共查询到20条相似文献,搜索用时 15 毫秒
1.
《Theriogenology》2012,77(9):1568-1582
Reproductive efficiency is not optimal in high-producing dairy cows. Although many aspects of ovarian follicular growth in cows are similar to those observed in heifers, there are numerous specific differences in follicular development that may be linked with changes in reproductive physiology in high-producing lactating dairy cows. These include: 1) reduced circulating estradiol (E2) concentrations near estrus, 2) ovulation of follicles that are larger than the optimal size, 3) increased double ovulation and twinning, and 4) increased incidence of anovulation with a distinctive pattern of follicle growth in anovular dairy cows. The first three changes become more dramatic as milk production increases, although anovulation has not generally been associated with level of milk production. To overcome reproductive inefficiencies in dairy cows, reproductive management programs have been developed to synchronize ovulation and enable the use of timed AI in lactating dairy cows. Effective regulation of the CL, follicles, and hormonal environment during each part of the protocol is critical for optimizing these programs. This review discusses the distinct aspects of follicular development in lactating dairy cows and the methodologies that have been utilized in the past two decades in order to manage the dominant follicle during synchronization of ovulation and timed AI programs. 相似文献
2.
J.A. Bartolome J.J.J. van Leeuwen M. Thieme O.G. Safilho P. Melendez L.F. Archbald W.W. Thatcher 《Theriogenology》2009,72(6):869-878
Pregnancy per artificial insemination (AI) was evaluated in dairy cows (Bos taurus) subjected to synchronization and resynchronization for timed AI (TAI). Cows (n = 718) received prostaglandin F2α (PGF) on Days –38 and –24 (Days 39 and 53 postpartum), gonadotropin-releasing hormone (GnRH) on Day –10, PGF on Day –3, and GnRH and TAI on Day 0. Between Days –10 and –3, cows received a progesterone intravaginal insert (CIDR group) or no CIDR (Control group). Between Days 14 and 23, cows received a CIDR (Resynch CIDR group) or no CIDR (Resynch control group), GnRH on Day 23, with pregnancy diagnosis on Day 30. Cows in estrus (between Days 0 and 30) were re-inseminated at detected estrus (RIDE). Nonpregnant cows received PGF on Day 30 and GnRH and TAI on Day 33. Plasma progesterone was determined to be low or high on Days –24 and –10. Pregnancy rates were evaluated 30 and 55 d after AI. The CIDR insert included in the Presynch-Ovsynch protocol did not increase overall pregnancy per AI for first service (36.1% and 33.6% for CIDR; 34.1% and 28.8% for Control) but did decrease pregnancy loss (7.0% for CIDR and 15.6% for Control). The CIDR insert increased pregnancy per AI in cows with high progesterone at the time the CIDR insert was applied. Administration of a CIDR insert between Days 14 and 23 of the estrous cycle after first service did not increase overall pregnancy per AI to second service (24.7% and 22.7% for Resynch CIDR; 28.6% and 25.3% for Resynch control). For second service, RIDE cows had lower pregnancy rates in the Resynch CIDR group than in the Resynch control group. Cows with a CL (corpus luteum) at Day 30 had higher pregnancy rates in the Resynch CIDR group than those in the Resynch control group. 相似文献
3.
