首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was performed to pursue the optimal condition for the cryopreservation of mouse morulae by a two-step OPS method and to investigate the feasibility of the optimal condition for vitrification of embryos at other developmental stages. First, the mouse morulae were vitrified in OPS using one-step procedure—that is, embryos were vitrified after direct exposure to EDFS30 (15% ethylene glycol (EG), 15% dimethyl sulfoxide (DMSO), Ficoll and sucrose), or two-step method—that is, embryos were first pretreated in 10%E+10%D (10% EG and 10% DMSO in mPBS) for 30 sec, then exposed to EDFS30 for 15 to 60 sec, respectively. After vitrification and warming, the embryos were morphologically evaluated and assessed by their development to blastocysts, expanded/hatched blastocysts, or to term after transfer. The result showed that all the vitrified-warmed morulae had similar blastocyst rate compared to that of control (91.7% vs. 100%), and the highest developmental rate to expanded blastocysts (100%) or hatched blastocysts (62.3%) was observed when the morulae were pretreated with 10%E+10%D for 0.5 min, exposed to EDFS30 for 25 sec before vitrification and warming in 0.5 M sucrose for 5 min. After transfer, the survival rate (33.1%) in vivo of the vitrified morulae was higher (P > 0.05) than that of the fresh embryos (24.6%). Secondly, embryos at different stages were cryopreserved and thawed following the above program. Most (93.4 to 100%) of the embryos recovered after vitrification were morphologically normal at all the developmental stages. The blastocyst rates of the vitrified one-cell (52.5 to 66.7%) and the two-cell (63.3 to 68.9%) embryos were lower (P < 0.05) than those of the vitrified four-cell embryos (81.7 to 86.4%), the eight-cell embryos (90.0 to 93.3%), morulae (96.7 to 100%), and the expanded blastocysts rate (98.3 to 100.0%) of the vitrified early blastocysts. The highest survival rate in vivo of vitrified embryos were from the early blastocysts (40.4%), which was similar to that of fresh embryos (48.6%). The data demonstrate that the optimal protocol for the cryopreservation of morulae was suitable for the four-cell embryos to early blastocyst stages and that the early blastocyst stage is the most feasible stage for mouse embryo cryopreservation under our experimental conditions.  相似文献   

2.
This study was performed to pursue the optimal condition for the cryopreservation of mouse morulae by a two-step OPS method and to investigate the feasibility of the optimal condition for vitrification of embryos at other developmental stages. First, the mouse morulae were vitrified in OPS using one-step procedure-that is, embryos were vitrified after direct exposure to EDFS30 (15% ethylene glycol (EG), 15% dimethyl sulfoxide (DMSO), Ficoll and sucrose), or two-step method-that is, embryos were first pretreated in 10%E + 10%D (10% EG and 10% DMSO in mPBS) for 30 sec, then exposed to EDFS30 for 15 to 60 sec, respectively. After vitrification and warming, the embryos were morphologically evaluated and assessed by their development to blastocysts, expanded/hatched blastocysts, or to term after transfer. The result showed that all the vitrified-warmed morulae had similar blastocyst rate compared to that of control (91.7% vs. 100%), and the highest developmental rate to expanded blastocysts (100%) or hatched blastocysts (62.3%) was observed when the morulae were pretreated with 10%E + 10%D for 0.5 min, exposed to EDFS30for 25 sec before vitrification and warming in 0.5 M sucrose for 5 min. After transfer, the survival rate (33.1%) in vivo of the vitrified morulae was higher (P > 0.05) than that of the fresh embryos (24.6%). Secondly, embryos at different stages were cryopreserved and thawed following the above program. Most (93.4 to 100%) of the embryos recovered after vitrification were morphologically normal at all the developmental stages. The blastocyst rates of the vitrified one-cell (52.5 to 66.7%) and the two-cell (63.3 to 68.9%) embryos were lower (P < 0.05) than those of the vitrified four-cell embryos (81.7 to 86.4%), the eight-cell embryos (90.0 to 93.3%), morulae (96.7 to 100%), and the expanded blastocysts rate (98.3 to 100.0%) of the vitrified early blastocysts. The highest survival rate in vivo of vitrified embryos were from the early blastocysts (40.4%), which was similar to that of fresh embryos (48.6%). The data demonstrate that the optimal protocol for the cryopreservation of morulae was suitable for the four-cell embryos to early blastocyst stages and that the early blastocyst stage is the most feasible stage for mouse embryo cryopreservation under our experimental conditions.  相似文献   

