiogenesis) cell population kinetics after gamma-irradiation, the frequency and fate of BrdU-labeled pre-meiotic spermatogenic cells (spermatogonia and pre-leptotene spermatocytes) and spermatogonial stem cells (SSCs) of the medaka fish (Oryzias latipes) were examined immunohistochemically and by BrdU-labeling. After 4.75 Gy of gamma-irradiation, a statistically significant decrease in the frequency of BrdU-labeled cells was detected in the SSCs, but not in pre-meiotic spermatogenic cells. The time necessary for differentiation of surviving pre-meiotic spermatogenic cells without delay of germ cell development was shortened. More than 90% of surviving pre-meiotic spermatogenic cells differentiated into haploid cells within 5 days after irradiation, followed by a temporal spermatozoa exhaust in the testis. Next, spermatogenesis began in the surviving SSCs. However, the outcome was abnormal spermatozoa, indicating that accelerated maturation process led to morphological abnormalities. Moreover, 35% of the morphologically normal spermatozoa were dead at day 6. Based on these results, we suggest a reset system; after irradiation most surviving spermatogenic cells, except for the SSCs, are prematurely eliminated from the testis by spermatogenesis (and spermiogenesis) acceleration, and subsequent spermatogenesis begins with the surviving SSCs, a possible safeguard against male germ cell mutagenesis.  相似文献   

7.
Ground Skink (Scincella lateralis) testes were examined histologically to determine the testicular organization and germ cell development strategy employed during spermatogenesis. Testicular tissues were collected from 19 ground skinks from Aiken County, South Carolina during the months of March-June, August, and October. The testes consisted of seminiferous tubules lined with germinal epithelia in which germ cells matured in close association with Sertoli cells. As germ cells matured, they migrated away from the basal lamina of the epithelia towards the lumina of the seminiferous tubules. The testes were spermatogenically active during the months of March, April, May, June, and October (largest seminiferous tubule diameters and epithelial heights), but entered a quiescent period in August (smallest seminiferous tubule diameter and epithelial height) where only spermatogonia type A and B and early spermatocytes were present in low numbers within the seminiferous epithelium. Although the testicular organization was similar to other amniotes, a temporal germ cell development strategy was employed during spermatogenesis within Ground Skinks, similar to that of anamniotes. Thus, this skink's germ cell development strategy, which also has been recently reported in all other major reptilian clades, may represent an evolutionary intermediate in terms of testicular organization between anamniotes and birds and mammals.  相似文献   

8.
We quantify the population divergence processes that shaped population genetic structure in the Trans‐Volcanic bunchgrass lizard (Sceloporus bicanthalis) across the highlands of south‐eastern Mexico. Multilocus genetic data from nine nuclear loci and mitochondrial (mt)DNA were used to estimate the population divergence history for 47 samples of S. bicanthalis. Bayesian clustering methods partitioned S. bicanthalis into three populations: (1) a southern population in Oaxaca and southern Puebla; (2) a population in western Puebla; and (3) a northern population with a broad distribution across Hidalgo, Puebla, and Veracruz. The multilocus nuclear data and mtDNA both supported a Late Pleistocene increase in effective population size, and the nuclear data revealed low levels of unidirectional gene flow from the widespread northern population into the southern and western populations. Populations of S. bicanthalis experienced different demographic histories during the Pleistocene, and phylogeographical patterns were similar to those observed in many co‐distributed highland taxa. Although we recommend continuing to recognize S. bicanthalis as a single species, future research on the evolution of viviparity could gain novel insights by contrasting physiological and genomic patterns among the different populations located across the highlands of south‐eastern Mexico. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 110 , 852–865.  相似文献   

