首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The objective was to compare the timed AI pregnancy rate of Angus-cross beef cows synchronized with a 5-d CO-Synch + CIDR (a progesterone-releasing intravaginal insert) protocol and given two doses of PGF (PGF), with the first dose in conjunction with CIDR withdrawal on Day 5, and the second dose given either early or late relative to the first dose. All cows (N = 1782) at 16 locations received 100 μg of GnRH + CIDR on Day 0. Cows received 25 mg of PGF concurrent with removal of the CIDR on Day 5, and were randomly allocated within locations to receive a second PGF either early (N = 881; from 0.5 to 3.9 h) or late (N = 901; from 4.5 to 8.15 h) relative to the first PGF treatment. On Day 8 (72 h after CIDR removal), all cows were inseminated and concurrently given 100 μg of GnRH. Cows were fitted with a pressure-sensitive mount detection device (Kamar) at CIDR removal. Cows were observed twice daily through Day 7 and at the time of AI on Day 8 for estrus and Kamar status (estrus - red, partial and lost Kamar versus no estrus - white Kamar) was recorded. Accounting for location, season, AI sire, cow observed in estrus or not at or before timed AI, and treatment by cows observed in estrus interaction, timed AI pregnancy rates were greater for the late (6.45 ± 0.03 h) than the early (2.25 ± 0.05 h) interval, 57.2 vs. 52.7%, respectively (P < 0.05). In conclusion, cows that received the second PGF late after the first PGF on the day of CIDR removal in a 5 d CO-Synch + CIDR synchronization protocol had significantly higher timed AI pregnancy rates than those receiving the second PGF early after the first PGF.  相似文献   

2.
The objective was to determine whether timed artificial insemination (TAI) 56 h after removal of a Controlled Internal Drug Release (CIDR, 1.38 g of progesterone) insert would improve AI pregnancy rate in beef heifers compared to TAI 72 h after CIDR insert removal in a 5-days CO-Synch + CIDR protocol. Angus cross beef heifers (n = 1098) at nine locations [WA (5 locations; n = 634), ID (2 locations; n = 211), VA (one location; n = 193) and WY (one location; n = 60)] were included in this study. All heifers were given a body condition score (BCS; 1-emaciated; 9-obese), and received a CIDR insert and 100 μg of gonadorelin hydrochloride (GnRH) on Day 0. The CIDR insert was removed and two doses of 25 mg of dinoprost (PGF) were given, first dose at CIDR insert removal and second dose 6 h later, on Day 5. A subset of heifers (n = 629) received an estrus detector aid at CIDR removal. After CIDR removal, heifers were observed thrice daily for estrus and estrus detector aid status until they were inseminated. Within farm, heifers were randomly allocated to two groups and were inseminated either at 56 h (n = 554) or at 72 h (n = 544) after CIDR removal. All heifers were given 100 μg of GnRH at AI. Insemination 56 h after CIDR insert removal improved AI pregnancy rate compared to insemination 72 h (66.2 vs. 55.9%; P < 0.001; 1 - β = 0.94). Locations, BCS categories (≤ 6 vs. > 6) and location by treatment and BCS by treatment interactions did not influence AI pregnancy rate (P > 0.1). The AI pregnancy rates for heifers with BCS ≤ 6 and > 6 were 61.8 and 60.1%, respectively (P > 0.1). The AI pregnancy rates among locations varied from 54.9 to 69.2% (P > 0.1). The AI pregnancy rate for heifers observed in estrus at or before AI was not different compared to heifers not observed in estrus [(65.4% (302/462) vs. 52.7% (88/167); P > 0.05)]. In conclusion, heifers inseminated 56 h after CIDR insert removal in a 5-days CO-Synch + CIDR protocol had, on average, 10.3% higher AI pregnancy rate compared to heifers inseminated 72 h after CIDR insert removal.  相似文献   

3.
The objectives were (1) to determine the effects of gonadorelin hydrochloride (GnRH) injection at controlled internal drug release (CIDR) insertion on Day 0 and the number of PGF2α doses at CIDR removal on Day 5 in a 5-day CO-Synch + CIDR program on pregnancy rate (PR) to artificial insemination (AI) in heifers; (2) to examine how the effect of systemic concentration of progesterone and size of follicles influenced treatment outcome. Angus cross beef heifers (n = 1018) at eight locations and Holstein dairy heifers (n = 1137) at 15 locations were included in this study. On Day 0, heifers were body condition scored (BCS), and received a CIDR. Within farms, heifers were randomly divided into two groups: at the time of CIDR insertion, the GnRH group received 100 μg of GnRH and No-GnRH group received none. On Day 5, all heifers received 25 mg of PGF2α at the time of CIDR insert removal. The GnRH and No-GnRH groups were further divided into 1PGF and 2PGF groups. The heifers in 2PGF group received a second dose of PGF2α 6 hours after the administration of the first dose. Beef heifers underwent AI at 56 hours and dairy heifers at 72 hours after CIDR removal and received 100 μg of GnRH at the time of AI. Pregnancy was determined approximately at 35 and/or 70 days after AI. Controlling for herd effect (P < 0.06), the treatments had significant effect on AI pregnancy in beef heifers (P = 0.03). The AI-PRs were 50.3%, 50.2%, 59.7%, and 58.3% for No-GnRH + PGF + GnRH, No-GnRH + 2PGF + GnRH, GnRH + PGF + GnRH, and GnRH + 2PGF + GnRH groups, respectively. The AI-PRs were ranged from 50% to 62.4% between herds. Controlling for herd effects (P < 0.01) and for BCS (P < 0.05), the AI pregnancy was not different among the treatment groups in dairy heifers (P > 0.05). The AI-PRs were 51.2%, 51.9%, 53.9%, and 54.5% for No-GnRH + PGF + GnRH, No-GnRH + 2PGF + GnRH, GnRH + PGF + GnRH, and GnRH + 2PGF + GnRH groups, respectively. The AI-PR varied among locations from 48.3% to 75.0%. The AI-PR was 43.5%, 50.4%, and 64.2% for 2.5 or less, 2.75 to 3.5, and greater than 3.5 BCS categories. Numerically higher AI-PRs were observed in beef and dairy heifers that exhibited high progesterone concentrations at the time of CIDR insertion (>1 ng/mL, with a CL). In addition, numerically higher AI-PRs were also observed in heifers receiving CIDR + GnRH with both high and low progesterone concentration (<1 ng/mL) initially compared with heifers receiving a CIDR only with low progesterone. In dairy heifers, there were no differences in the pregnancy loss between 35 and 70 days post-AI among the treatment groups (P > 0.1). In conclusion, GnRH administration at the time of CIDR insertion is advantageous in beef heifers, but not in dairy heifers, to improve AI-PR in the 5-day CIDR + CO-Synch protocol. In addition, in this study, both dairy heifers that received either one or two PGF2α doses at CIDR removal resulted in similar AI-PR in this study regardless of whether they received GnRH at CIDR insertion.  相似文献   