Effect of presynchronization strategy before Ovsynch on fertility at first service in lactating dairy cows 总被引:1,自引:0,他引:1
A. Gumen A. KeskinG. Yilmazbas-Mecitoglu E. KarakayaA. Alkan H. OkutM.C. Wiltbank 《Theriogenology》2012,78(8):1830-1838
The aim of this study was to evaluate the effect of presynchronization with or without the detection of estrus on first service pregnancy per artificial insemination (P/AI) and on Ovsynch outcome in lactating dairy cows. A total of 511 cows were divided randomly but unevenly into 3 treatment groups at 44 to 50 days in milk (DIM). Ovsynch was started at the same time (69 to 75 DIM) in all three groups. Cows in the Ovsynch group (CON, N = 126) received no presynchronization before Ovsynch, and all cows were bred by timed AI (TAI). Cows in the presynchronization with estrus detection (PED) and the presynchronization with only TAI (PTAI) groups received two doses of prostaglandin F2α (PGF) 14 days apart, starting at 44 to 50 DIM. Ovsynch was initiated 11 days after the second PGF treatment. Cows in the PED group (N = 267) received AI if estrus was detected after either PGF injection. Cows that were not determined to be in estrus after PGF injection received Ovsynch and TAI. Cows in the PTAI group (N = 118) were not inseminated to estrus, with all cows receiving TAI after Ovsynch. The ovulatory response to the first GnRH injection administered as part of Ovsynch differed (P = 0.002) among treatment groups (83.1% in PTAI, 72.6% in PED, and 62.7% in CON). However, the ovulatory response to the second injection of GnRH during Ovsynch did not differ among treatment groups. Of the 267 PED cows, a total of 132 (49.4%) exhibited estrus and were inseminated. The P/AI at the 31-day pregnancy diagnosis was similar between the cows in the PED group with AI after estrus detection (37.9%; 50/132) and those bred with TAI (34.1%; 46/135). The P/AI in the CON group (46.8%; 59/126) was greater (P < 0.05) than that in the PED group (36.0%; 96/267). In addition, the P/AI in the CON group was greater (P = 0.04) than that in the PED cows receiving TAI (34.1%; 46/135) but less than that in the PED cows bred to estrus (37.9%; 50/132) (P = 0.16). At the 31-day pregnancy diagnosis, the cows in the PTAI group had greater P/AI (55.9%; 66/118) than both those in the PED group (P < 0.01; either estrus or TAI) and those in the CON group (P = 0.08). Thus, presynchronization with PGF (PTAI) increased the ovulatory response to Ovsynch and improved P/AI in dairy cows. Interestingly, the breeding of cows to estrus during presynchronization reduced fertility to the TAI and overall fertility, including cows bred to estrus and TAI. These results indicate that maximal fertility is obtained when all cows receive TAI after the presynchronization protocol. 相似文献
4.
Lima FS Bisinotto RS Ribeiro ES Ayres H Greco LF Galvão KN Risco CA Thatcher WW Santos JE 《Theriogenology》2012,77(9):1918-1927
The objectives were to determine the effects of one or three timed artificial insemination (AI) before natural service (NS) in lactating dairy cows not observed for detection of estrus on hazard of pregnancy, days nonpregnant, and 21-days cycle pregnancy rate. A total of 1050 lactating Holstein cows were subjected to a double Ovsynch program for their first postpartum AI. On the day of first AI (78 ± 3 days in milk), cows were blocked by parity and randomly assigned to receive either one timed AI (1TAI, n = 533) or three timed AI (3TAI, n = 517) before being exposed to NS. Cows assigned to 1TAI were exposed to bulls 7 days after the first AI. Nonpregnant cows in 3TAI were resynchronized with the Ovsynch protocol supplemented with progesterone twice, with intervals between AI of 42 days, before being exposed to NS 7 days after the third AI. Cows were evaluated for pregnancy 32 days after each timed AI, or every 28 days after being exposed to NS. Pregnant cows were re-examined for pregnancy 28 days later (i.e., 60-day gestation). Exposure to heat stress was categorized based on the first AI being performed during the hot or cool season, according to the temperature-humidity index. Body condition was scored at first AI. All cows were allowed a period of 231 days of breeding, after which nonpregnant cows were censored. Pregnancy to the first AI did not differ between 1TAI and 3TAI on Day 60 after insemination (30.8 vs. 33.5%). Cows receiving 3TAI had a 15% greater hazard of pregnancy and a 17% greater 21-days cycle pregnancy rate than 1TAI and these benefits originated from the first 84 days of breeding. These changes in rate of pregnancy reduced the median and mean days nonpregnant by 9 and 10 d, respectively. Despite the long inter-AI interval in cows subjected to 3TAI, reproductive performance was improved compared with a single timed AI and subsequent exposure to NS. In dairy herds that use a combination of AI and NS, allowing cows additional opportunities to AI before onset of breeding with bulls is expected to improve reproductive performance. 相似文献
5.