9.
Epigenetic changes are involved in a wide range of common human diseases. Although DNA methylation defects are known to be associated with male infertility in mice, their impact on human deficiency of sperm production has yet to be determined. We have assessed the global genomic DNA methylation profiles in human infertile male patients with spermatogenic disorders by using the Infinium Human Methylation27 BeadChip. Three populations were studied: conserved spermatogenesis, spermatogenic failure due to germ cell maturation defects, and Sertoli cell-only syndrome samples. A disease-associated DNA methylation profile, characterized by targeting members of the PIWI-associated RNA (piRNA) processing machinery, was obtained. Bisulfite genomic sequencing and pyrosequencing in a large cohort (n = 46) of samples validated the altered DNA methylation patterns observed in piRNA-processing genes. In particular, male infertility was associated with the promoter hypermethylation-associated silencing of PIWIL2 and TDRD1. The downstream effects mediated by the epigenetic inactivation of the PIWI pathway genes were a defective production of piRNAs and a hypomethylation of the LINE-1 repetitive sequence in the affected patients. Overall, our data suggest that DNA methylation, at least that affecting PIWIL2/TDRD1, has a role in the control of gene expression in spermatogenesis and its imbalance contributes to an unsuccessful germ cell development that might explain a group of male infertility disorders.  相似文献   

10.
During spermatogenesis in mammals and in Drosophila melanogaster, male germ cells develop in a series of essential developmental processes. This includes differentiation from a stem cell population, mitotic amplification, and meiosis. In addition, post-meiotic germ cells undergo a dramatic morphological reshaping process as well as a global epigenetic reconfiguration of the germ line chromatin—the histone-to-protamine switch.Studying the role of a protein in post-meiotic spermatogenesis using mutagenesis or other genetic tools is often impeded by essential embryonic, pre-meiotic, or meiotic functions of the protein under investigation. The post-meiotic phenotype of a mutant of such a protein could be obscured through an earlier developmental block, or the interpretation of the phenotype could be complicated. The model organism Drosophila melanogaster offers a bypass to this problem: intact testes and even cysts of germ cells dissected from early pupae are able to develop ex vivo in culture medium. Making use of such cultures allows microscopic imaging of living germ cells in testes and of germ-line cysts. Importantly, the cultivated testes and germ cells also become accessible to pharmacological inhibitors, thereby permitting manipulation of enzymatic functions during spermatogenesis, including post-meiotic stages.The protocol presented describes how to dissect and cultivate pupal testes and germ-line cysts. Information on the development of pupal testes and culture conditions are provided alongside microscope imaging data of live testes and germ-line cysts in culture. We also describe a pharmacological assay to study post-meiotic spermatogenesis, exemplified by an assay targeting the histone-to-protamine switch using the histone acetyltransferase inhibitor anacardic acid. In principle, this cultivation method could be adapted to address many other research questions in pre- and post-meiotic spermatogenesis.  相似文献   

11.
Similar to most wild felids, the ocelot (Leopardus pardalis) is an endangered species. However, knowledge regarding reproductive biology of the ocelot is very limited. Germ cell transplantation is an effective technique for investigating spermatogenesis and stem cell biology in mammals, and the morphologic characterization of germ cells and knowledge of cycle length are potential tools for tracking the development of transplanted germ cells. Our goal was to investigate basic aspects related to testis structure, particularly spermatogenesis, in the ocelot. Four adult males were used. After unilateral orchiectomy, testis samples were routinely prepared for histologic, stereologic, and autoradiographic analyses. Testis weight and the gonadosomatic index were 11 ± 0.6 g and 0.16 ± 0.01%, respectively, whereas the volume density of seminiferous tubules and Leydig cells was 83.2 ± 1.6% and 9.8 ± 1.5%. Based on the acrosomic system, eight stages of spermatogenesis were characterized, and germ cell morphology was very similar to that of domestic cats. Each spermatogenic cycle lasted 12.5 ± 0.4 d, and the entire spermatogenic process lasted 56.3 ± 1.9 d. Individual Leydig cell volume was 2522 μm3, whereas the number of Leydig and Sertoli cells per gram of testis was 38 ± 5 × 106 and 46 ± 3 × 106. Approximately 4.5 spermatids were found per Sertoli cell, whereas daily sperm production per gram of testis was 18.3 ± 1 × 106, slightly higher than values reported for other felids. The knowledge obtained in this study could be very useful to the preservation of the ocelot using domestic cat testes to generate and propagate the ocelot genome.  相似文献   