3.
The aim of this study was to determine the influence of two ethylene glycol-based vitrification solutions on in vitro and in vivo survival after in-straw cryoprotectant dilution of vitrified in vitro-produced bovine embryos. Day-7 expanded blastocysts were selected according to diameter (> or = 180 microm) and osmotic characteristics and randomly assigned to one of three groups (i) VSa: vitrification in 40% EG+17.1% SUC+0.1% PVA; (ii) VSb: vitrification in 20% EG+20% DMSO; (iii) control: non-vitrified embryos. Vitrification was performed in hand-pulled glass micropipettes (GMP) and cryoprotectant dilution in 0.25 ml straws after warming in a plastic tube. Embryo viability was assessed by re-expansion and hatching rates after 72 h of IVC and by pregnancy rates after direct transfer of vitrified embryos. No differences in re-expansion rates were observed between vitrified groups after 24 h in culture (VSa=84.5%; VSb=94.8%). However, fewer VSa embryos (55.2%, P<0.05) hatched after 72 h than the VSb (75.8%) and control embryos (80.0%). To evaluate in vivo viability, vitrified embryos (VSa=20; VSb=21) were warmed under field conditions and individually transferred to synchronous recipients. Pregnancy rates (day 60) were similar between groups (VSa=20%; VSb=19%). Greater hatching rates occurred after 72 h of IVC for EG+DMSO than EG+SUC+PVA vitrification solutions. However, using a GMP vitrification container and in-tube warming, both solutions provided similar pregnancy rates after the in-straw cryoprotectant dilution and direct embryo transfer.  相似文献   

4.
CY Yang  CY Pang  BZ Yang  RC Li  YQ Lu  XW Liang 《Theriogenology》2012,78(7):1437-1445
The objective of this study was to optimize cryopreservation conditions for buffalo in vitro produced (IVP) embryos. The in vitro fertilized (IVF) and somatic cell nuclear transferred (SCNT) blastocysts were vitrified with either 40% ethylene glycol (EG), 25% EG + 25% dimethylsulfoxide (DMSO), or 20% EG + 20% DMSO + 0.5 m sucrose, and the IVF blastocysts produced from abattoir-derived ovaries were also slow-frozen with either 10% EG or 0.05 m trehalose dehydrate + 1.8% EG + 0.4% BSA. Cryosurvival rates of blastocysts harvested on various days or at various developmental stages were also examined. In this study: (1) vitrification with 20% EG + 20% DMSO + 0.5 m sucrose had the best cryopreservation efficiency; (2) IVF and SCNT blastocysts had similar cryotolerance (P > 0.05); (3) after thawing, slow-frozen blastocysts reexpanded earlier than the vitrified blastocysts (P < 0.01); (4) cryosurvival rate of expanded blastocysts was higher than that of early blastocysts (P < 0.05); (5) cryosurvival rates of Days 5 to 7 blastocysts (Day 0 = day of IVF or SCNT) were higher than those of Days 8 to 9 blastocysts (P < 0.01); and (6) after embryo transfer, pregnancy rates for fresh and cryopreserved blastocysts were not different (P > 0.05). In conclusion, vitrification of Days 6 to 7 expanded blastocysts with 20% EG + 20% DMSO + 0.5 m sucrose was optimal for cryopreservation of buffalo IVP embryos.  相似文献   

5.
This study examines the effectiveness of the cryotop vitrification method for the cryopreservation of goat blastocysts. To determine the effects of embryo development stage and donor age on in vitro survival rates, good-quality blastocysts from adult and prepubertal goats were sorted into non-expanded, expanded, hatching and completely hatched. In vitro produced (IVP) blastocysts were derived from prepubertal goat oocytes by slicing of ovaries from slaughtered animals while adult goat oocytes were collected by the laparoscopic ovum pick up (LOPU) method. Blastocysts were vitrified/warmed using the cryotop technique. Survival rates were determined in terms of blastocoele re-expansion at 3 and 20 h post-warming. For prepubertal goats, survival rates at 3 h post-warming were significantly higher when expanded blastocysts (78.3%) were vitrified/warmed compared to hatched blastocysts (57.4%), whereas non-expanded (62.5%) or hatching blastocysts (71.4%) showed similar rates. For adult goats, survival rates were significantly higher after warming in expanded (36.4%), hatching (75%) or hatched (50%) blastocysts when compared to non-expanded (0%) blastocysts. When survival rates were assessed at 20 h post-warming, no differences were observed when we compared non-expanded (45.8%), expanded (56.5%), hatching (64.3%) and hatched (50.5%) blastocysts from prepubertal goats; and for blastocysts from adult goats, survival rates were only significantly lower for the non-expanded stage (0%) compared to the other stages. For adult versus prepubertal blastocysts at the same developmental stage, our data indicate significantly higher survival rates at 3 h post-warming for non-expanded and expanded blastocysts from prepubertal goats over their counterparts from adult goats. At 20 h post warming, survival rates were only higher for non-expanded blastocysts from prepubertal goats versus adult goats. Collectively, our data reveal that blastocysts produced in vitro from prepubertal goats return similar survival rates regardless of their development stage, whereas blastocysts derived from adult goats are best for vitrification at the expanded, hatching or hatched stage.  相似文献   