Ovulatory response to the first GnRH of Ovsynch is a very important factor for determining the outcome of a successful synchronization. The aim of the present study was to develop a protocol to increase the percentage of cows that ovulated in response to the first administration of Ovsynch. This study was designed to compare ovulation rates in response to GnRH or hCG at the beginning of Ovsynch and to evaluate the effects of this manipulation on pregnancy. Cows (n = 371) with corpus luteum (CL) and at least one follicle greater than 10 mm diameter size on either ovary were included in the study. Cows were divided into two groups. The Ovsynch protocol began with GnRH (10 μg) in the GPG group (n = 161; GnRH-7d-PGF2α-56h-GnRH-18h-AI), whereas in the HPG group, the first GnRH of the Ovsynch was replaced with 1500 IU hCG (n = 210; hCG-7d-PGF2α-56h-GnRH-18h-AI). Ovarian ultrasonography was performed at the times of GnRH or hCG and of PGF2α administration, at the time of artificial insemination (AI) and seven days after AI, to determine ovulation. Maximal follicle size at the beginning of the Ovsynch did not affect on response to the first GnRH/hCG treatment. Conception rate (31 d) was 0.6 times more likely to be higher (P < 0.001) in cows that responded to the first hormonal administration of Ovsynch than in those that did not respond (95% CI = 0.29-0.71). Conception rate was found to be different between the HPG (37.6%, 79/210) and the GPG groups (48.4%, 78/161). Thus, beginning of the Ovsynch protocol with hCG did not increase ovulation and conception rate in lactating dairy cows, suggesting that hCG is not a suitable replacement of the first GnRH of Ovsynch. However, our results do show that increasing the ovulation rate in response to the first hormonal administration of Ovsynch can have a significant effect on conception rate. 相似文献
6.
Efficacy of decreasing the dose of GnRH used in a protocol for synchronization of ovulation and timed AI in lactating dairy cows 总被引:1,自引:0,他引:1
To determine the efficacy of reducing the dosage of GnRH used in a protocol for synchronization of ovulation and timed AI, primiparous and multiparous lactating Holstein cows (n=237) were randomly assigned to 1 of 2 treatment groups. Ovulation was synchronized for cows in the first group using intramuscular injections of GnRH and PGF2 as follows: Day 0, 100 μg GnRH; Day 7, 25 mg PGF2; Day 9, 100 μg GnRH. Ovulation was synchronized in the second group of cows using the same injection schedule and dosage of PGF2 but only 50 μg GnRH per injection. All cows underwent a timed AI at 12 to 18 h after the second GnRH injection. The proportion of cows ovulating in response to the second GnRH injection (synchronization rate) and pregnancy status at 28 and 56 d post AI were determined using transrectal ultrasonography. The synchronization rate, double-ovulation rate, conception rate at 28 and 56 d post AI, and pregnancy loss from 28 to 56 d post AI did not differ statistically between treatment groups. For all cows, synchronization rate was 84.0%, and double-ovulation rate was 14.1%. Conception rates calculated using all cows receiving synchronization of ovulation were 41.1% at 28 d and 34.4% at 56 d post AI. Conception rates calculated for only synchronized cows were 47.6% at 28 d and 40.1% at 56 d post AI. For all cows, pregnancy loss from 28 to 56 d post AI was 13.5%, with an attrition rate of 0.5% per day. Estimated savings in hormone costs using 50 rather than 100 μg GnRH per injection for synchronizing ovulation were $6.40 per cow and $20.27 per pregnancy. Thus, decreasing the dosage of GnRH used for synchronization of ovulation and timed AI in lactating dairy cows reduces synchronization costs per cow and per pregnancy without compromising the efficacy of the synchronization protocol. 相似文献
7.
We compared the effects of porcine luteinizing hormone (pLH) versus gonadotropin-releasing hormone (GnRH) on ovulatory response and pregnancy rate after timed artificial insemination (TAI) in 605 lactating dairy cows. Cows (mean ± SEM: 2.4 ± 0.08 lactations, 109.0 ± 2.5 d in milk, and 2.8 ± 0.02 body condition score) at three locations were assigned to receive, in a 2 × 2 factorial design, either 100 μg GnRH or 25 mg pLH im on Day 0, 500 μg cloprostenol (PGF) on Day 7, and GnRH or pLH on Day 9, with TAI 14 to 18 h later. Ultrasonographic examinations were performed in a subset of cows on Days 0, 7, 10, and 11 to determine ovulations, presence of corpus luteum, and follicle diameter and in all cows 32 d after TAI for pregnancy determination. In 35 cows, plasma progesterone concentrations were determined 0, 3, 4, 5, 6, 7, and 12 d after ovulation. The proportion of noncyclic cows and cows with ovarian cysts on Day 0 were 12% and 6%, respectively. Ovulatory response to first treatment was 62% versus 44% for pLH and GnRH and 78% versus 50% for noncyclic and cyclic cows (P < 0.01). Location, ovulatory response to first pLH or GnRH, cyclic status, presence of an ovarian cyst, and preovulatory follicle size did not affect pregnancy rate. Plasma progesterone concentrations after TAI did not differ among treatments. Pregnancy rate to TAI was greater (P < 0.01) in the GnRH/PGF/pLH group (42%) than in the other three groups (28%, 30%, and 26% for GnRH/PGF/GnRH, pLH/PGF/GnRH, and pLH/PGF/pLH, respectively). Although only 3% of cows given pLH in lieu of GnRH on Day 9 lost their embryo versus 7% in those subjected to a conventional TAI using two GnRH treatments, the difference was not statistically significant. In summary, pLH treatment on Day 0 increased ovulatory response but not pregnancy rate. Cows treated with GnRH/PGF/pLH had the highest pregnancy rate to TAI, but progesterone concentrations after TAI were not increased. In addition, preovulatory follicle diameter did not affect pregnancy rate. 相似文献
8.