4.
《Theriogenology》2013,79(9):1997-2006
Dairy heifers were used to compared the effects of two timed AI + controlled internal drug release (CIDR) protocols (5-day vs. a modified 7-day) on: (1) luteal regression to initiate a new ovarian follicular wave; (2) ovarian response to the initial GnRH injection; and (3) pregnancy outcomes. Holstein heifers (N = 543) were assigned randomly to two treatments: (1) 25 mg PGF (im) and a CIDR insert on Day −7 followed by 100 μg of GnRH (GnRH-1) on Day −5 and 25 mg PGF (im) at CIDR insert removal (7-day [7D]) on Day 0; or (2) 100 μg GnRH (GnRH-1) and insertion of a CIDR on Day −5 and 25 mg PGF (im) at CIDR removal (5-day [5D]) on Day 0. Insemination with frozen-thawed conventional or gender-biased semen occurred after detected estrus from Days 0 to 2 or by appointment at 72 h after PGF when a second 100-μg dose of GnRH was given. Blood was collected on Days −7, −5, 0, and 3 to determine concentrations of progesterone and incidence of luteolysis. Ovaries were scanned on Days −5 and 0. Luteolysis in the 7D treatment by 48 h after the initial PGF was greater (P < 0.01) than what occurred spontaneously in the 5D treatment (36.2% vs. 19.7%, respectively). Incidence of ovulation after GnRH-1 on Day −5 was greater (P < 0.05) for 7D than for 5D heifers, but the proportion of heifers with an induced CL on Day 0 did not differ between treatments. Heifers inseminated after detected estrus (166/543, 30.6%) on Days 0, 1, and 2 had greater (P < 0.05) pregnancy per AI (P/AI) at 32 days post AI than after timed AI (38.2% vs. 28.3%) on Day 3. Pregnancy P/AI, however, was greater (P < 0.05) for 7D heifers inseminated at estrus (46.5%) than for 7D heifers receiving the timed AI (26.8%) and differed (P < 0.05) from all 5D heifers regardless of insemination time at estrus (30.5%) or at timed AI at 72 h (29.9%). At the Florida location in which conventional and sexed semen were used during two breeding clusters, P/AI using sexed semen (43.9%, N = 56) did not differ from that of conventional semen (21.2%, N = 50). Remaining replicates of sexed semen produced similar P/AI at the other two locations (sexed = 27.6%, N = 71; and sexed = 31.9%, N = 215). We concluded that the modified 7-day CO-Synch + CIDR program produced more P/AI in heifers inseminated at estrus than a standard 5-day CO-Synch + CIDR program, but when timed AI occurred at 72 h after PGF and CIDR insert removal, P/AI did not differ between programs.  相似文献   

5.
The objectives of this experiment were to compare estrous synchronization responses and AI pregnancy rates of beef heifers using protocols that included either CIDR or MGA as the progestin source. The hypotheses tested were that: (1) estrous synchronization responses after (a) progestin removal, and (b) PGF(2alpha); and, (2) AI pregnancy rates, do not differ between heifers synchronized with either progestin source. At the start of the experiment (Day 0) in both years, heifers were assigned randomly to receive, MGA supplement for 14 days (MGA-treated; n=79) or CIDR for 14 days (CIDR-treated; n=77). On Day 14 progestin was removed and heifers were observed for estrus up to and after PGF(2alpha) on Days 31 and 33 for CIDR-treated and MGA-treated heifers, respectively. Heifers that exhibited estrus within 60h after PGF(2alpha) were inseminated by AI 12h later; the remaining heifers were inseminated at 72h after PGF(2alpha) and given GnRH (100mug). More (P<0.05) CIDR-treated heifers exhibited estrus within 120h after progestin removal than MGA-treated heifers. Intervals to estrus after progestin removal were shorter (P<0.05) for CIDR-treated heifers than MGA-treated heifers. More (P<0.05) CIDR-treated heifers exhibited estrus and were inseminated within 60h after PGF(2alpha) than MGA-treated heifers. Pregnancy rates did not differ (P>0.10) between MGA-treated (66%) and CIDR-treated (62%) heifers. In conclusion, the use of CIDR as a progestin source in a 14-day progestin, PGF(2alpha), and timed AI and GnRH estrous synchronization protocol was as effective as the use of MGA to synchronize estrus and generate AI pregnancies in beef heifers.  相似文献   

