首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
R Romar  P Coy  D Rath 《Theriogenology》2012,78(5):1126-1139
The cortical reaction induces changes at the egg's Zona pellucida (ZP), perivitelline space and/or oolemma level, blocking polyspermic fertilization. We studied the timing of sperm penetration and cortical reaction in pig oocytes matured under different conditions and inseminated with different boars. Immature (germinal vesicle stage) and in vitro matured (IVM) (metaphase II stage) oocytes were inseminated and results assessed at different hours post insemination. Penetrability and polyspermy rates increased with gamete coincubation time and were higher in IVM oocytes. A strong boar effect was observed in IVF results. Cortical reaction (assessed as area occupied by cortical granules) and galactose-β(1-3)-Nacetylgalactosamine residues on ZP (area labeled by peanut agglutinin lectin, PNA) were assessed in IVM and in vivo matured (IVV) oocytes at different hours post insemination. After maturation, IVM and IVV oocytes displayed similar area occupied by cortical granules and it decreased in fertilized oocytes compared to unfertilized ones. Cortical reaction was influenced by boar and was faster in polyspermic than in monospermic oocytes, and in IVM than in IVV oocytes. The outer ZP of inseminated oocytes appeared stained by PNA and the labeled area increased along with gamete coculture time. This labeling was also observed after insemination of isolated ZP, indicating that this modification in ZP carbohydrates is not induced by cortical reaction. The steady and maintained cortical reaction observed at 4 to 5 h post insemination in IVV monospermic oocytes might reflect the physiological time course of this important event in pigs. Both maturation conditions and boar affect cortical granules release.  相似文献   

2.
The seminal plasma PSP-I/PSP-II spermadhesin is able to preserve, in vitro, the viability of highly extended boar spermatozoa, suggesting it might be used as a suitable ameliorator for the damaging effects of sperm handling, including in vitro fertilization. However, little is known about the ligand capability of PSP-I/PSP-II as regards the zona pellucida (ZP) or its possible role in gamete interaction. The present study evaluated the effect of the presence of PSP-I/PSP-II (1.5 mg/ml) during in vitro oocyte maturation and also during co-incubation of frozen-thawed boar spermatozoa with either immature (IM) or in vitro matured (IVM) oocytes, either enclosed by cumulus cells or denuded. Exposure of the gametes to the heterodimer during in vitro gamete co-incubation showed a significant blocking effect of sperm penetration rates and a decreased number of spermatozoa per oocyte in both IM and IVM denuded oocytes. Such an effect was not present in cumulus-enclosed oocytes, suggesting the effect could be mediated by exposed ZP receptors. In addition, when PSP-I/PSP-II was added to the IVM medium, oocyte maturation rates were significantly reduced. In conclusion, the results suggest that PSP-I/PSP-II, when present in vitro, blocks sperm-ZP binding.  相似文献   

3.
The identity of the sperm surface protein(s) responsible for sperm-zona pellucida binding in the mouse, as well as the characteristics of the oligosaccharide groups on zona pellucida glycoprotein 3 (ZP3) having ligand activity toward this receptor, remain controversial. Conflicting results from several groups have made interpretation of the current data difficult. By developing a quantitative binding assay to evaluate the molecular interactions between mammalian sperm and the zona pellucida during initial gamete interactions, we directly quantified sperm-ZP binding interactions at the molecular level for the first time. The ZP binding assay demonstrated that live, capacitated mouse sperm bind solubilized 125I-labeled ZP glycoproteins in a concentration-dependent manner characterized by a rapid forward rate constant of 3.0 × 107 M−1 min−1. Following the initial characterization, the binding assay was used to examine the roles of the sperm surface enzymes galactosyltransferase (GalTase) and fucosyltransferase (FucTase) in sperm-zone pellucida binding in the mouse. These data indicate that substrates for FucTase, but not for GalTase, inhibit sperm-ZP binding, in contrast to earlier reports in which GalTase substrates significantly inhibited sperm binding to intact ZPs. A model is presented which resolves conflicting results between assays using intact ZPs and the results obtained here using soluble 125I-ZPs. Assuming a complex binding/recognition site, monosaccharides that could occupy part of the binding site would have a dramatic effect on sperm-ZP binding to the intact ZP, since they need only occupy the binding sites for a short time (∼ 100 msec) to disrupt binding. The current results suggest that the sperm ZP3 receptor binding site minimally recognizes the galβ1,3GlcNAc moiety also recognized by FucTases. The current data do not exclude the possibility that additional sugar residues form part of the ligand oligosaccharide group and are recognized by a yet-to-be-identified sperm surface protein which serves as the ZP3 receptor. © 1996 Wiley-Liss, Inc.  相似文献   