Effects of equine chorionic gonadotropin and type of ovulatory stimulus in a timed-AI protocol on reproductive responses in dairy cows 总被引:1,自引:0,他引:1
The objectives were to evaluate the effects of equine chorionic gonadotropin (eCG) supplementation (with or without eCG) and type of ovulatory stimulus (GnRH or ECP) on ovarian follicular dynamics, luteal function, and pregnancies per AI (P/AI) in Holstein cows receiving timed artificial insemination (TAI). On Day 0, 742 cows in a total of 782 breedings, received 2 mg of estradiol benzoate (EB) and one intravaginal progesterone (P4) insert (CIDR). On Day 8, the CIDR was removed, and all cows were given PGF2α and assigned to one of four treatments in a 2 × 2 factorial arrangement: (1) CG: GnRH 48 h later; (2) CE: ECP; (3) EG: eCG + GnRH 48 h later; (4) EE: eCG + ECP. There were significant interactions for eCG × ovulatory stimulus and eCG × BCS. Cows in the CG group were less likely (28.9% vs. 33.8%; P < 0.05) to become pregnant compared with those in the EG group (odds ratio [OR] = 0.28). There were no differences in P/AI between CE and EE cows (30.9% vs. 29.1%; OR = 0.85; P = 0.56), respectively. Thinner cows not receiving eCG had lower P/AI than thinner cows receiving eCG (15.2% vs. 38.0%; OR = 0.20; P < 0.01). Treatment with eCG tended to increase serum progestesterone concentrations during the diestrus following synchronized ovulation (P < 0.10). However, the treatment used to induce ovulation did not affect CL volume or serum progesterone concentrations. In conclusion, both ECP and GnRH yielded comparable P/AI. However, eCG treatment at CIDR removal increased pregnancy rate in cows induced to ovulate with GnRH and in cows with lower BCS. 相似文献
9.
Souza AH Silva EP Cunha AP Gümen A Ayres H Brusveen DJ Guenther JN Wiltbank MC 《Theriogenology》2011,75(4):722-733
The objectives were to evaluate changes in endometrial thickness (ET) near the time of a synchronized ovulation and to assess the relationship of ET and fertility in lactating Holstein cows, with or without estrogen supplementation near timed ovulation. In Experiment 1, eight cows were examined with transrectal ultrasonography, once daily for 5 d, starting concurrent with PGF2α (PGF) treatment during an Ovsynch protocol (GnRH - 7d - PGF - 72h - GnRH). The ET increased rapidly after PGF (from ∼7 to ∼9.5 mm), remained > 9 mm for the next 2 d, then decreased to ∼8 and 7.4 mm, 1 and 2 d, respectively, after the second GnRH. In Experiment 2,642 cows (total of 758 breedings) were subjected to an Ovsynch protocol (GnRH - 7d - PGF - 56h - GnRH - 16h - timed AI); cows received either no further treatment (Ovsynch) or 1 mg of estradiol-17β im 8 h before the second GnRH (Ovsynch + E2). For both uterine horns, ET was measured (∼2 cm from the internal uterine body bifurcation) before E2 treatment (48 h after PGF). In cows with ET ≤ 8 mm vs > 8 mm, rates of ovulation were 86.0% (n = 136) vs 98.1% (n = 472; P < 0.01), respectively, and percentage pregnant per AI (P/AI) were 26.7% (n = 146) vs 42.7% (n = 524; P < 0.01). Treatment with E2 increased P/AI in cows with lower ET (Ovsynch + E2 = 37.0% vs Ovsynch = 23.3%; P = 0.07), but did not significantly improve P/AI in cows with ET > 8 mm (Ovsynch + E2 = 43.4% vs Ovsynch = 42.1%). In conclusion, a single ultrasonographic evaluation of ET in Holstein cows 48 h after PGF treatment in an Ovsynch program was a good predictor of ovulation failure and pregnancy success. Perhaps poor fertility in cows with reduced ET was low peripheral E2 concentrations near AI, poor P4 priming, or luteolysis failure during timed AI procedures. 相似文献
10.