12.
Gaining a deeper understanding of spermatogenic cycles within squamates has aided in our knowledge of the controls of reproduction and has bettered our understanding of reproductive phenology. One of the most studied genera of squamates, Sceloporus, is widely distributed along a latitudinal and elevational gradient in temperate, tropical, low-elevation and high-elevation habitats. Due to this wide distribution and varying habitats, Sceloporus exhibit differences in their spermatogenic activity (including both cyclical and acyclical patterns) and may be one of the most useful genera for understanding the abiotic correlations with spermatogenesis. The spermatogenic activity in Sceloporus variabilis was studied histologically (in a population that inhabits a tropical region at Los Tuxtlas, Veracruz, Mexico) and found to exhibit a unique cyclical pattern with an extended period of maximum activity (from November to July) and the absence of regression and quiescence. Furthermore, these data corroborate previous works on the spermatogenic cycles of Svariabilis despite different populations utilised. These data suggest that although abiotic factors may play a role in the timing of spermatogenesis, phylogenetic signal may be equally as important. More data concerning spermatogenic cycles in phylogenetically related taxa from differing habitats will elucidate the patterns of spermatogenic diversity.  相似文献   

13.
Germline stem cells (GSCs) produce gametes throughout the reproductive life of many animals, and intensive studies have revealed critical roles of BMP signaling to maintain GSC self-renewal in Drospophila adult gonads. Here, we show that BMP signaling is downregulated as testes develop and this regulation controls testis growth, stem cell number, and the number of spermatogonia divisions. Phosphorylated Mad (pMad), the activated Drosophila Smad in germ cells, was restricted from anterior germ cells to GSCs and hub-proximal cells during early larval development. pMad levels in GSCs were then dramatically downregulated from early third larval instar (L3) to late L3, and maintained at low levels in pupal and adult GSCs. The spatial restriction and temporal down-regulation of pMad, reflecting the germ cell response to BMP signaling activity, required action in germ cells of E3 ligase activity of HECT domain protein Smurf. Analyses of Smurf mutant testes and dosage-dependent genetic interaction between Smurf and mad indicated that pMad downregulation was required for both the normal decrease in stem cell number during testis maturation in the pupal stage, and for normal limit of four rounds of spermatogonia cell division for control of germ cell numbers and testis size. Smurf protein was expressed at a constant low level in GSCs and spermatogonia during development. Rescue experiments showed that expression of exogenous Smurf protein in early germ cells promoted pMad downregulation in GSCs in a stage-dependent but concentration-independent manner, suggesting that the competence of Smurf to attenuate response to BMP signaling may be regulated during development. Taken together, our work reveals a critical role for differential attenuation of the response to BMP signaling in GSCs and early germ cells for control of germ cell number and gonad growth during development.  相似文献   

14.
As a member of the large Ran-binding protein family, Ran-binding protein 9 (RANBP9) has been suggested to play a critical role in diverse cellular functions in somatic cell lineages in vitro, and this is further supported by the neonatal lethality phenotype in Ranbp9 global knockout mice. However, the exact molecular actions of RANBP9 remain largely unknown. By inactivation of Ranbp9 specifically in testicular somatic and spermatogenic cells, we discovered that Ranbp9 was dispensable for Sertoli cell development and functions, but critical for male germ cell development and male fertility. RIP-Seq and proteomic analyses revealed that RANBP9 was associated with multiple key splicing factors and directly targeted >2,300 mRNAs in spermatocytes and round spermatids. Many of the RANBP9 target and non-target mRNAs either displayed aberrant splicing patterns or were dysregulated in the absence of Ranbp9. Our data uncovered a novel role of Ranbp9 in regulating alternative splicing in spermatogenic cells, which is critical for normal spermatogenesis and male fertility.  相似文献   