4.
This study investigated if in vitro maturation (IVM) before or after vitrification would be more successful for prepubertal oocytes. To mimic prepubertal conditions in an experimental setup, oocytes were collected from healthy 14, 21 and 28day old Swiss albino mice. The germinal vesicle (GV) stage oocytes and in vitro matured MII oocytes were subjected to vitrification-warming. Both structural (meiotic spindle morphology, mitochondrial integrity, cortical granules) and functional (sperm zona binding, fertilization) characteristics were assessed in oocytes after warming. This study demonstrated that IVM was more detrimental to prepubertal oocytes than to young adults. Further, vitrification of the IVM oocytes resulted in an increase in the number of abnormal meiotic spindles, a change in the cortical distribution pattern, a reduction in sperm zona binding and the fertilization rate. Importantly, oocyte integrity was better when prepubertal oocytes were vitrified before, rather than after, IVM. The above observations support GV stage vitrification for prepubertal oocytes requiring fertility preservation. Understanding the mechanisms behind the differing outcomes for oocytes from immature females will help in refining current protocol, thereby retaining the oocytes' maximum structural and functional integrity Further investigation is necessary to determine whether human prepubertal oocytes also behave in a similar way. It is to be noted here, with great emphasis, that a major limitation of this study is that the oocytes’ abilities were tested only until fertilisation, as a consequence of which the study cannot reveal the developmental potentials of the embryos beyond fertilisation.  相似文献   

5.
Interaction of rapidly evolving molecules imparts species specificity to sperm-egg recognition in marine invertebrates, but it is unclear whether comparable interactions occur during fertilization in any vertebrate species. In mammals, the sperm acrosomal protein zonadhesin is a rapidly evolving molecule with species-specific binding activity for the egg zona pellucida (ZP). Here we show using null mice produced by targeted disruption of Zan that zonadhesin confers species specificity to sperm-ZP adhesion. Sperm capacitation selectively exposed a partial von Willebrand D domain of mouse zonadhesin on the surface of living, motile cells. Antibodies to the exposed domain inhibited adhesion of wild-type spermatozoa to the mouse ZP but did not inhibit adhesion of spermatozoa lacking zonadhesin. Zan−/− males were fertile, and their spermatozoa readily fertilized mouse eggs in vitro. Remarkably, however, loss of zonadhesin increased adhesion of mouse spermatozoa to pig, cow, and rabbit ZP but not mouse ZP. We conclude that zonadhesin mediates species-specific ZP adhesion, and Zan−/− males are fertile because their spermatozoa retain adhesion capability that is not species-specific. Mammalian sperm-ZP adhesion is therefore molecularly robust, and species-specific egg recognition by a protein in the sperm acrosome is conserved between invertebrates and vertebrates, even though the adhesion molecules themselves are unrelated.  相似文献   