6.
Morphological signs of injury and regeneration following vitrification and warming of bovine embryos were studied by light and electron microscopy. In-vitro-produced Day 7 expanded blastocysts (Day 0 = day of insemination) were vitrified by a two-step equilibration method using ethylene glycol and dimethyl sulphoxide as cryoprotectants. Thawing was performed by in-straw direct rehydration, followed by in vitro culture on a granulosa cell monolayer. Embryos were processed for transmission electron microscopy immediately after warming (0 hr) as well as after 4 hr or 24 hr of culture following warming. A control group of unfrozen embryos was also processed. At 0 hr after warming, except for a rapid collapse of the blastocoele, only minor changes were detectable by stereomicroscope. However, at the ultrastructural level, signs of extensive injury were seen, including a general distension or shrinkage of mitochondria, disintegration of cell adhesions between adjacent trophoblastic cells, and complete rupture of some cells. At 4 hr, stereomicroscopic investigation revealed collapsed blastocoele and a darkened granular appearance of the cell mass. At the ultrastructural level, signs of regeneration were also observable: cells with minor injuries were re-assembled in a central area forming a small blastocoele, cell adhesion structures were re-established, and damage of mitochondria was less severe. The majority of irreversibly damaged cells or cell debris was accumulated in the perivitelline space. At 24 hr, stereomicroscopic investigation of surviving blastocysts showed no signs of the previous injury. At the ultrastructural level, cellular debris in the perivitelline space and some degenerated cells in the blastocoele were the only signs of previous injuries. In conclusion, ultrastructural investigation revealed unexpectedly extensive damage followed by a rapid regeneration and reorganization of the embryonic structure. Mol. Reprod. Dev. 48:9–17, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

7.
The objective was to evaluate supplementation of fetal calf serum (FCS) and phenazine ethosulfate (PES), a metabolic regulator that inhibits fatty acid synthesis, in culture media during in vitro production (IVP) of bovine embryos. Taking oocyte fertilization (n = 4,320) as Day 0, four concentrations of FCS (0, 2.5, 5, and 10%) and three periods of exposure to PES (without addition—Control; after 60 h—PES Day 2.5 of embryo culture; and after 96 h—PES Day 4) were evaluated. Increasing FCS concentration in the culture media enhanced lipid accumulation (P < 0.05), increased apoptosis in fresh (2.5%: 19.1 ± 1.8 vs 10%: 28.4 ± 2.3, P < 0.05; mean ± SEM) and vitrified (2.5%: 42.8 ± 2.7 vs 10%: 69.2 ± 3.4, P < 0.05) blastocysts, and reduced blastocoele re-expansion after vitrification (2.5%: 81.6 ± 2.5 vs 10%: 67.3 ± 3.5, P < 0.05). The addition of PES in culture media, either from Days 2.5 or 4, reduced lipid accumulation (P < 0.05) and increased blastocoele re-expansion after vitrification (Control: 72.0 ± 3.0 vs PES Day 2.5: 79.9 ± 2.8 or PES Day 4: 86.2 ± 2.4, P < 0.05). However, just the use of PES from D4 reduced apoptosis in vitrified blastocysts (Control: 52.0 ± 3.0 vs PES Day 4: 39.2 ± 2.4, P < 0.05). Independent of FCS withdrawal or PES addition to culture media, the in vivo control group had lesser lipid accumulation, a lower apoptosis rate, and greater cryotolerance (P < 0.05). The increased lipid content was moderately correlated with apoptosis in vitrified blastocysts (r = 0.64, P = 0.01). In contrast, the increased apoptosis in fresh blastocysts was strongly correlated with apoptosis in vitrified blastocysts (r = 0.94, P < 0.0001). Therefore, using only 2.5% FCS and the addition of PES from Day 4, increased the survival of IVP embryos after vitrification. Moreover, embryo quality, represented by the fresh apoptosis rate, was better than lipid content for predicting embryo survival after vitrification.  相似文献   