6.
Pregnancy per artificial insemination (AI) was evaluated in dairy cows (Bos taurus) subjected to synchronization and resynchronization for timed AI (TAI). Cows (n = 718) received prostaglandin F (PGF) on Days –38 and –24 (Days 39 and 53 postpartum), gonadotropin-releasing hormone (GnRH) on Day –10, PGF on Day –3, and GnRH and TAI on Day 0. Between Days –10 and –3, cows received a progesterone intravaginal insert (CIDR group) or no CIDR (Control group). Between Days 14 and 23, cows received a CIDR (Resynch CIDR group) or no CIDR (Resynch control group), GnRH on Day 23, with pregnancy diagnosis on Day 30. Cows in estrus (between Days 0 and 30) were re-inseminated at detected estrus (RIDE). Nonpregnant cows received PGF on Day 30 and GnRH and TAI on Day 33. Plasma progesterone was determined to be low or high on Days –24 and –10. Pregnancy rates were evaluated 30 and 55 d after AI. The CIDR insert included in the Presynch-Ovsynch protocol did not increase overall pregnancy per AI for first service (36.1% and 33.6% for CIDR; 34.1% and 28.8% for Control) but did decrease pregnancy loss (7.0% for CIDR and 15.6% for Control). The CIDR insert increased pregnancy per AI in cows with high progesterone at the time the CIDR insert was applied. Administration of a CIDR insert between Days 14 and 23 of the estrous cycle after first service did not increase overall pregnancy per AI to second service (24.7% and 22.7% for Resynch CIDR; 28.6% and 25.3% for Resynch control). For second service, RIDE cows had lower pregnancy rates in the Resynch CIDR group than in the Resynch control group. Cows with a CL (corpus luteum) at Day 30 had higher pregnancy rates in the Resynch CIDR group than those in the Resynch control group.  相似文献   

7.
The objectives were to determine pregnancy rates following fixed-time AI (FTAI) in heifers: (1). given GnRH or estradiol cypionate (ECP) to synchronize follicular wave emergence and ovulation in a CIDR-based protocol; and (2). fed diets supplemented with flax or sunflower seeds. At two locations, Angus and crossbred Angus heifers (n=983) were examined ultrasonically to confirm reproductive maturity and randomly allocated to six synchronization groups in a 2 x 3 factorial design. On Day 0 (start of synchronization treatments), heifers received a CIDR and either 100 microg GnRH i.m. (n=492) or 1mg ECP plus 50 mg progesterone i.m. (n=491); in these groups, CIDR removal and PGF treatment were done concurrently on Days 7 and 8.5, respectively. Heifers were re-randomized to receive 0.5 mg ECP i.m. at CIDR removal or 24 h later (with FTAI 58-60 h after CIDR removal in both groups), or 100 microg GnRH i.m. concurrent with FTAI (52-54 h after CIDR removal). The heifers were fed a barley silage-based diet for 50 days (from Day -25 to 25) supplemented with 1kg/heifer per day of flax seed (n=321), sunflower seed (n=324), or no oilseed (n=338). Pregnancy rate to FTAI (overall, 56.2%) was not affected by treatment at CIDR insertion (P = 0.96) but was higher (P < 0.05) in heifers given ECP 24h after CIDR removal (216/330, 65.4%) than in those given either ECP at CIDR removal (168/322, 52.1%) or GnRH at AI (169/331, 51.1%). Overall, there was no effect of diet on pregnancy rates (P = 0.46). In summary, pregnancy rate to FTAI was not significantly affected by treatment at CIDR insertion to synchronize follicular wave emergence, but 0.5mg ECP 24h after CIDR removal (to synchronize ovulation) resulted in the highest pregnancy rate.  相似文献   

8.
Estradiol cypionate (ECP) was used in beef heifers receiving a controlled internal drug release (CIDR; insertion = Day 0) device for fixed-time AI (FTAI) in four experiments. In Experiment 1, heifers (n = 24) received 1mg ECP or 1mg ECP plus 50mg commercial progesterone (CP) preparation i.m. on Day 0. Eight or 9 days later, CIDR were removed, PGF was administered and heifers were allocated to receive 0.5mg ECP i.m. concurrently (ECP0) or 24h later (ECP24). There was no effect of treatment (P = 0.6) on mean (+/-S.E.M.) day of follicular wave emergence (3.9+/-0.4 days). Interval from CIDR removal to ovulation was affected (P<0.05) only by duration of CIDR treatment (88.3+/-3.8h versus 76.4+/-4.1h; 8 days versus 9 days, respectively). In Experiment 2, 58 heifers received 100mg progesterone and either 5mg estradiol-17beta or 1mg ECP i.m. (E-17beta and ECP groups, respectively) on Day 0. Seven (E-17beta group) or 9 days (ECP group) later, CIDR were removed, PGF was administered and heifers received ECP (as in Experiment 1) or 1mg EB 24h after CIDR removal, with FTAI 58-60h after CIDR removal. Follicular wave emergence was later (P<0.02) and more variable (P<0.002) in heifers given ECP than in those given E-17beta (4.1+/-0.4 days versus 3.3+/-0.1 days), but pregnancy rate was unaffected (overall, 69%; P = 0.2). In Experiment 3, 30 heifers received a CIDR device and 5mg E-17beta, with or without 100mg progesterone (P) i.m. on Day 0. On Day 7, CIDR were removed and heifers received ECP as described in Experiment 1 or no estradiol (Control). Intervals from CIDR removal to ovulation were shorter (P<0.05) in ECP0 (81.6+/-5.0h) and ECP24 (86.4+/-3.5h) groups than in the Control group (98.4+/-5.6h). In Experiment 4, heifers (n = 300) received a CIDR device, E-17beta, P, and PGF (as in Experiment 3) and after CIDR removal were allocated to three groups (as in Experiment 2), with FTAI 54-56h (ECP0) or 56-58h (ECP24 and EB24) after CIDR removal. Pregnancy rate did not differ among groups (overall, 63.6%, P = 0.96). In summary, although 1mg ECP (with or without progesterone) was less efficacious than 5mg E-17beta plus 100mg progesterone for synchronizing follicular wave emergence, 0.5mg ECP (at CIDR removal or 24h later) induced a synchronous ovulation with an acceptable pregnancy rate to fixed-time AI.  相似文献   