6.
In vitro fertilization (IVF) has had poor success in the horse, a situation related to low rates of sperm penetration through the zona pellucida (ZP). Zona pellucida hardening (ZPH) is seen in mouse and rat oocytes cultured in serum-free medium. The hardened ZP is refractory to sperm penetration. Fetuin, a component of fetal calf serum, inhibits ZPH and allows normal fertilization rates in oocytes cultured in the absence of serum. We evaluated whether fetuin is present in horse serum and follicular fluid (FF) and whether fetuin could inhibit ZPH in equine oocytes matured in vitro, thus increasing sperm penetration during IVF. The presence of fetuin in equine serum and FF was confirmed by immunoblotting. Oocytes submitted to in vitro maturation (IVM) in medium containing fetuin were used for ZPH assay or IVF. Intracytoplasmic sperm injection (ICSI) was carried out as a control procedure. The presence of fetuin during IVM did not affect the rate of maturation to metaphase II. Maturation of oocytes in the presence of fetuin reduced ZPH in a dose-dependent manner. After both IVF and ICSI, there was no significant difference in oocyte fertilization between fetuin-treated and untreated oocytes. The fertilization rate was significantly higher after ICSI than after IVF, both in fetuin-treated and in untreated oocytes. In conclusion, fetuin reduced ZPH in equine oocytes but did not improve sperm penetration during IVF. This implies that, in the horse, "spontaneous" ZPH is unlikely to be the major factor responsible for inhibiting sperm penetration in vitro.  相似文献   

7.
Meiotic maturation and fertilization are metabolically demanding processes, and thus the mammalian oocyte is highly susceptible to changes in nutrient availability. O‐GlcNAcylation—the addition of a single sugar residue (O‐linked β‐N‐acetylglucosamine) on proteins—is a posttranslational modification that acts as a cellular nutrient sensor and likely modulates the function of oocyte proteins. O‐GlcNAcylation is mediated by O‐GlcNAc transferase (OGT), which adds O‐GlcNAc onto proteins, and O‐GlcNAcase (OGA), which removes it. Here we investigated O‐GlcNAcylation dynamics in bovine and human oocytes during meiosis and determined the developmental sequelae of its perturbation. OGA, OGT, and multiple O‐GlcNAcylated proteins were expressed in bovine cumulus oocyte complexes (COCs), and they were localized throughout the gamete but were also enriched at specific subcellular sites. O‐GlcNAcylated proteins were concentrated at the nuclear envelope at prophase I, OGA at the cortex throughout meiosis, and OGT at the meiotic spindles. These expression patterns were evolutionarily conserved in human oocytes. To examine O‐GlcNAc function, we disrupted O‐GlcNAc cycling during meiotic maturation in bovine COCs using Thiamet‐G (TMG), a highly selective OGA inhibitor. Although TMG resulted in a dramatic increase in O‐GlcNAcylated substrates in both cumulus cells and the oocyte, there was no effect on cumulus expansion or meiotic progression. However, zygote development was significantly compromised following in vitro fertilization of COCs matured in TMG due to the effects on sperm penetration, sperm head decondensation, and pronuclear formation. Thus, proper O‐GlcNAc homeostasis during meiotic maturation is important for fertilization and pronuclear stage development.  相似文献   

8.
The purpose of this study was to determine whether the mitochondrial membrane potential, pro-apoptotic gene expression, and ubiquitylation status of zona pellucida proteins (ZP1, ZP2, and ZP3) of vitrified GV-stage mature oocytes could be protected by treatment with cholesterol-loaded methyl-β-cyclodextrin (CLC) prior to vitrification. Porcine GV oocytes were treated with CLC prior to the vitrification process, and the effects on the mitochondrial membrane potential and ZP ubiquitylation status were determined by JC-1 single staining and western blot assays. We found that porcine GV-stage oocytes were treated with CLC at different concentrations (0.5, 5, and 10 mg/mL) prior to vitrification improved in vitro maturation of these oocytes (P < 0.05). The mitochondrial membrane potential of matured oocyte without vitrification or treated with 5 mg/mL CLC vitrification treatment was higher than that of the 0 mg/mL CLC group and other treatment groups (vitrified) (P < 0.05). The expression of Caspase 3, Caspase 8, and Caspase 9 genes in the high concentration CLC treatment groups (5 and 10 mg/mL) was significantly lower than that in the 0 (vitrified) mg/mL CLC group (P < 0.05). ZPs protein and ZP3 protein ubiquitylation were also higher in the non-vitrified controls, 5 and 10 mg/mL CLC-treated oocytes than in the 0 (vitrified) and 0.5 mg/mL vitrified groups (P < 0.05). Whereas the sperm–oocyte binding capacity was improved in the CLC treatment groups (P < 0.05) but the embryonic development rate was not improved. In conclusion, pretreatment with CLC can improve the survival rate and maturation rate of oocytes and protect their mitochondria and zona pellucida of porcine oocytes from cryodamage during the vitrification process.  相似文献   