8.
Selection of blastocysts based on their morphological characteristics and rate of development in vitro can skew the sex ratios. The aim of this study was to determine whether an embryo's developmental rate affects its survival after vitrification, and whether male and female embryos survive vitrification differently. In vitro fertilized bovine oocytes were cultured in potassium simplex optimized medium (KSOM) + 0.1% BSA for 96 h, and then into KSOM + 1% BSA (KSOM) or in sequential KSOM + 0.1% BSA for 96 h, and then into synthetic oviduct fluid (SOF) + 5% FBS (KSOM-SOF). In part 1 of this study, embryos cultured in each medium that had developed into blastocysts at approximately 144, 156, or 180 h were recovered from culture, graded, and then vitrified. After warming, blastocyst survival rates were immediately evaluated by reexpansion of the blastocoels. In the second part of the study, all blastocysts (n = 191) were sexed by polymerase chain reaction 48 h after warming. When cultured in KSOM medium, more 144-h blastocysts survived vitrification (68%) than blastocysts vitrified at 180 h (49%). Blastocysts derived at 156 h in KSOM-SOF survived vitrification better (87%) than blastocysts vitrified at either 144 h or 180 h, and subsequently hatched at a greater rate than those vitrified at 180 h. The overall blastocyst survival rates did not differ significantly whether embryos were cultured in KSOM or sequential KSOM-SOF. Blastocysts derived at 144 and 156 h in KSOM or KSOM-SOF were predominately male, and significantly more of them survived vitrification 48 h after warming. However, blastocysts cultured in KSOM-SOF, and then vitrified at 180 h were predominately female. Overall, blastocysts that survived vitrification, and subsequently hatched 48 h after warming, were male. In summary, embryos that reached the blastocyst stage earlier were predominantly males; these males had better morphology, endured vitrification, and subsequently hatched at a greater rate than did female blastocysts.  相似文献   

9.
Our objective was to study the effect of the concentration of ethylene glycol (EG) and dimethyl sulfoxide (Me2SO) during vitrification on the development of porcine blastocysts. Vitrification was performed with 0.4 M sucrose and either a Me2SO and EG mixture (15%, 16% and 17% v/v of each) or EG alone (40% v/v), using superfine open pulled straws. Fresh and vitrified blastocysts were cultured for 48 h and the survival and hatching rates were evaluated. Some vitrified and fresh embryos were processed for Hoechst 33342 staining and proliferation cell nuclear antigen (PCNA) inmunolocalization to determine the proliferation index. The survival rate was similar for fresh and vitrified blastocysts, except for blastocysts vitrified using 15% of cryoprotectants, which displayed lower (P < 0.05) survival than fresh blastocysts. Vitrified and fresh blastocysts had a similar cell proliferation index (range: 75.8 ± 3.2 to 83.7 ± 3). When only hatched blastocysts among groups were compared, the proliferation rate decreased (P < 0.05) after vitrification with 17% of EG–Me2SO. In conclusion, the concentration of EG–Me2SO could be decreased to 16% in the vitrification medium with no reduction of the in vitro developmental ability of the blastocysts. In addition, a 40% EG-based medium can be used for vitrification with similar results to those achieved with a medium containing 16% EG–Me2SO.  相似文献   

10.
This study examined the effects of adding a macromolecule, polyvinylpyrrolidone (10% PVP) and a sugar (0.3 M trehalose) to vitrification solutions (VS) containing either one (40% ethylene glycol [EG], two (25% EG+25% DMSO) or three (20% EG+20% DMSO+10% 1, 3-butanediol [BD]) permeable cryoprotectants on the survival and hatching of IVP bovine embryos, following vitrification, warming and in-straw cryoprotectant dilution. Grade 1 and 2 compact morulae and blastocysts were selected on Day 7 (Day 0=IVF) of culture in SOFaaBSA and equilibrated for 10 min at room temperature in 10% EG. Following exposure, for up to 1 min at 4 degrees C, to one of the above VS (with or without PVP+trehalose), the embryos were loaded into straws and immersed in liquid nitrogen. Following warming and in-straw cryoprotectant dilution, the embryos were cultured for 48 h to assess hatching. There was no effect of VS on the survival of embryos after 24 h, however fewer compact morulae than blastocysts survived after 24 h (24% vs. 75%; P<0.001) or hatched after 48 h (15% vs. 59%; P<0.001). When blastocysts only were considered, an interaction between VS and additional PVP+trehalose was also observed (P<0.01). Hatching was reduced when they were added to 25% EG+25% DMSO (70% vs. 45%) but was not affected for either 40% EG (44 and 49%) or to 20% EG+20% DMSO+10% BD (72 and 72%). Pregnancy rates (Day 90 ultrasound) of recipients that were transferred either two non-vitrified or two vitrified (20% EG+20% DMSO+10% BD) blastocysts, did not differ (3/6 [50%] and 11/20 [55%]). However, significantly (P<0.02) fewer recipients that received compact morulae maintained pregnancy to Day 90 although this was not affected by vitrification (fresh vs. vitrified; 1/5 [20%] vs. 3/18 [17]). These data demonstrate that a VS comprising three cryoprotectants, rather than one, enables more embryos to hatch during post-thaw culture and that the survival, following direct transfer of these vitrified embryos, is not different to non-vitrified embryos.  相似文献   