Influence of lameness on follicular growth, ovulation, reproductive hormone concentrations and estrus behavior in dairy cows 总被引:1,自引:0,他引:1
Morris MJ Kaneko K Walker SL Jones DN Routly JE Smith RF Dobson H 《Theriogenology》2011,76(4):658-668
The objective of this study was to examine the effect of a chronic stressor, lameness, on reproductive parameters. Seventy cows 30-80 days post-partum were scored for lameness and follicular phases synchronized with GnRH followed seven days later by prostaglandin (PG). Fifteen Lame animals did not respond to GnRH ovarian stimulation. Milk progesterone for 5 days prior to PG was lower in the remaining Lame cows than Healthy herdmates. Fewer Lame cows ovulated (26/37 versus 17/18; P = 0.04) and the interval from PG to ovulation was shorter in Lame cows. In Subset 1 (20 animals), the LH pulse frequency was similar in ovulating animals (Lame and Healthy) but lower in Lame non-ovulators. An LH surge always preceded ovulation but lameness did not affect the interval from PG to LH surge onset or LH surge concentrations. Before the LH surge, estradiol was lower in non-ovulating cows compared to those that ovulated and estradiol concentrations were positively correlated with LH pulse frequency. In Subset 2 (45 cows), Lame ovulating cows had a less intense estrus than Healthy cows, although Lame cows began estrus and stood-to-be-mounted earlier than Healthy cows. In conclusion, we have identified several parameters to explain poor fertility in some chronically stressed animals. From 30 to 80 days post-partum, there was a graded effect that ranged from 29% Lame cows with absence of ovarian activity, whereas another 21% Lame cows failed to express estrus or ovulate a low estrogenic follicle; in 50% cows, many reproductive parameters were unaffected by lameness. 相似文献
11.
Influence of somatic cell count, body condition and lameness on follicular growth and ovulation in dairy cows 总被引:1,自引:0,他引:1
The objective of this study was to investigate the effect of somatic cell count (SCC), body condition score (BCS) or lameness score on ovarian follicular growth and ovulation in dairy cows. Seventy four animals 30-80 days post-partum were monitored for all three conditions before synchronization of ovarian follicular phases by administration of gonadotrophin releasing hormone (GnRH) followed seven days later with prostaglandin F2alpha (PG). Ultrasonography of both ovaries twice daily throughout the follicular phase revealed that fewer animals with combined high SCC and lameness (4/9) ovulated compared to healthy animals (19/21; P = 0.006) or animals with only high SCC (11/11; P = 0.004) or only lameness (21/27; P = 0.06). Overall, regardless of the presence of other concurrent conditions, fewer lame cows ovulated than Non Lame animals (30/42 and 30/32; P = 0.015). Mean follicular growth and maximum follicular diameter were unaffected by any of the three conditions. However, dominant follicle growth and maximum diameter were greater in the 60 animals that ovulated compared to the 14 that did not; 1.83 ± 0.16 versus 0.96 ± 0.26 mm/day (P = 0.014) and 19.4 ± 0.4 versus 16.4 ± 1.2 mm (P = 0.003), respectively. In conclusion, lameness reduced the proportion of cows that ovulated and the synergistic effect of high SCC and lameness reduced that proportion further. However, follicular growth and maximum follicular diameter were unaffected by high SCC, low BCS or lameness. 相似文献
12.
Timed-AI after synchronization of ovulation has become one of the most used reproductive technologies developed during the past 40 years. Various adaptations of this technology are now extensively used worldwide, in the beef and dairy cattle industry. Our well-cited report, published in Theriogenology in 1995, presented a method termed Ovsynch, that used GnRH and PGF2α to perform synchronization of ovulation and timed AI in lactating dairy cows. This report introduced Ovsynch, more as a concept of induced ovulation, and demonstrated the ovarian dynamics during the protocol. Validation and improvements on this method were subsequently performed in numerous university studies and on commercial dairies, worldwide. This review will provide a brief historical background, some personal recollections, and certain modifications that have been made in synchronization of ovulation protocols. Each section emphasizes the physiology that underlies the most widely-used synchronization of ovulation protocols and key modifications and some practical application of these protocols on commercial operations. Finally, the effect of timed AI in the US dairy industry and in the Brazilian beef cattle industry are compared. Although numerous studies have been done using these protocols, there is still substantial need for research to improve the synchronization, efficacy, simplicity, and practical application of these protocols. 相似文献
13.