9.
Mammalian sperm acquire fertility through a functional maturation process called capacitation, where sperm membrane molecules are drastically remodeled. In this study, we found that a wheat germ agglutinin (WGA)-reactive protein on lipid rafts, named WGA16, is removed from the sperm surface on capacitation. WGA16 is a prostate-derived seminal plasma protein that has never been reported and is deposited on the sperm surface in the male reproductive tract. Based on protein and cDNA sequences for purified WGA16, it is a homologue of human zymogen granule protein 16 (ZG16) belonging to the Jacalin-related lectin (JRL) family in crystal and primary structures. A glycan array shows that WGA16 binds heparin through a basic patch containing Lys-53/Lys-73 residues but not the conventional lectin domain of the JRL family. WGA16 is glycosylated, contrary to other ZG16 members, and comparative mass spectrometry clearly shows its unique N-glycosylation profile among seminal plasma proteins. It has exposed GlcNAc and GalNAc residues without additional Gal residues. The GlcNAc/GalNAc residues can work as binding ligands for a sperm surface galactosyltransferase, which actually galactosylates WGA16 in situ in the presence of UDP-Gal. Interestingly, surface removal of WGA16 is experimentally induced by either UDP-Gal or heparin. In the crystal structure, N-glycosylated sites and a potential heparin-binding site face opposite sides. This geography of two functional sites suggest that WGA16 is deposited on the sperm surface through interaction between its N-glycans and the surface galactosyltransferase, whereas its heparin-binding domain may be involved in binding to sulfated glycosaminoglycans in the female tract, enabling removal of WGA16 from the sperm surface.  相似文献   

10.
Glucose concentration during cumulus-oocyte complex (COC) maturation influences several functions, including progression of oocyte meiosis, oocyte developmental competence, and cumulus mucification. Glucosamine (GlcN) is an alternative hexose substrate, specifically metabolized through the hexosamine biosynthesis pathway, which provides the intermediates for extracellular matrix formation during cumulus cell mucification. The aim of this study was to determine the influence of GlcN on meiotic progression and oocyte developmental competence following in vitro maturation (IVM). The presence of GlcN during bovine IVM did not affect the completion of nuclear maturation and early cleavage, but severely perturbed blastocyst development. This effect was subsequently shown to be dose-dependent and was also observed for porcine oocytes matured in vitro. Hexosamine biosynthesis upregulation using GlcN supplementation is well known to increase O-linked glycosylation of many intracellular signaling molecules, the best-characterized being the phosphoinositol-3-kinase (PI3K) signaling pathway. We observed extensive O-linked glycosylation in bovine cumulus cells, but not oocytes, following IVM in either the presence or the absence of GlcN. Inhibition of O-linked glycosylation significantly reversed the effect of GlcN-induced reduction in developmental competence, but inhibition of PI3K signaling had no effect. Our data are the first to link hexosamine biosynthesis, involved in cumulus cell mucification, to oocyte developmental competence during in vitro maturation.  相似文献   