11.
The objectives of this study were to: (1) determine an optimal method and stage of development for vitrification of bovine zygotes or early embryos; and (2) use the optimal procedure for bovine embryos to establish equine pregnancies after vitrification and warming of early embryos. Initially, bovine embryos produced by in-vitro fertilization (IVF) were frozen and vitrified in 0.25 mL straws with minimal success. A subsequent experiment was done using two vitrification methods and super open pulled straws (OPS) with 1- or 8-cell bovine embryos. In Method 1 (EG-O), embryos were exposed to 1.5 M ethylene glycol (EG) for 5 min, 7 M ethylene glycol and 0.6 M galactose for 30 s, loaded in an OPS, and plunged into liquid nitrogen. In Method 2 (EG-DMSO), embryos were exposed to 1.1 M ethylene glycol and 1.1 M dimethyl sulfoxide (DMSO) for 3 min, 2.5 M ethylene glycol, 2.5 M DMSO and 0.5 M galactose for 30 s, and loaded and plunged as for EG-O. Cryoprotectants were removed after warming in three steps. One- and eight-cell bovine embryos were cultured for 7 and 4.5 d, respectively, after warming, and control embryos were cultured without vitrification. Cleavage rates of 1-cell embryos were similar (P > 0.05) for vitrified and control embryos, although the blastocyst rates for EG-O and control embryos were similar and higher (P < 0.05) than for EG-DMSO. The blastocyst rate of 8-cell embryos was higher (P < 0.05) for EG-O than EG-DMSO. Therefore, EG-O was used to cryopreserve equine embryos. Equine oocytes were obtained from preovulatory follicles. After ICSI, injected oocytes were cultured for 1-3 d. Two- to eight-cell embryos were vitrified, warmed and transferred into recipient's oviducts. The pregnancy rate on Day 20 was 62% (5/8) for equine embryos after vitrification and warming. In summary, a successful method was established for vitrification of early-stage bovine embryos, and this method was used to establish equine pregnancies after vitrification and warming of 2- to 8-cell embryos produced by ICSI.  相似文献   

12.
In this study, three different vitrification systems (open pulled straw: OPS; superfine open pulled straw: SOPS; and Vit-Master technology using SOPS: Vit-Master-SOPS) were compared in order to investigate the influence of cooling rate on in vitro development of vitrified/warmed porcine morulae, early blastocysts, or expanded blastocysts. Embryos were obtained surgically on Day 6 of the estrous cycle (D0 = onset of estrus) from weaned crossbred sows, classified and pooled according their developmental stage. A subset of embryos from each developmental stage was cultured to evaluate the in vitro development of fresh embryos; the remaining embryos were randomly allocated to each vitrification system. After vitrification and warming, embryos were cultured in vitro for 96 h in TCM199 with 10% fetal calf serum at 39 degrees C, in 5% CO(2) in humidified air. During the culture period, embryos were morphologically evaluated for their developmental progression. The developmental stage of embryos at collection affected the survival and hatching rates of vitrified/warmed embryos (P < 0.001). The vitrification system or the interaction of vitrification system and developmental stage had no effect on these parameters (P > 0.05). Vitrified expanded blastocysts showed the best development in vitro (P < 0.001), with survival and hatching rates similar to those of fresh expanded blastocysts. The hatching rate of fresh morula or early blastocyst stage embryos was higher than their vitrified counterparts. In conclusion, under our experimental conditions, cooling rates greater than 20,000 degrees C/min, as occurs when SOPS or Vit-Master-SOPS systems are used, do not enhance the efficiency of in vitro development of vitrified porcine embryos.  相似文献   