Two modifications of the Ovsynch protocol, GnRH + TAI after PGF2α 48 h (CO-48) or 72 h (CO-72), were compared with the original protocol (OVS: GnRH–7 d–PGF2α–2 d–GnRH–16 h–TAI) to study their effects on reproductive performance in 785 lactating dairy cows (Holstein Friesian, Bos Taurus). Results showed that more cows (P < 0.001) returned to estrus within a week after TAI with CO-48 treatment compared with that in OVS and CO-72 treatments. Pregnancy rates were greater (P < 0.001) for the CO-72 cows than those for both OVS and CO-48 treatments and for primiparous cows compared with multiparous cows. Moreover, pregnancy rates were lower in summer compared with those in winter. Pregnancy losses for cows in both CO-48 and CO-72 were greater (P < 0.05) than that for cows in OVS treatment. Pregnancy losses were greater in summer (P < 0.001) than in winter and for multiparous cows (P < 0.001) than for primiparous cows. In conclusion, primiparous and winter-bred cows had greater pregnancy rates and fewer pregnancy losses than those of multiparous cows and summer-bred cows, respectively. Because of the presence of significant treatment, parity, and season interactions, TAI with ovulation synchronization protocols should be tailored according to the season and parity. CO-72 is recommended for primiparous cows but not for multiparous cows, and CO-48 is not recommended for synchronization. Furthermore, cows that exhibited estrus at any time were inseminated to improve pregnancy rates in ovulation synchronization protocols. 相似文献
14.
The main aims of the present study were to compare the pregnancy rate (PR), regular returns-to-estrus, and calving interval of a CO-Synch + controlled internal drug release (CIDR) device, commonly used to synchronize ovulations in beef cows, with the classical Ovsynch protocol in high-producing dairy cows. Holstein-Friesian cows (n = 128) from six commercial dairy herds, ≥40 days postpartum and not previously inseminated, were randomly assigned to one of two treatments. Cows submitted to Ovsynch protocol (group OS as control group; n = 66) received 10 μg of a GnRH analogue 7 days before and 48 hours after 25 mg PGF2α, followed by artificial insemination (AI) 16 hours after the second GnRH administration. Cows submitted to CO-Synch + CIDR (1.38 g of progesterone) inserted for 7 days beginning at the first GnRH administration (group CoS + CD; n = 62) had the second administration of GnRH concurrent with AI, 64 hours after CIDR removal/PGF2α administration. Nonpregnant cows with return-to-estrus between 18 and 24 days after first AI were reinseminated (second AI). Logistic regressions were used to analyze PR and returns-to-estrus. No effect of group or herd was observed in PR at first timed AI. However, the sum of cows pregnant at first AI and nonpregnant cows with regular returns-to-estrus and the total PR (first + second AI) were influenced by group treatment. Overall, cows of group CoS + CD (total PR = 56.5%) were 2.1 times more likely to became pregnant after AI and until first regular returns-to-estrus than cows of group OS. The calving interval was lower in group CoS + CD (425.9 ± 78.8 days; ±SD) than in group OS (475.3 ± 83.7 days). The CO-Synch + CIDR protocol was reliable to use in dairy herds and provided reproductive advantages when compared with Ovsynch protocol. 相似文献
15.
Effect of intrauterine administration of gonadotropin releasing hormone on serum LH concentrations in lactating dairy cows 总被引:1,自引:0,他引:1
The objectives were to compare: (1) preovulatory serum LH concentrations, and (2) synchronization of ovulation, after im or iu administration of the second GnRH treatment of Ovsynch in lactating dairy cows. Lactating cows (N = 23) were presynchronized with two injections of PGF2α given 14 days apart (starting at 34 ± 3 days in milk), followed by Ovsynch (GnRH-7 d-PGF2α-56 h-GnRH) 12 days later. At the time of the second GnRH of Ovsynch (Hour 0), cows were blocked by parity and randomly assigned to 1 of 3 groups: (1) control group (CON; N = 7) were given 2 mL sterile water im; (2) intramuscular group (IM; N = 8) received 100 μg of GnRH im; and (3) intrauterine group (IU; N = 8) had 100 μg GnRH infused in the uterus (2 mL). Blood samples for serum LH concentrations were collected at Hours 0, 0.5, 1, 1.5, 2, 3, and 4. Furthermore, ultrasonography was performed twice daily (12-h intervals) from Hours 0 to 60 to confirm ovulation. The LH concentrations were greater (P < 0.05) in the IM than IU and CON groups at Hours 0, 0.5, 1, 1.5, 2, 3, and 4. Although LH concentrations were numerically higher in the IU group, LH concentrations within the IU and CON groups did not change over time. More cows ovulated in the IM (8/8) and IU (7/8) groups within 60 h after the second GnRH administration compared with the CON (2/7) group. In summary, serum LH concentrations were lower in the IU versus IM group, but the proportion of cows that ovulated within 60 h was similar between these two groups. Therefore, iu administration of GnRH may be an alternative route of delivery to synchronize ovulation in beef and dairy cattle. 相似文献
16.