9.
Two experiments were conducted to investigate the effects of timing of prostaglandin F2(alpha) (PGF2(alpha)) administration, controlled internal drug release device (CIDR) removal and second gonodotropin releasing hormone (GnRH) administration on the pregnancy outcome in CIDR-based synchronization protocols. In Experiment 1, suckled Angus crossbred beef cows (n = 580) were given 100 microg of GnRH+a CIDR on Day 0. Cows in Group 1 (modified Ovsynch-P) received 25 mg of dinoprost (PGF2(alpha)) and CIDR device removal on Day 8 (AM), 100 microg of GnRH 36 h later on Day 9 (p.m.), and fixed-time AI (FTAI) 16 h later on Day 10 (47.5+/-1.1 h after PGF2(alpha)). Cows in Group 2 (Ovsynch-P) received 25mg of PGF2(alpha) and CIDR device removal on Day 7 (p.m.), 100 microg of GnRH 48 h later on Day 9 and FTAI 16 h later on Day 10 (66.6+/-1.2 h after PGF2(alpha)). Pregnancy rates were 56.5% (170/301) for Group 1 and 55.6% (155/279) for Group 2, respectively (P = 0.47). In Experiment 2, beef cows (n=734) were synchronized with 100 microg of GnRH+CIDR on Day 0, 25 mg of PGF2(alpha) and CIDR device removal on Day 7 and either 100 microg of GnRH 48 h later on Day 9 (Ovsynch-P) and FTAI 16 h later on Day 10 (64.9+/-3.3 h from PGF2(alpha)) or 100 microg of GnRH on Day 10 (CO-Synch-P) at the time of AI (63.2+/-4.2 h from PGF2(alpha)). Pregnancy rates were 48.8% (180/369) for Ovsynch-P and 44.7% (163/365) for CO-synch-P groups, respectively (P = 0.11). In both experiments, there was a locationxtreatment interaction (P<0.05); pregnancy rates between locations were different (P < 0.05) in the Ovsynch-P group. In conclusion, in a CIDR-based Ovsynch synchronization protocol, delaying administration of prostaglandin and CIDR removal by 12 h, or timing of the second GnRH by 16 h, did not affect pregnancy rates to FTAI. Therefore, there may be an opportunity to make changes in synchronization protocols with out adversely affecting FTAI pregnancy rates.  相似文献   

10.
A method for timed artificial insemination (AI) that is used for beef cows, beef heifers, and dairy heifers employs progesterone-releasing inserts, such as the controlled internal drug release (CIDR; Zoetis, New York, NY, USA) that are left in place for 14 days. The 14-day CIDR treatment is a method of presynchronization that ensures that cattle are in the late luteal phase of the estrous cycle when PGF is administered before timed AI. The objective of this study was to test the effectiveness of the 14dCIDR-PGF program in postpartum dairy cows by comparing it with the traditional “Presynch-Ovsynch” (2xPGF-Ovsynch) program. The 14dCIDR-PGF cows (n = 132) were treated with a CIDR insert on Day 0 for 14 days. At 19 days after CIDR removal (Day 33), the cows were treated with a luteolytic dose of PGF, 56 hours later were treated with an ovulatory dose of GnRH (Day 35), and 16 hours later were inseminated. The 2xPGF-Ovsynch cows were treated with a luteolytic dose of PGF on Day 0 and again on Day 14. At 12 days after the second PGF treatment (Day 26), the cows were treated with GnRH. At 7 days after GnRH, the cows were treated with PGF (Day 33), then 56 hours later treated with GnRH (Day 35), and then 16 hours later were inseminated. There was no effect of treatment or treatment by parity interaction on pregnancies per AI (P/AI) when pregnancy diagnosis was performed on Day 32 (115/263; 43.7%) or Days 60 to 90 (99/263; 37.6%) after insemination. There was an effect of parity (P < 0.05) on P/AI because primiparous cows had lesser P/AI (35/98; 35.7%) than multiparous cows (80/165; 48.5%) on Day 32. Cows observed in estrus after the presynchronization step (within 5 days after CIDR removal or within 5 days after the second PGF treatment) had greater P/AI than those not observed in estrus (55/103; 53.4% vs. 60/160; 37.5%; observed vs. not observed; P < 0.01; d 32 pregnancy diagnosis). When progesterone data were examined in a subset of cows (n = 208), 55.3% of cows had a “prototypical” response to treatment (i.e., the cow had an estrous cycle that was synchronized by the presynchronization treatment and then the cow responded appropriately to the subsequent PGF and GnRH treatments before timed AI). Collectively, cows with a prototypical response to either treatment had 52.2% P/AI that was greater (P < 0.001) than the P/AI for cows that had a nonprototypical response (19%) (P/AI determined at 60–90 days of pregnancy). In conclusion, we did not detect a difference in P/AI when postpartum dairy cows were treated with 14dCIDR-PGF or 2xPGF2α-Ovsynch before timed AI. The primary limitation to the success of either program was the failure of the cow to respond appropriately to the sequence of treatments.  相似文献   