13.
The aim of this study was to examine the effects of co-culture with Vero cells during the in vitro maturation (IVM) and three culture media, B2+5% fetal calf serum (FCS) on Vero cells, synthetic oviduct fluid (SOF)+5% FCS, and SOF+20 gL(-1) bovine serum albumin (BSA), on the developmental competence of the embryos and their ability to survive vitrification/warming. We also tested the effect of morphological quality and the age of the embryo on its sensitivity to vitrification. The IVM system neither affects the embryo development up to Day 7 nor survival rates after vitrification. The culture of embryos in SOF+FCS and in Vero cells+B2 allowed obtaining more Day 6 and Day 7 blastocysts, and a higher % of Day 7 blastocysts vitrified than culture in SOF+BSA. Contrarily, on Day 8, more blastocysts were vitrified in SOF+BSA than in SOF+FCS. Blastocysts quality affected development after vitrification/warming, and Day 7 embryos showed higher survival rates than their Day 8 counterparts. Day 7 blastocysts produced in Vero cells or in SOF+BSA survived at higher rates than those produced in SOF+FCS at 24 and 48 h after warming. Embryo culture with BSA allows obtaining hatching rates after vitrification/warming higher than those obtained after co-culture with Vero cells in B2 and FCS. Moreover, this system provides hatching rates from Day 8 blastocysts comparable to those obtained on Day 7 in Vero cells. Further studies, including embryo transfer to recipients, are needed to clarify factors affecting the freezability of in vitro produced bovine embryos.  相似文献   

14.
In this work we analyzed the effects of three culture systems on developmental ability of bovine embryos in vitro produced with sexed sperm, the survival to vitrification (cryologic vitrification method) of such blastocysts, and their pregnancy rates after embryo transfer to recipients, both as fresh and after vitrification/warming. Finally, we measured the accuracy of the sorting protocol by a polymerase chain reaction-based method to validate the embryo sex at blastocyst stages. We confirmed an individual effect of the bull as well as development rates of embryos produced with sorted sperm lower than embryos with unsorted sperm, independent of the culture system used. The cryoresistance to vitrification of embryos produced with sexed sperm did not differ from that of conventionally produced embryos (re-expansion rates at 24 and 48 h: 74.6% vs. 75.5%, and 64.5% vs. 68.1% for embryos produced with conventional and sorted sperm, respectively; hatching rates at 48 h: 63.55% vs. 55.5% for embryos produced with conventional and sorted sperm, respectively). Finally, no significant differences were found in pregnancy rates after the embryo transfer of fresh and vitrified/warmed blastocysts (52.8% vs. 42.0%, respectively; P > 0.05). Male and female embryos produced with sorted sperm showed the same quality in terms of developmental ability, cryoresistance, and pregnancy rates after transfer. Our culture system, coupled with the vitrification in fiber plugs, provides good quality sex-known embryos which survive vitrification at similar rates than embryos produced with conventional unsorted sperm; also it produces good pregnancy rates after transfer of sexed embryos both fresh and after vitrification and warming.  相似文献   

15.
This study was designed to test the efficiency of recently developed vitrification technology followed by microscope-free thawing and transfer of sheep embryos. In a first set of experiments, in vivo derived embryos at the morula to blastocyst stage were frozen in an automated freezer in ethylene glycol, and after thawing and removal of cryoprotectants, were transferred to recipient ewes according to a standard protocol (control group). A second group of embryos were loaded into open-pulled straws (OPS) and plunged into liquid nitrogen after exposure at room temperature to the media: 10% glycerol (G) for 5 min, 10% G+20% ethylene glycol (EG) for 5 min, 25% G+25% EG for 30s; or 10% EG+10% DMSO for 3 min, 20% EG+20% DMSO+0.3M trehalose for 30s. The OPS were thawed by plunging into tubes containing 0.5M trehalose. After this rapid thawing, the embryos were directly transferred using OPS as the catheter for the transplantation process. In a second set of experiments, in vivo derived and in vitro produced expanded blastocysts were vitrified in OPS and then transferred as described above. The lambing rates recorded (59% for the conventionally cryopreserved in vivo derived embryos, 56% for the vitrified in vivo derived embryos, and 20% for the vitrified in vitro produced embryos), suggest the suitability of the vitrification technique for the transfer of embryos obtained both in vivo and in vitro. This simple technology gives rise to a high embryo survival rate and will no doubt have applications in rearing sheep or other small ruminants.  相似文献   