P. Santolaria F. Lpez-Gatius J. Yniz I. García-Ispierto C. Nogareda G. Bech-Sbat B. Serrano S. Almeria 《Theriogenology》2009,72(6):798-802
This study was designed to assess the reproductive performance of Neospora caninum–infected dairy cows (Bos taurus) after abortion. The population examined was composed of 92 aborting cows subsequently subjected to at least one artificial insemination (AI) attempt. Of these animals, 68 were N. caninum seropositive and 24 were seronegative. Only animals producing at least 25 kg milk at the estrus after abortion were inseminated. Normal uterine involution was verified at first AI after abortion in cows showing estrous signs within 30 d of abortion. Of the 92 aborting cows, 73 (79.3%) became pregnant after abortion: 57 (83.8%) and 16 (66.7%) of the N. caninum seropositive and seronegative cows, respectively. The factors days of gestation and lactation number at abortion failed to differ between the two Neospora serostatus groups, based on Student's t-test or Kruskal-Wallis tests, respectively. The interval from abortion to first AI, the number of AIs necessary for an animal to become pregnant, and the interval from abortion to next pregnancy in cows becoming pregnant were lower for the N. caninum–seropositive than for the N. caninum–seronegative cows (P < 0.0001). Logistic regression analysis indicated no significant effects of herd, lactation number, days of gestation at abortion, and the interval from abortion to AI on the likelihood of pregnancy at first AI after abortion. Based on the odds ratio, Neospora-seropositive cows were 6.22 times more likely to become pregnant at first AI after abortion compared with their seronegative partners. Fifty-three of the Neospora-seropositive cows (78%) were inseminated within 30 d after abortion and 26 (49%) became pregnant, whereas only one seronegative cow (4.2%) was ready for insemination within this 30-d period and remained open after first AI. These results indicate that Neospora-infected cows suffering abortion can be inseminated with a likelihood of high fertility within the first month of abortion. We recommend checking that uterine involution is normal early after abortion in N. caninum–seropositive cows. 相似文献
17.
The primary objective was to evaluate fertility of anovular dairy cows given GnRH 4 d after first postpartum timed AI (TAI). Secondary objectives were to determine ovulatory response to treatment, effect of treatment on serum progesterone (P(4)) concentrations, and the proportion with a short luteal phase. Lactating Holstein cows (n=1047) were submitted for first postpartum TAI using a Presynch+Ovsynch protocol. Anovular cows were identified from an initial 1047 lactating Holstein cows using transrectal ultrasonography, based on the absence of a CL at the first GnRH injection of a Presynch+Ovsynch protocol, and anovular cows were randomly assigned to receive either no further treatment (Control, n=85), or 100 microg of GnRH 4 d after TAI (GnRH treated; n=71). For GnRH treated cows, 51% responded by ovulating a follicle in response to GnRH treatment 4 d after TAI; however, pregnancies per AI (P/AI) did not differ between GnRH treated cows that ovulated (36%) compared to GnRH treated cows that did not ovulate (21%). There was a quadratic effect of P(4) at the PGF(2 alpha) injection of Ovsynch on P/AI, and cows with P(4)>or=1 ng/mL at the PGF(2 alpha) injection of Ovsynch had greater P/AI (41%) than cows with P(4)<1 ng/mL (12%); however, no treatment difference was detected. Overall, P/AI did not differ between control (30.1%) and GnRH treated (29.6%) treatments for synchronized cows. Although treatment of anovular cows with GnRH 4 d after TAI failed to improve fertility, variation among cows in serum P(4) at the PGF(2 alpha) injection of Ovsynch dramatically affected fertility of anovular dairy cows. 相似文献
18.