11.
The objective was to compare reproductive performance of Angus-cross beef cows synchronized with GnRH, a progesterone-based intravaginal insert (Controlled Internal Drug Release, CIDR) for 5-d, and one dose of either dinoprost (PGF) or cloprostenol (CLP, a PGF analogue) or two doses of PGF on the day of CIDR withdrawal. All cows (N = 830) at six locations received 100 μg of GnRH and a CIDR on Day 0. Within farm, cows were randomly allocated to receive 25 mg of PGF at the time of CIDR insert removal on Day 5 (1 × PGF; N = 277), two 25 mg doses of PGF, the first given on Day 5 at the time of CIDR removal and the second 7 h later (2 × PGF; N = 282), or 500 μg of CLP at the time of CIDR removal on Day 5 (1 × CLP; N = 271). All cows were given 100 μg of GnRH on Day 8 (72 h after CIDR removal) and concurrently inseminated (5-d CO-Synch + CIDR). Cows were fitted with a pressure-sensitive estrus detection device at the time of CIDR withdrawal. Timed-AI pregnancy rates were greater (P < 0.0001) in the 2 × PGF (69.0%) than the 1 × PGF (52.0%) and 1 × CLP (54.3%) treatments. However, breeding-season pregnancy rates were not different among treatments (87.0% for 1 × PGF, 92.9% for 2 × PGF and 87.5% for 1 × CLP; P > 0.1). In conclusion, cows that received two doses of PGF on the day of CIDR removal in a 5-d CO-Synch + CIDR synchronization protocol had excellent timed-AI pregnancy rates that were greater than in cows receiving a single treatment with either PGF or CLP.  相似文献   

12.
Two experiments were designed to evaluate the effects of treatments with low versus high serum progesterone (P4) concentrations on factors associated with pregnancy success in postpubertal Nellore heifers submitted to either conventional or fixed timed artificial insemination (FTAI). Heifers were synchronized with a new controlled internal drug release device (CIDR; 1.9 g of P4 [CIDR1]) or a CIDR previously used for 18 days (CIDR3) plus 2 mg of estradiol (E2) benzoate on Day 0 and 12.5 mg of prostaglandin F2α on Day 7. In experiment 1 (n = 723), CIDR were removed on Day 7 or 9 and heifers were inseminated after estrus detection. In experiment 2 (n = 1083), CIDR were all removed on Day 9 and FTAI was performed either 48 hours later in heifers that received E2 cypionate (ECP) on Day 9 (0.5 mg; E48) or 54 or 72 hours later in conjunction with administration of GnRH (100 μg; G54 or G72). Synchronization with CIDR1 resulted in greater serum P4 concentrations and smaller follicle diameters on Days 7 and 9 in both experiments. In experiment 1, treatment with CIDR for 9 days decreased the interval from CIDR removal to estrus (Day 7, 3.76 ± 0.08 days vs. Day 9, 2.90 ± 0.07; P < 0.01) and improved conception (Day 7, 57.1% vs. Day 9, 65.8%; P = 0.05) and pregnancy rates (Day 7, 37.6% vs. Day 9, 45.3%; P = 0.04). In experiment 2, treatment with ECP improved (P < 0.01) the proportion of heifers in estrus (E48, 40.9%a; G54, 17.1%c; and G72, 32.0%b), but the pregnancy rate was not affected (P = 0.64) by treatments (E48, 38.8%; G54, 35.5%; G72, 37.5%). Synchronization with CIDR3 increased follicle diameter at FTAI (CIDR1, 11.07 ± 0.10 vs. CIDR3, 11.61 ± 0.10 mm; P < 0.01), ovulation rate (CIDR1, 82.8% vs. CIDR3, 88.0%; P < 0.01) and did not affect conception (CIDR1, 42.2 vs. CIDR3, 45.1%; P = 0.38) or pregnancy rates (CIDR1, 34.7 vs. CIDR3, 39.4%; P = 0.11). In conclusion, length of treatment with P4 affected the fertility of heifers bred based on estrus detection. When the heifers were submitted to FTAI protocol, follicle diameter at FTAI (≤10.7 mm, 23.6%; 10.8–15.7 mm, 51.5%; ≥15.8 mm, 30.0%; P < 0.01) was the main factor that affected conception and pregnancy rates.  相似文献   

13.
The objective was to determine reproductive performance following AI in beef heifers given estradiol to synchronize ovarian follicular wave emergence and estradiol or GnRH to synchronize ovulation in a two-dose PGF-based protocol. In Experiment 1, 561 cycling (confirmed by ultrasonography), Angus heifers received 500 microg cloprostenol, i.m. (PGF) twice, 14 days apart (days 0 and 14) and were equally allocated to four groups in a 2 x 2 factorial design. On Day 7, heifers received either 2 mg estradiol benzoate (EB) and 50 mg progesterone (P), i.m. in oil (EBP group) or no treatment (NT group). Half the heifers in each group received 1mg EB, i.m. in oil on Day 15 (24h after the second PGF treatment) with TAI 28 h later (52 h after PGF), and the other half received 100 microg GnRH, i.m. on Day 17 (72 h after PGF) concurrent with TAI. All heifers were observed for estrus twice daily from days 13 to 17; those detected in estrus more than 16 h before scheduled TAI were inseminated 4-16 h later and considered nonpregnant to TAI. Overall pregnancy rate (approximately 35 days after AI) was higher in heifers that received EBP than those that did not (61.6% versus 48.2%, respectively; P < 0.002); but was lower in heifers that received EB after PGF than those that received GnRH (50.0% versus 59.8%; P < 0.02). Although estrus was detected prior to TAI in 77 of 279 heifers (27.6%) treated with EBP (presumably due to induced luteolysis), they were inseminated and 53.2% became pregnant. Overall pregnancy rates were 51.4, 68.3, 45.0, and 55.0% in the NT/GnRH, EBP/GnRH, NT/EB, and EBP/EB groups, respectively (P < 0.05). In Experiment 2, 401 cycling, Angus heifers were used. The design was identical to Experiment 1, except that 1.5mg estradiol-17beta (E-17beta) plus 50mg progesterone (E-17betaP) and 1mg E-17beta were used in lieu of EBP and EB, respectively. All heifers receiving E-17beta 24h after the second injection of PGF (NT/E-17beta and E-17betaP/E-17beta) were TAI 28 h later without estrus detection, i.e. 52 h after PGF. Heifers in the other two groups received 100 microg GnRH, i.m. 72 h after PGF and were concurrently TAI; heifers in these two groups that were detected in estrus prior to this time were inseminated 4-12h later and considered nonpregnant to TAI. Estrus rate during the first 72 h after the second PGF treatment was higher (P < 0.05) in the E-17betaP/GnRH group (45.0%; n = 100) than in the NT/GnRH group (16.0%; n = 100), but conception rate following estrus detection and AI was not different (mean, 57.4%; P = 0.50). Overall pregnancy rate was not significantly different among groups (mean, 46.9%; P = 0.32). In summary, the use of EB or E-17beta to synchronize follicular wave emergence and estradiol or GnRH to synchronize ovulation in a two-dose, PGF-based protocol resulted in acceptable fertility to TAI. However, when 2mg EB was used to synchronize follicular wave emergence, early estrus occurred in approximately 28% of heifers, necessitating additional estrus detection. A combination of estrus detection and timed-AI in a two-dose PGF protocol resulted in highly acceptable pregnancy rates.  相似文献   