11.
Morphological changes in zona pellucidae (ZP) isolated from in vitro-matured (IVM) and ovulated porcine oocytes were compared before or after fertilization in vitro and in vivo, respectively, by using scanning electron microscopy (SEM). The ZP of some ovulated or IVM oocytes and in vivo- or in vitro-fertilized (IVF) zygotes were equally split into two halves while immersed in an enzyme-inhibitor solution, using a surgical blade. After washing, intact and ZP halves were fixed in 1% glutaraldehyde solution in 0.1 M cacodylate buffer, processed, and examined using SEM. The outer surface of ZP in ovulated oocytes had a mesh-like structure. The outer morphology in IVM oocytes was more smooth although the mesh-like structure was still visible at high magnification. In in vivo zygotes and IVM-IVF zygotes, this lysed, mesh-like structure was more obvious. The inner surface of ZP had some small depressions (orifices). The mean number of orifices per 100 micrometer(2) of ZP surface was larger in IVM oocytes as compared to ovulated ones. The number of orifices per 100 micrometer(2) decreased in IVM-IVF zygotes as compared to IVM oocytes; whereas, in vivo zygotes did not differ from ovulated oocytes. The mean diameter of intact ZP as well as their mean thickness was greater in ovulated oocytes than IVM oocytes. The mean thickness of the ZP was larger in ovulated oocytes than IVM ones. The ZP thickness was larger in zygotes than in in vivo oocytes, whereas that of IVM-IVF zygotes did not differ from that of IVM oocytes. These results indicate that the morphology of ZP and the ZP reaction at sperm penetration appears to be much different between IVM oocytes and ovulated ones.  相似文献   

12.
The aim of this study was to determine the effects of different exposure lenght to heat shock (HS) during in vitro maturation (IVM) on zona pellucida (ZP) ultrastructure and developmental competence of bovine oocytes. Cumulus-oocyte complexes (COCs) were matured in vitro (IVM) at 38.5 °C for 24 h (control group, CG), or incubated at 41 °C (HS) for 6 h (HS-6h), 12 h (HS-12h), 18 h (HS-18h), and 22h (HS-22h) followed by incubation at 38.5 °C to complete a full 24-h period of maturation. After IVM, oocytes were subjected to scanning electron microscopy (SEM) or in vitro fertilization and culture until the blastocyst stage. For heat-shocked oocytes, with exception of those in the HS-6h group, SEM examinations revealed that ZP surfaces were rough and characterized by a presence of spongy network. Oocytes from the HS-22h group displayed an increase in the number of pores, as well as a higher proportion of oocytes with amorphous ZPs. The proportion of oocytes that reached metaphase II (MII) stage decreased in all HS groups, regardless of the duration of exposure to 41 °C. These results provide evidence that HS during IVM for 12–22 h reduces the developmental competence of bovine oocytes, increasing the percentage of oocytes with abnormal chromosomal organization, and reducing fertilization and blastocysts formation rate. The effects of HS were more pronounced for the 22-h exposure group. The damage induced by HS on oocyte function clearly increased upon exposure to elevated temperature.  相似文献   

13.
Membrane preparations from developing cotyledons of red kidney bean (Phaseolus vulgaris L.) transferred radioactive mannose from GDP-mannose (U-[14C]mannose) to endogenous acceptor proteins. The transfer was inhibited by the antibiotic tunicamycin, suggesting the involvement of lipidoligosaccharide intermediates typical of the pathway for glycosylation of asparagine residues. This was supported by the similarity of the linkage types of radioactive mannose in lipid-oligosaccharide and glycoprotein products; both contained labeled 2-linked mannose, 3,6-linked and terminal mannose typical of glycoprotein “core” oligosaccharides. As expected for “core” glycosylation, the transfer of labeled N-acetylglucosamine (GlcNAc) from UDP-GlcNAc (6-[3H]GLcNAc) to 4-linkage in endogenous glycoproteins could also be demonstrated. However, most of the radioactive GlcNAc was incorporated into terminal linkage, in a reaction insensitive to tunicamycin. The proteins receiving “core” oligosaccharide in vitro were heterogeneous in size, in contrast to those receiving most of the GlcNAc (which chiefly comprised the seed reserve-proteins phaseolin and phytohemagglutinin). It is suggested that following “core” glycosylation, single GlcNAc residues are attached terminally to the oligosaccharides of these seed proteins, without the involvement of lipid-linked intermediates. Phaseolin from mature seeds does not possess a significant amount of terminal GlcNAc and so it is possible that these residues are subsequently removed in a processing event.  相似文献   