16.
Dattena M  Ptak G  Loi P  Cappai P 《Theriogenology》2000,53(8):1511-1519
Ovine blastocysts were produced by maturation, fertilization and in vitro culture (IVM/IVF/IVC) of oocytes from slaughtered adult and prepubertal ewes and collection from superovulated and inseminated adult animals. Dulbecco's PBS supplemented with 0.3 mM Na Pyruvate and 20% FCS was used as the basic cryopreservation solution. The embryos were exposed to the vitrification solution as follows: 10% glycerol (G) for 5 min, then 10% G +20% ethylene glycol (EG) for 5 min. Embryos were placed into 25% G + 25% EG in the center of 0.25- mL straws and plunged immediately into LN2. Warming was done by placing the straws into a water bath at 37 degrees C for 20 sec, and their contents were expelled into a 0.5 M sucrose solution for 3 min; the embryos were then transferred into 0.25 M and 0.125 M sucrose solution for 3 min each. Warmed blastocysts were transferred to the culture medium for 24 h. Survival was defined as the re-expansion of the blastocoele. All surviving blastocysts were transferred to synchronized recipient ewes, and the pregnancy was allowed to go to term. Of 68 vitrified in vitro produced blastocysts, 46 re-expanded (67.6%) and 10 lambs were born (14.7%). From the 62 in vivo derived and vitrified embryos, 52 re-expanded (83.8%) and 39 lambs were born (62.9%). The lambing rate of in vitro produced fresh transfer embryos was 40% (20 lambs/50 blastocysts transferred), and of the 32 in vivo derived blastocysts and transferred fresh, 26 lambs were born (81.2%). The results indicate that in vitro produced embryos can be successfully cryopreserved by vitrification.  相似文献   

17.
Unhatched blastocysts from Large White hyperprolific gilts (n=103) were identified, measured and vitrified using the Open Pulled Straw (OPS) technique to evaluate the effects of the collected blastocyst size and cryoprotectant concentrations used for vitrification, and the number of embryos transferred per recipient. Vitrified/warmed blastocyst viability was estimated in vitro, as the percentage of embryos developing after 72h, and in vivo, on pregnancy Day 30. In the in vitro study, we compared the use of three cryoprotectant concentrations (16.5, 18, or 20% DMSO+16.5, 18, or 20% EG+0.4M sucrose). Survival rates differed significantly between the control (98.3%) and the three cryoprotectant concentrations (67, 62.3, and 57%, respectively). Blastocyst size at vitrification determined the further in vitro development of embryos (26% survival for blastocysts 126-144microm versus 100% for blastocysts >199microm). For the in vivo study, blastocysts were vitrified using cryoprotectant concentrations of 16.5 or 18% DMSO+EG and transferred surgically in groups of 20 or 30 per recipient (n=40). Recipients were slaughtered on pregnancy D30. No significant differences were detected in gestation rates (50-70%) and embryo survival rates (14.7-25%), although survival was higher (P=0.0003) when 20 blastocysts were transferred compared to 30 (24.7% versus 15.5%). Our findings indicate that best results, in terms of subsequent in vivo embryo survival, were achieved after transferring 20 embryos at the blastocyst or expanded blastocyst stage, previously vitrified using cryoprotectant concentrations of 16.5 or 18%.  相似文献   

18.
The objectives of this study were: (1) to evaluate the influence of porcine embryo developmental stage on in vitro embryo development after vitrification, (2) to study the efficiency of the one-step dilution procedure, compared with conventional warming, for vitrified embryos at different stages of development, and (3) to determine the influence of the embryo donor on the in vitro survival of vitrified embryos at morulae and blastocyst stages. Two to four cell embryos, morulae and blastocysts were collected by laparotomy from weaned crossbred sows (n=55). Vitrification and conventional warming were performed using the OPS procedure with Superfine Open Pulled Straws (SOPS). For one-step dilution, embryos were placed in 800 microl TCM199-HEPES containing 20% of new born calf serum and 0.13 M sucrose for 5 min. To evaluate development, two to four cell embryos, morulae and blastocysts were cultured in vitro for 120, 48 and 24h, respectively. Some fresh embryos from each developmental stage were not vitrified and cultured as controls. Embryos were morphologically evaluated for their developmental capacity during the in vitro culture by stereomicroscopy. The total cell number of embryos was assessed by Hoechst-33342 staining and fluorescence microscope observation. There was a significant effect of the stage of development on the in vitro survival, perihatching rate and the number of cells of embryos after vitrification and warming (Experiment 1; p<0.001). The survival and perihatching rates of two to four cell embryos were lower than those obtained for morulae and blastocysts (p<0.001). No differences (p>0.05) in survival rates were found between vitrified and fresh blastocysts. The warming procedure did not affect the development and total cell number of vitrified two to four cell embryos, morulae or blastocysts (Experiment 2). However, donor had a significant effect (p<0.001) on the in vitro development and the number of cells of morulae and blastocysts after vitrification and warming (Experiment 3). In conclusion, the embryo developmental stage and the embryo donor were important factors that affected the development of porcine embryos after OPS-vitrification and warming. OPS-vitrification and the one-step dilution are efficient procedures to be used with intact porcine morulae and blastocysts.  相似文献   