14.
A study was done to evaluate the effect of using progesterone (P4) intravaginal device (CIDR: controlled internal drug-releasing dispenser) to synchronise the return to oestrus of previously timed inseminated (TAI) dairy heifers, and to evaluate embryo survival and pregnancy rate (PR) in the return to oestrus heifers. At the onset of the artificial insemination (AI) breeding period (day -9), heifers were randomly assigned into two groups (treated group CGPG, n = 79) and (control group GPG, n = 83). Every heifer in both groups was injected with gonadotropin-releasing hormone (GnRH) agonist and prostaglandin F2-alpha (PGF2α) as follows: GnRH on day -9; PGF2α on day -2; GnRH and TAI on day 0. Heifers in both groups received TAI within 30 min after the second GnRH injection. Artificial insemination at first breeding was conducted for all heifers during 55 days from day 0. On day 14 after timed insemination, every heifer in the CGPG group received CIDR device for 6 days. Within 3 days after CIDR removal, more heifers in CGPG group showed oestrus within 1.9 days compared to heifers that showed oestrus within 2.9 days in the control. Within 10 days after CIDR removal, more heifers in the CGPG group showed oestrus within 2.4 days compared to heifers that showed oestrus within 6.7 days in the control. PRs on days 30 and 55 were not different between both groups, while PR on day 55 during September were higher (P = 0.032) in CGPG group (58.0%) than GPG group (37.0%). In addition, PR from first to second AI was higher (P = 0.037) for CGPG group (79.8%) than for GPG group (65.1%) but it was similar after that. Pregnancy losses between days 30 and 55 tended to be lower (P = 0.089) for the CGPG group (12.7%) compared to 25.1% for the GPG group. Interval between first and second AI was lower (P = 0.052) for the CGPG group (27.5 ± 1.6 days) compared to 31.6 ± 1.3 days for heifers in the GPG group but no differences were detected for intervals from second to third AI and from third to fourth AI between the two groups. Number of services per pregnancy was not different between CGPG and GPG groups. Results indicate that the CIDR device improved synchronisation to return to oestrus and increased PR to first AI during high temperature months by reducing embryonic losses.  相似文献   

15.
The objective was to determine the efficacy of a previously used CIDR or melengestrol acetate (MGA; 0.5mg/head/day) for resynchronization of estrus in beef heifers not pregnant to timed-AI (TAI). In three experiments and a field trial, heifers were reinseminated 6-12 h after first detection of estrus. Pregnancy diagnosis was done from approximately 25-43 days after either TAI or reinsemination. In Experiment 1, 79 heifers received a once-used CIDR from 13 to 20 days after TAI and 80 heifers were untreated controls. For these two groups, there were 34 and 35 heifers, respectively, not pregnant to TAI; median +/- S.E. intervals from TAI to onset of estrus were 22 +/- 0.2 days versus 20 +/- 0.6 days (P < 0.001); estrus rates were 70.6% versus 85.7% (P = 0.1); conception rates were 62.5% versus 76.7% (P < 0.3); and pregnancy rates were 44.1% versus 65.7% (P = 0.07), for CIDR and untreated (control) groups, respectively. In Experiment 2, heifers (n = 651) were TAI (Day 0) and 13 days later randomly assigned to one of seven groups (n = 93 per group) to receive a once-used CIDR (three groups; Days 13-20), MGA (three groups; Days 13-19), or no treatment (control group). Groups given a CIDR or MGA also received: no further treatment (CIDR or MGA alone); 1.5mg estradiol-17beta (E-17beta) and 50 mg progesterone (P4) in 2 mL canola oil on Day 13; or E-17beta and P4 on Day 13 and 0.5 mg E-17beta on Day 21 (24 h after CIDR removal or 48 h after the last feeding of MGA). Pregnancy rate to TAI was lowest (P < 0.05) for the group given a CIDR plus E-17beta and P4 on Day 13 and E-17beta on Day 21. Variability in return to estrus was greater (P < 0.001) in the control and MGA groups than in CIDR groups. Conception and pregnancy rates in heifers given a CIDR (65.1 and 61.4%) were higher (P<0.01) than those fed MGA (49.6 and 40.4%), but not different from controls (62.2 and 54.9%, respectively). In Experiment 3, 616 heifers received a once- or twice-used CIDR for 7 days, beginning 13+/-1 days after TAI, with or without a concurrent injection of 150 mg of P4 (2 x 2 factorial design). Pregnancy rate to TAI was 47.2%. In heifers that returned to estrus, there was no significant difference between a once- or twice-used CIDR for rates of estrus (68.8%, P < 0.3), conception (65.9%, P < 0.6) and pregnancy (45.3%, P < 0.8). Injecting progesterone at CIDR insertion increased the median interval from CIDR removal to onset of estrus (P < 0.05) and reduced rates of estrus (63.8% versus 73.8%, P<0.05), conception (60.5% versus 70.6%, P = 0.1) and pregnancy (38.6% versus 52.2%, P < 0.02). In a field trial, 983 heifers received a once-used CIDR for 7 days, beginning 13 +/- 1 days after TAI. Pregnancy rate to TAI was 55.2%. The median (and mode) of the interval from CIDR removal to estrus was 2.5 days. Estrus, conception and pregnancy rates were 78.2, 70.3 and 55.0% (overall pregnancy rate to TAI and rebreeding, 78.7%). In summary, a once- or twice-used CIDR for 7 days, starting 13 +/- 1 days after TAI resulted in the majority of nonpregnant heifers detected in estrus over a 4-day interval, with acceptable conception rates; however, injecting progesterone at CIDR insertion significantly reduced both estrus and pregnancy rates, and estradiol treatment after CIDR removal was associated with a decreased pregnancy rate to TAI. Fertility was higher in heifers resynchronized with a once-used CIDR than with MGA.  相似文献   