15.
Mitochondrial reactive oxygen species (ROS) have been implicated in spermatogenic damage, although direct in vivo evidence is lacking. We recently generated a mouse in which the inner mitochondrial membrane peptidase 2-like (Immp2l) gene is mutated. This Immp2l mutation impairs the processing of signal peptide sequences from mitochondrial cytochrome c1 and glycerol phosphate dehydrogenase 2. The mitochondria from mutant mice generate elevated levels of superoxide ion, which causes age-dependent spermatogenic damage. Here we confirm age-dependent spermatogenic damage in a new cohort of mutants, which started at the age of 10.5 months. Compared with age-matched controls, protein carbonyl content was normal in testes of 2- to 5-month-old mutants, but significantly elevated in testes of 13-month-old mutants, indicating elevated oxidative stress in the testes at the time of impaired spermatogenesis. Testicular expression of superoxide dismutases was not different between control and mutant mice, whereas that of catalase was increased in young and old mutants. The expression of cytosolic glutathione peroxidase 4 (phospholipid hydroperoxidase) in testes was significantly reduced in 13-month-old mutants, concomitant with impaired spermatogenesis. Apoptosis of all testicular populations was increased in mutant mice with spermatogenic damage. The mitochondrial DNA (mtDNA) mutation rate in germ cells of mutant mice with impaired spermatogenesis was unchanged, excluding a major role of mtDNA mutation in ROS-mediated spermatogenic damage. Our data show that increased mitochondrial ROS are one of the driving forces for spermatogenic impairment.  相似文献   

16.
17.
Spermatogenesis is precisely controlled by sophisticated gene expression programs and is driven by epigenetic reprogramming, including histone modification alterations and histone-to-protamine transition. Nuclear receptor binding SET domain protein 2 (Nsd2) is the predominant histone methyltransferase catalyzing H3K36me2 and its role in male germ cell development remains elusive. Here, we report that NSD2 protein is abundant in spermatogenic cells. Conditional loss of Nsd2 in postnatal germ cells impaired fertility owing to apoptosis of spermatocytes and aberrant spermiogenesis. Nsd2 deficiency results in dysregulation of thousands of genes and remarkable reduction of both H3K36me2 and H3K36me3 in spermatogenic cells, with H3K36me2 occupancy correlating positively with expression of germline genes. Nsd2 deficiency leads to H4K16ac elevation in spermatogenic cells, probably through interaction between NSD2 and PSMA8, which regulates acetylated histone degradation. We further reveal that Nsd2 deficiency impairs EP300-induced H4K5/8ac, recognized by BRDT to mediate the eviction of histones. Accordingly, histones are largely retained in Nsd2-deficient spermatozoa. In addition, Nsd2 deficiency enhances expression of protamine genes, leading to increased protamine proteins in Nsd2-deficient spermatozoa. Our findings thus reveal a previously unappreciated role of the Nsd2-dependent chromatin remodeling during spermatogenesis and provide clues to the molecular mechanisms in epigenetic abnormalities impacting male reproductive health.  相似文献   

18.
The bullfrog (Lithobates catesbeianus) has substantial economic importance and has also been used as an experimental model for biological studies in the fields of pharmacology, medicine, and reproductive biology, especially studies addressing gametogenesis. However, there is a lack of comprehensive information in the literature regarding testis structure and function in this amphibian. The main objective of the current study was to estimate the duration of the various phases of spermatogenesis in this vertebrate. Sixteen sexually mature bullfrogs received an intracoelomic administration of tritiated thymidine. Testes were analyzed at various times between 1 h and 33 d after administration to detect the most advanced germ cell types labeled at each interval, as well as labeled preleptotene spermatocytes, which presumably originated from spermatogonial stem cells. The duration of the spermatogonial, spermatocytic, and spermiogenic phases of spermatogenesis in the bullfrog were approximately 18, 14, and 8 d, respectively. Thus, the total duration of the spermatogenesis process from early spermatogonia through to spermatozoa was 40 d in this species, similar to that of most previously investigated mammalian species. To our knowledge, this is the first reliable report on the duration of the full spermatogenic process in any amphibian species. These findings will be very useful for tracking the pace of germ cells in studies involving spermatogonial transplantation in lower vertebrates.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号