14.
Lipid droplets (LD) in porcine oocytes form a dark mass reaching almost all cytoplasm. Herein we investigated changes in fat areas, cytoplasmic tone and LD morphology during in vitro maturation (IVM) of porcine oocytes cultured with 100 μM trans-10, cis-12 conjugated linoleic acid (t10,c12 CLA) or 10 μM forskolin at different time periods. Four groups were constituted: control, excipient, t10,c12 CLA and forskolin, with drugs being supplemented during 44 to 48 h and the initial 22 to 24 h in Experiments 1 and 2, respectively. In Experiment 3, forskolin was supplemented for the first 2 h. Matured oocytes were inseminated with frozen-thawed boar semen and cleavage rate recorded. Before and during IVM, samples of oocytes were evaluated for LD, total and fat areas and fat gray value or for meiotic progression. Results showed that forskolin supplementation during 44 to 48 h or 22 to 24 h inhibits oocyte maturation (exp. 1: forskolin = 5.1 ± 8.0%, control = 72.6 ± 5.0%; exp. 2: forskolin = 24.3 ± 7.4%, control = 71.6 ± 5.6%) and cleavage (exp. 1: forskolin = 0.0 ± 0.0%, control = 55.4 ± 4.1%; exp. 2: forskolin = 8.3 ± 3.3%, control = 54.5 ± 3.0%). Forskolin also reduced oocyte and fat areas. In Experiment 3, forskolin negative effect on oocyte maturation and cleavage disappeared, although minor (P ⩽ 0.03) LD and oocyte fat areas were identified at 22 to 24 h of IVM. Oocytes supplemented with t10,c12 CLA during 44 to 48 h presented a lighter (P ⩽ 0.04) colour tone cytoplasm than those of control and forskolin. In conclusion, t10,c12 CLA and forskolin were capable of modifying the distribution and morphology of cytoplasmic LD during porcine oocyte maturation, thus reducing its lipid content in a time-dependent manner.  相似文献   

15.
Park MR  Gupta MK  Lee HR  Das ZC  Uhm SJ  Lee HT 《Theriogenology》2011,75(5):940-950
Phosphatidylinositol-3-kinases (PI3Ks) play pivotal roles in meiotic progression of oocytes from metaphase I to metaphase II stage. Using a Class III-specific inhibitor of PI3K, 3-methyladenine (3MA), this study shows that Class III PI3K may be essential for meiotic progression of porcine oocytes beyond germinal vesicle (GV) stage. Treatment of immature porcine oocytes with 3MA for 22-42 h arrested them at the GV stage, irrespective of the presence or absence of cumulus cells. Furthermore, a significantly high proportion (60.9 ± 13.8%) of 3MA-treated oocytes acquired a nucleolus completely surrounded by a rim of highly condensed chromatin (GV-II stage). The GV-arresting effect of 3MA was, however, completely reversible upon their further culture in the absence of 3MA for 22 h. When cumulus-oophorus-complexes (COCs), arrested at the GV stage for 22 h by 3MA, were further cultured for 22 h in the absence of 3MA, 96.1 ± 1.5% of oocytes reached the MII stage at 42 h of IVM and did not differ from non-treated control oocytes with respect to their ability to fertilize, cleave and form blastocyst (P > 0.05) upon in vitro fertilization (IVF) or parthenogenetic activation (PA). These data suggest that 3MA efficiently blocks and synchronizes the meiotic progression of porcine oocytes at the GV stage without affecting their ooplasmic maturation in terms of post-fertilization/activation in vitro embryonic development. Our data also provide indirect evidence for the likely participation of Class III PI3K in meiotic maturation of porcine oocyte beyond the GV stage.  相似文献   