16.
Yearling Bos indicus × Bos taurus heifers (n = 410) from three locations, were synchronized with either the Select Synch/CIDR+timed-AI (SSC+TAI) or 7-11+timed-AI (7-11+TAI) treatments. On Day 0 of the experiment, within each location, heifers were equally distributed to treatments by reproductive tract score (RTS; Scale 1-5: 1 = immature, 5 = estrous cycling) and body condition score. The 7-11+TAI treatment consisted of melengestrol acetate (0.5 mg/head/d) from Days 0 to 7, with PGF (25 mg im) on Day 7, GnRH (100 μg im) on Day 11, and PGF (25 mg im) on Day 18. The SSC+TAI heifers received the same carrier supplement (without MGA) from Days 0 to 7, and on Day 11 they were given 100 μg GnRH and an intravaginal CIDR (containing 1.38 g progesterone). The CIDR were removed on Day 18, concurrent with 25 mg PGF im For both treatments, estrus was visually detected for 1 h twice daily (0700 and 1600 h) for 72 h after PGF, with AI done 6 to 12 h after a detected estrus. Non-responders were timed-AI and received GnRH (100 μg im) 72 to 76 h post PGF. The 7-11+TAI heifers had a greater (P < 0.05) estrous response (55.2 vs 41.9%), conception rate (47.0 vs 31.3%), and synchronized pregnancy rate (33.5 vs 24.8%) compared to SSC+TAI heifers, respectively. Heifers exhibiting estrus at 60 h (61.7%) had a greater (P < 0.05) conception rate compared to heifers that exhibited estrus at ≤ 36 (35.3%), 48 (31.6%), and 72 h (36.2%), which were similar (P > 0.05) to each other. As RTS increased from ≤ 2 to ≥ 3, estrous response, conception rate, synchronized pregnancy rate, and 30 d pregnancy rate all increased (P < 0.05), irrespective of synchronization treatment. In conclusion, the 7-11+TAI treatment yielded greater synchronized pregnancy rates compared to SSC+TAI treatment in yearling Bos indicus × Bos taurus heifers.  相似文献   

17.
The objective of this study was to evaluate the effect of a PGF2α-analogue (PGF) on ovulation and pregnancy rates after timed artificial insemination (TAI) in cattle. In experiment 1, crossbred dual-purpose heifers, in a crossover design (3 × 3), were given an intravaginal progesterone-releasing insert (controlled internal drug release [CIDR]) plus 1 mg estradiol benzoate (EB) intramuscularly (im) and 250 μg of a PGF-analogue im on Day 0. The CIDR inserts were removed 5 days after follicular wave emergence, and the heifers were randomly divided into three treatment groups to receive the following treatments: (1) 1 mg of EB im (EB group, n = 13); (2) 500 μg of PGF im (PG group, n = 13); or (3) saline (control group, n = 13), 24 hours after CIDR removal. Ovulation occurred earlier in EB (69.81 ± 3.23 hours) and PG groups (73.09 ± 3.23 hours) compared with control (83.07 ± 4.6 hours; P = 0.01) after CIDR removal. In experiment 2, pubertal beef heifers (n = 444), 12 to 14 months of age were used. On Day 0, the heifers were given a CIDR insert plus 2 mg EB im. On Day 9, the CIDR was removed and the heifers were given 500 μg of PGF im. Heifers were randomly assigned into one of three treatment groups: (1) 1 mg of EB (EB group; n = 145); (2) 500 μg of PGF (PG group; n = 149), both 24 hours after CIDR removal; or (3) 600 μg of estradiol cypionate (ECP group; n = 150) at CIDR removal. Timed artificial insemination occurred 48 hours after CIDR removal in the ECP group and 54 hours in the PG and EB groups. The percentage of heifers ovulating was higher in the PG group compared with the other groups (P = 0.08). However, the pregnancy rates did not differ among groups (47.6%, 45%, and 46.6%, for EB, PG, and ECP, respectively; P = 0.9). In experiment 3, 224 lactating beef cows, 40 to 50 days postpartum with 2.5 to 3.5 of body condition score were treated similarly as described in experiment 2, except for the ECP group, which was excluded. The treatments were as follows: 1 mg EB (EB group; n = 117) or 500 μg PGF (PG group; n = 107), 24 hours after CIDR removal. The calves were temporarily separated from their dams from Days 9 to 11. No difference was detected on the pregnancy rate between the EB and PG groups (58.1% vs. 47.6%, respectively; P = 0.11). Taken together, the combined results suggested that PGF2α could be successfully used to induce and synchronize ovulation in cattle undergoing TAI, with similar pregnancy rates when compared with other ovulatory stimuli (ECP and EB).  相似文献   