Ricardo Sanchez Yasmin Schuermann Laurianne Gagnon-Duval Hernan Baldassarre Bruce D. Murphy Nicolas Gevry Luis B. Agellon Vilceu Bordignon Raj Duggavathi 《Theriogenology》2014
It is well documented that incidence of fertility problems is high in lactating cows but not in heifers of the same genetic merit. Understanding the metabolic and molecular differences between fertile heifers and relatively infertile lactating cows will help us understand the pathogenesis of infertility in dairy cows. Follicular waves in lactating cows (30–50 days in milk; n = 12) and heifers (n = 10) were synchronized by ultrasound-guided follicle ablation. Follicular fluid and granulosa cells of the dominant follicle were collected by ultrasound-guided aspiration along with blood sampling on Day 6 after synchronization. Dominant and subordinate follicles were larger in lactating cows than in heifers. Metabolic stress in lactating cows was evidenced by lower glucose and higher ß-hydroxy butyric acid compared with heifers. Insulin-like growth factor 1 signaling was reduced in the dominant follicle in lactating cows through reduced insulin-like growth factor 1 concentrations in plasma and follicular fluid of the dominant follicle, and reduced expression of pregnancy-associated plasma protein A (PAPPA) in their granulosa cells. We also found increased levels of total bile acids in the follicular fluid of the dominant follicle of lactating cows compared with heifers. Granulosa cells of the dominant follicle had higher expression of SLC10A2 and GPBAR1 (bile acid transporter and receptor, respectively) in lactating cows. These novel data are indicative of increased bile acid signaling within the dominant follicles of lactating cows compared with heifers. Overall, we demonstrate in the present study the metabolic, endocrine, and molecular differences within the microenvironment of the dominant follicles in lactating cows and heifers. These differences in follicular microenvironment may contribute toward abnormal ovarian function in lactating dairy cows. 相似文献
19.
Progesterone (P4) metabolism in dairy cattle can be manipulated by alterations in dry matter intake and diet composition. Our objectives were to determine the effects of grazing allowance and fat supplementation on P4 metabolism in lactating dairy cows. Forty mid- to late-lactation Holstein-Friesian dairy cows were used in a completely randomized block design, with a 2 × 2 factorial arrangement of treatments. Cows were assigned to receive 1 of 2 pasture allowances (ad libitum allowance [AL], 9.5 kg dry matter per day, or restricted allowance [R] 7 kg dry matter per day) and 1 of 2 fat supplementation treatments (750 g per day saturated fat [F] or no fat supplement [NF]). All cows received an additional 4 kg per day of concentrate. Grass dry matter intake (GDMI) was measured 5 wk after the initiation of dietary treatment. Cows were treated with prostaglandin F2α (PGF2α) to eliminate the endogenous source of P4, and two intravaginal progesterone-releasing devices (CIDR) were inserted into each cow for a period of 8 days. Regular blood samples were taken before and after the removal of the intravaginal progesterone-releasing devices, and analyzed for P4 concentrations. The half-life (t½) and metabolic clearance rate (MCR) of P4 was calculated for each cow. There was no effect of GDMI or fat supplementation on the t½ or MCR of P4. There was a tendency for an interaction between GDMI and fat supplementation on the t½ of P4; cows on the restricted-F diet tended to have a longer P4 t½ than cows on the ad libitum-F diet. It was concluded that greater alterations in GDMI than achieved in the current study are required to change P4 metabolism. A combination of fat supplementation and restricted feeding slows P4 clearance, which may have beneficial implications for fertility. 相似文献
20.
López-Gatius F 《Theriogenology》2012,77(6):1029-1041
After 80 years of the commercial application of artificial insemination (AI) in the cow, the method still has numerous benefits over natural insemination including worldwide gene improvement. The efficiency of insemination depends, among many other factors, on the delivery of an appropriate number of normal spermatozoa to the appropriate reproductive tract site at the appropriate time of estrus. The metabolic clearance of steroid hormones and pregnancy associated glycoproteins and the negative effects of different types of stress related to high milk production makes the high-producing dairy cow a good animal model for addressing factors affecting fertility. Nevertheless, extensive studies have shown a positive link between high milk production in an individual cow and high fertility. When a cow becomes pregnant, the effect of pregnancy loss on its reproductive cycle is also a topic of interest. This paper reviews the factors of a noninfectious nature that affect the fertility of lactating dairy cows following AI. Special attention is paid to factors related to the cow and its environment and to estrus confirmation at insemination. Pregnancy maintenance during the late embryonic/early fetal period is discussed as a critical step. Finally, the use of Doppler ultrasonography is described as an available research tool for improving our current understanding of the health of the genital structures and conceptus. 相似文献