16.
The present study was designed to evaluate the viability, meiotic competence and subsequent development of porcine oocytes vitrified using the cryotop method at different stages of in vitro maturation (IVM). Cumulus–oocyte complexes (COCs) were cultured in IVM medium supplemented with 1 mM dibutyryl cAMP (dbcAMP) for 22 h and then for an additional 22 h without dbcAMP in the medium. Germinal vesicle (GV), germinal vesicle breakdown (GVBD), metaphase I (MI), anaphase I/telophase I (AI/TI) and metaphase II (MII) were found to occur predominantly at 0–22, 26, 32, 38 and 44 h of IVM, respectively. Oocytes were exposed to cryoprotectant (CPA) or vitrified after different durations of IVM (0, 22, 26, 32, 38 and 44 h). After CPA exposure and vitrification, surviving oocytes that were treated before completion of the 44 h maturation period were placed back into IVM medium for the remaining maturation period, and matured oocytes were incubated for 2 h. CPA treatment did not affect the viability of oocytes matured for 26, 32, 38 or 44 h, but significantly decreased survival rate of oocytes matured for 0 or 22 h. CPA treatment had no effect on the ability of surviving oocytes to develop to the MII stage regardless of the stage during IVM; however, blastocyst formation following PA was severely lower (P < 0.05) than that in the control. At 2 h post-warming, the survival rates of oocytes vitrified at 26, 32, 38 and 44 h of IVM were similar but were higher (P < 0.05) than those of oocytes vitrified at 0 or 22 h of IVM. The MII rates of surviving oocytes vitrified at 0 and 38 h of IVM did not differ from the control and were higher (P < 0.05) than those of oocytes vitrified at 22, 26 or 32 h of IVM. After parthenogenetic activation (PA), both cleavage and blastocyst rates of vitrified oocytes matured for 22, 26, 32, 38 and 44 h did not differ, but all were lower (P < 0.05) than those matured 0 h. In conclusion, our data indicate that survival, nuclear maturation and subsequent development of porcine oocytes may be affected by their stage of maturation at the time of vitrification; a higher percentage of blastocyst formation can be obtained from GV oocytes vitrified before the onset of maturation.  相似文献   

17.
18.
The role of progesterone (P4) and estradiol-17beta (E2) on the efficiency of canine oocyte maturation in vitro is recognized, but little is known about the influence of both steroids on the expression of zona pellucida (ZP) glycoproteins. It has been shown that E2 and P4 used in the IVC significantly influenced canine oocytes meiotic competence, although the effect is specifically related to the combination of hormones used in the experiment. Because both of these steroids may stimulate or inhibit maturation competence of oocytes in a dose-dependent manner, there is a high possibility that they also influence the fertilization ability of canine oocytes. Our study was aimed to analyze whether genes, encoding ZP glycoproteins, are regulated by P4 or E2. Canine cumulus oocyte complexes (COCs) were recovered from anestrous mongrel bitches after ovariohysterectomy and cultured in serum-free tissue culture medium 199. The expression pattern of ZP glycoproteins 2 and 3 (ZP2 and ZP3) mRNAs, using quantitative real-time polymerase chain reaction (RQ-PCR), and of ZP3 and ZP4 proteins, using Western blot analyses, was examined in oocytes after the supplementation of the culture medium with (1) 0.5 μg/mL, 1.0 μg/mL, and 2.0 μg/mL of P4 (experiment 1), or with (2) 2.0 μg/mL E2, and with (3) a combination of E2 (2.0 μg/mL) and P4 (0.5, 1.0, or 2.0 μg/mL, respectively; experiment 2). The analysis revealed an inhibited expression of ZP2 mRNA in oocytes after in vitro maturation (IVM) with different P4 supplementations as compared with oocytes before IVM. The expression of ZP3 mRNA was stimulated (P < 0.01) by the supplementation of 1.0 μg/mL P4. The expression of both ZP3 and ZP4 proteins was also stimulated after the treatment with 1.0 μg/mL P4. On the other hand, the level of ZP2 mRNA was inhibited (P < 0.01) after the supplementation with E2 or with combinations of E2 and P4 as compared with control oocytes. The expression of ZP3 mRNA was significantly higher after the supplementation with E2 and 0.5 μg/mL P4. Similarly, ZP3 and ZP4 proteins were highly expressed (P < 0.01) after such hormone supplementation. The results clearly show that in vitro, P4 regulates the expression of ZP glycoproteins in a dose-dependent manner. We demonstrated that E2 used alone and in combination with P4 upregulates the expression of ZP3 mRNA as well as ZP3 and ZP4 protein in canine oocytes. ZP2 mRNA is downregulated by E2 alone and in combination with E2 and P4. Furthermore, ZP glycoproteins expression is regulated by E2 alone or in combination with P4, and such synergistic or adverse effect is P4 concentration-dependent.  相似文献   