18.
The objective was to analyze and report field data focusing on the effect of type of progesterone-releasing vaginal insert and dose of pLH on embryo production, following a superstimulatory protocol involving fixed-time artificial insemination (FTAI) in Nelore cattle (Bos taurus indicus). Donor heifers and cows (n = 68; 136 superstimulations over 2 years) received an intravaginal, progesterone-releasing insert (CIDR or DIB, with 1.9 or 1.0 g progesterone, respectively) and 3-4 mg of estradiol benzoate (EB) i.m. at random stages of the estrous cycle. Five days later (designated Day 0), cattle were superstimulated with a total of 120-200 mg of pFSH (Folltropin-V), given twice daily in decreasing doses from Days 0 to 3. All cattle received two luteolytic doses of PGF2alpha at 08:00 and 20:00 h on Day 2 and progesterone inserts were removed at 20:00 h on Day 3 (36 h after the first PGF2alpha injection). Ovulation was induced with pLH (Lutropin-V, 12.5 or 25 mg, i.m.) at 08:00 h on Day 4 with FTAI 12, 24 and in several cases, 36 h later. Embryos were recovered on Days 11 or 12, graded and transferred to synchronous recipients. Overall, the mean (+/-S.E.M.) number of total ova/embryos (13.3 +/- 0.8) and viable embryos (9.4 +/- 0.6) and pregnancy rate (43.5%; 528/1213) did not differ among groups, but embryo viability rate (overall, 70.8%) was higher in donors with a DIB (72.3%) than a CIDR (68.3%, P = 0.007). In conclusion, the administration of pLH 12 h after progesterone removal in a progestin-based superstimulatory protocol facilitated fixed-time AI in Nelore donors, with embryo production, embryo viability and pregnancy rates after embryo transfer, comparable to published results where estrus detection and AI was done. Results suggested a possible alternative, which would eliminate the need for estrus detection in donors.  相似文献   

19.
The present study evaluated whether a controlled internal drug release (CIDR)-based timed AI (TAI) protocol could be used as an efficient tool for the treatment of ovarian follicular cysts in lactating dairy cows. In the first experiment, lactating dairy cows diagnosed with follicular cysts were randomly assigned to two treatments: (1) a single injection of GnRH at diagnosis (Day 0) and AI at estrus (AIE) within 21 days (GnRH group, n=70), or (2) insertion of a CIDR device containing progesterone and an injection of GnRH on Day 0, PGF(2alpha) injection at the time of CIDR removal on Day 7, GnRH injection on Day 9, and TAI 16h after the GnRH injection (CIDR-based TAI group, n=65). Conception rate after the CIDR-based TAI protocol (52.3%) was greater (P<0.05) than that after AIE following a single GnRH injection (26.9%). In the second experiment, lactating dairy cows diagnosed with follicular cysts (Cyst group, n=16) and cows having normal estrous cycles (CYC group, n=15) received the same treatment: a CIDR device containing progesterone and an injection of GnRH on Day 0, PGF(2alpha) injection at the time of CIDR removal on Day 7, and GnRH injection on Day 9. The proportion of cows with follicular wave emergence and the interval from treatment to follicular wave emergence did not differ (P>0.05) between groups. The mean diameters of dominant follicles on Days 4 and 7 as well as preovulatory follicles on Day 9, and the synchrony of ovulation following the second injection of GnRH did not differ (P>0.05) between groups. These data suggest that the CIDR-based TAI protocol results in an acceptable conception rate in dairy cows with follicular cysts.  相似文献   

20.
The overall objective was to compare the efficacy of GnRH, porcine LH (pLH) and estradiol cypionate (ECP), in a modified Ovsynch/fixed-time AI (FTAI) protocol that included a controlled internal drug [progesterone] release (CIDR) device. In Experiment 1, heifers received a CIDR on Day -10, and PGF (25mg) on Day -3. At CIDR insertion, heifers received 100 microg of GnRH (n=6), 0.5mg of ECP (n=6), 5.0mg of pLH (n=6) or 2 mL of saline (n=7); these treatments were repeated on Day -1, except for ECP, that was repeated on Day -2, concurrent with CIDR-removal. The 5.0 mg pLH was the least effective with a longer interval to ovulation than the other groups combined (102 versus 64 h; P<0.05). Overall mean LH concentrations (1.6 ng/mL) and area under the curve (AUC) did not differ among treatments, but mean peak LH concentration was lower in heifers given 5 mg of pLH compared to all other groups (4.5 versus 10.3 ng/mL; P<0.05). In Experiment 2, heifers on CIDR-based Ovsynch protocols were given 12.5mg pLH (n=6; pLH-low), 25.0 mg pLH (n=6, pLH-high), or 100 microg GnRH (n=5; control). Heifers in the pLH-high group had greater (P<0.01) plasma LH concentrations (between 12 and 20 h) than GnRH-treated heifers, but the pLH treatments did not differ (P>0.10). Area under the curve for LH (ng/32 h) was at least 50% greater (P<0.01) in pLH-treated heifers compared to GnRH-treated heifers (mean, 41.3, 56.3 and 20.3 for pLH-low, pLH-high and GnRH, respectively). Ovulation occurred in 15 of 17 heifers. Progesterone concentrations were higher on Days 9 and 14 in heifers given 25mg of pLH, suggesting enhanced CL function. In Experiment 3, 240 heifers were assigned to CIDR-based Ovsynch/FTAI protocols. The first and second hormonal treatments (with an intervening PGF treatment on Day -3) were GnRH/GnRH (100 microg), ECP/ECP (0.5 mg), pLH/pLH (12.5 mg) or GnRH/ECP, respectively; pregnancy rates were 58.7, 66.1, 45.9 and 48.3%, respectively (ECP/ECP>both pLH/pLH and GnRH/ECP; P相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号