19.
The objectives were to evaluate the reexpansion blastocoele rate, post-thaw viability, and in vitro development of canine blastocysts cryopreserved by slow freezing in 1.0 m glycerol (GLY) or 1.5 m ethylene glycol (EG). Fifty-one in vivo-produced canine blastocysts were randomly allocated in two groups: GLY (n = 26) and EG (n = 25). After thawing, embryos from M0 were immediately stained with the fluorescent probes propidium iodide and Hoechst 33 342 to evaluate cellular viability. Frozen-thawed embryos from M3 and M6 were cultured in SOFaa medium + 10% FCS at 38.5°C under an atmosphere of 5% CO2 with maximum humidity, for 3 and 6 days, respectively, and similarly stained. The blastocoele reexpansion rate (24 h after in vitro culture) did not differ between GLY (76.5%) and EG (68.8%). Post-thaw viable cells rate were not significantly different between GLY and EG (66.5 ± 4.8 and 57.3 ± 4.8, respectively, mean ± SEM), or among M0 (62.3 ± 5.7%), M3 (56.9 ± 6.0%), and M6 (66.5 ± 6.0%). In conclusion, canine blastocysts cryopreserved by slow freezing in 1.0 m glycerol or 1.5 m ethylene glycol, had satisfactory blastocoele reexpansion rates, similar post-thawing viability, and remained viable for up to 6 days of in vitro culture.  相似文献   

20.
The study was designed to evaluate the efficiency of a modified (sealed) open pulled straw (mOPS) method for cryopreserving rabbit embryos by vitrification or rapid freezing. An additional objective was to determine whether the mOPS method could cause the vitrification of a cryoprotectant solution generally used in rapid freezing procedures. Two consecutive experiments of in vitro and in vivo viability were performed. In Experiment 1, the in vitro viability of rabbit embryos at the morula, compacted morula, early blastocyst and blastocyst stages was assessed after exposure to a mixture of 25% glycerol and 25% ethylene glycol (25GLY:25EG: vitrification solution) or 4.5 M (approximately 25% EG) ethylene glycol and 0.25 M sucrose (25EG:SUC: rapid freezing solution). Embryos were loaded into standard straws or mOPS and plunged directly into liquid nitrogen. The mOPS consisted of standard straws that were heat-pulled, leaving a wide opening for the cotton plug and a narrow one for loading embryos by capillarity. The embryos were aspirated into the mOPS in a column positioned between two columns of cryoprotectant solution separated by air bubbles. The mOPS were then sealed with polyvinyl-alcohol (PVA) sealing powder. The vitrification 25GLY:25EG solution became vitrified both in standard straws and mOPS, whereas the rapid freezing 25EG:SUC solution crystallized in standard straws, but vitrified in mOPS. The total number of embryos cryopreserved was 1695. Embryos cryopreserved after exposure to each solution in mOPS showed higher rates (88.2%) of survival immediately after thawing and removal of the cryoprotectant than those cryopreserved in 0.25 ml standard straws (78.8%; P < 0.0001). After culture, the developmental stage of the cryopreserved embryos significantly affected the rates of development to the expanded blastocyst stage. Regardless of the cryoprotectant used, lower rates of in vitro development were obtained when the embryos were cryopreserved at the morula stage, and higher rates achieved using embryos at blastocyst stages. Based on the results of Experiment 1, the second experiment was performed on blastocysts using the mOPS method. Experiment 2 was designed to evaluate the in vivo viability of cryopreserved rabbit blastocysts loaded into mOPS after exposure to 25GLY:25EG or 25EG:SUC. Embryos cryopreserved in mOPS and 25GLY:25EG solution gave rise to rates of live offspring (51.7%) not significantly different to those achieved using fresh embryos (58.5%). In conclusion, the modified (sealed) OPS method allows vitrification of the cryoprotectant solution at a lower concentration of cryoprotectants than that generally used in vitrification procedures. Rabbit blastocysts cryopreserved using a 25GLY:25EG solution in mOPS showed a similar rate of in vivo development after thawing to that shown by fresh embryos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号