19.
Effects of extracellular potassium (K+) concentration in maturation media on the meiotic and cytoplasmic maturation of porcine oocytes were examined. Oocyte-cumulus cell complexes or cumulus cell denuded oocytes were cultured in Whitten's medium containing 0, 3, 6, 12 or 16 mM potassium. Absence of K+ in the media did not inhibit germinal vesicle breakdown (GVBD) in cumulus intact oocytes, but significantly decreased the frequency of meiotic maturation. In cumulus cell denuded oocytes, both GVBD and meiotic maturation were inhibited in K+-free medium. Millimole concentrations of K+ channel blockers, 4-aminopyridine or tetraethyl ammonium chloride inhibited GVBD and almost completely suppressed progression of meiotic maturation. The effect of varying the concentration of K+ on cytoplasmic maturation of pig oocytes was evaluated by the ability to form a male pronucleus after in vitro fertilisation. The percentage of sperm penetration or monospermic penetration was not different among treatments (P > 0.1). However, male pronuclear formation in oocytes in medium with 6 mM K+ was higher than in media with 12 and 16 mM K+. These results suggest that extracellular K+ is required for GVBD and meiotic maturation, and high concentrations (12 or 16 mM) of K+ in maturation media impair cytoplasmic maturation.  相似文献   

20.
Sperm binding activity has been detected in zona pellucida (ZP) glycoproteins and it is generally accepted that this activity resides in the carbohydrate moieties. In the present study we aim to identify some of the specific carbohydrate molecules involved in the bovine sperm-ZP interaction. We performed sperm binding competition assays, in vitro fecundation (IVF) in combination with different lectins, antibodies and neuraminidase digestion, and chemical and cytochemical analysis of the bovine ZP. Both MAA lectin recognising alpha-2,3-linked sialic acid and neuraminidase from Salmonella typhimurium with catalytic activity for alpha-2,3-linked sialic acid, demonstrated a high inhibitory effect on the sperm-ZP binding and oocyte penetration. These results suggest that bovine sperm-ZP binding is mediated by alpha-2,3-linked sialic acid. Experiments with trisaccharides (sialyllactose, 3'-sialyllactosamine and 6'-sialyllactosamine) and glycoproteins (fetuin and asialofetuin) corroborated this and suggest that at least the sequence Neu5Ac(alpha2-3)Gal(beta1-4)GlcNAc is involved in the sperm-ZP interaction. Moreover, these results indicate the presence of a sperm plasma membrane specific protein for the sialic acid. Chemical analysis revealed that bovine ZP glycoproteins contain mainly Neu5Ac (84.5%) and Neu5GC (15.5%). These two types of sialic acid residues are probably linked to Galbeta1,4GlcNAc and GalNAc by alpha-2,3- and alpha-2,6-linkages, respectively, as demonstrated by lectin cytochemical analysis. The use of a neuraminidase inhibitor resulted in an increased number of spermatozoa bound to the ZP and penetrating the oocyte. From this last result we hypothesize that a neuraminidase from cortical granules would probably participate in the block to polyspermy by removing sialic acid from the ZP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号