首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 514 毫秒
1.
Background: Much experimental evidence suggests that lipid oxidation is important in atherogenesis and in epidemiological studies dietary antioxidants appear protective against cardiovascular events. However, most large clinical trials failed to demonstrate benefit of oral antioxidant vitamin supplementation in high-risk subjects. This paradox questions whether ingestion of antioxidant vitamins significantly affects lipid oxidation within established atherosclerotic lesions. Methods and results: This placebo-controlled, double blind study of 104 carotid endarterectomy patients determined the effects of short-term α-tocopherol supplementation (500 IU/day) on lipid oxidation in plasma and advanced atherosclerotic lesions. In the 53 patients who received α-tocopherol there was a significant increase in plasma α-tocopherol concentrations (from 32.66±13.11 at baseline to 38.31±13.87 (mean±SD) μmol/l, p<0.01), a 40% increase (compared with placebo patients) in circulating LDL-associated α-tocopherol (p<0.0001), and their LDL was less susceptible to ex vivo oxidation than that of the placebo group (lag phase 115.3±28.2 and 104.4±15.7 min respectively, p<0.02). Although the mean cholesterol-standardised α-tocopherol concentration within lesions did not increase, α-tocopherol concentrations in lesions correlated significantly with those in plasma, suggesting that plasma α-tocopherol levels can influence lesion levels. There was a significant inverse correlation in lesions between cholesterol-standardised levels of α-tocopherol and 7β-hydroxycholesterol, a free radical oxidation product of cholesterol. Conclusions: These results suggest that within plasma and lesions α-tocopherol can act as an antioxidant. They may also explain why studies using <500 IU α-tocopherol/day failed to demonstrate benefit of antioxidant therapy. Better understanding of the pharmacodynamics of oral antioxidants is required to guide future clinical trials.  相似文献   

2.
The aim of the present study was to determine the influence of chicken semen cryopreservation on sperm parameters, lipid peroxidation and antioxidant enzymes activities. Pooled semen from 10 Black Minorca roosters was used in the study. Semen samples were subjected to cryopreservation using the “pellet” method and dimethylacetamide (DMA) as a cryoprotectant. In the fresh and the frozen-thawed semen sperm membrane integrity (SYBR-14/propidium iodide (PI)), acrosomal damage (PNA-Alexa Fluor®488) and mitochondrial activity (Rhodamine 123) were assessed using flow cytometry. Malondialdehyde (MDA) concentration, catalase (CAT), glutathione peroxidase (GPx) and superoxide dismutase (SOD) activities were determined in sperm cells and seminal plasma by spectrophotometry. All sperm characteristics evaluated using flow cytometry were affected by cryopreservation. After freezing-thawing, there was significant (P < 0.01) reduction in sperm membrane integrity, sperm acrosome integrity and mitochondrial activity. Following cryopreservation, MDA concentration significantly increased in chicken seminal plasma and spermatozoa (P < 0.01, P < 0.05). The CAT activity in seminal plasma significantly decreased (P < 0.05), while intracellular activity of this enzyme did not significantly change in frozen-thawed semen. In seminal plasma of frozen-thawed semen the significant increase (P < 0.01) in GPx activity was detected. Whereas GPx activity in spermatozoa remained statistically unchanged after thawing. The SOD activity significantly increased (P < 0.01) in cryopreserved seminal plasma with simultaneous decrease (P < 0.01) of its activity in cells. In conclusion, this is probably the first report describing the level of antioxidant enzymes in frozen-thawed avian semen. The present study showed that the activity of CAT, GPx and SOD in chicken semen was affected by cryopreservation, what increased the intensity of lipid peroxidation (LPO). Catalase appeared to play an important role in the sperm antioxidant defense strategy at cryopreservation since, opposite to SOD and GPx, its content was clearly reduced by the cryopreservation process. Change in the antioxidant defense status of the chicken spermatozoa and surrounding seminal plasma might affect the semen quality and sperm fertilizing ability.  相似文献   

3.
Boar semen is extremely vulnerable to cold shock and sensitive to peroxidative damage due to high content of unsaturated fatty acids in the phospholipids of the plasma membrane and the relatively low antioxidant capacity of seminal plasma. The present study evaluated the influence of α-tocopherol supplementation at various concentrations in the boar semen extender during cryopreservation on post-thawed sperm motility characteristics (total sperm motility, MOT; local motility, LCM; curvilinear velocity, VCL; straight linear velocity, VSL; and average path velocity, VAP), sperm qualities (viability, acrosomal integrity and apoptosis), expression of stress protein (HSP70), and the expression of pro-apoptotic (Bax and Bak) and anti-apoptotic (Bcl-2l and Bcl-xl) genes. Semen collected from 10 Duroc boars was cryopreserved in lactose-egg yolk buffer supplemented with various concentrations of α-tocopherol (0, 100, 200, 400, 600 and 800 μM) using the straw-freezing procedure and stored at −196 °C for a minimum period of one month. In frozen-thawed groups, sperm motility was significantly (P < 0.05) lower than that of fresh sperm. In fresh sperm, HSP70 immunoreactivity expression was observed in the equatorial region, but in frozen-thawed groups, expressions were mostly observed in the sperm head. Higher apoptosis rates were observed in 600 and 800 μM α-tocopherol supplemented frozen-thawed groups. In α-tocopherol supplemented frozen-thawed groups immediately after thawing, the expression was similar to that of fresh group. But after incubation at 37 °C for 3 h, the expression in 200 and 800 μM α-tocopherol supplemented groups was higher than that of others. Expression of pro-apoptotic genes was significantly higher and anti-apoptotic genes was significantly (P < 0.01) lower in α-tocopherol supplemented frozen-thawed groups compared to fresh sperm group. In conclusion, α-tocopherol, supplemented at 200 μM concentration in boar semen extender during cryopreservation had a positive effect on post-thawed sperm survivability.  相似文献   

4.
Effective sperm cryopreservation protocols are limited to a small number of marsupial species. In this study, postmortem gamete rescue (PMGR) epididymal sperm samples from Tasmanian devils (N = 34) euthanized due to the fatal Devil Facial Tumor Disease were used to develop long-term sperm storage techniques for the species. Cryoprotectant toxicity associated with equilibration of sperm samples in a TEST yolk diluent (TEST; 189 mM N-Tris(hydroxymethyl)methyl-2-aminoethanesulfonic acid, 85 mM Trizma base [Tris], 11 mM glucose, 20% vol/vol egg yolk; pH 7.1, and 315.0 ± 5.0 mOsm/kg) with a final concentration of 0.06 M trehalose, or 4%, 10%, and 18% vol/vol of either glycerol or dimethyl sulfoxide (DMSO), was examined over 12 h at 15 °C. Trehalose supplementation resulted in an immediate decline (P < 0.05) of total motility. After 12 h, total motility was reduced (P < 0.05) in treatments containing 18% glycerol, and 10% and 18% dimethyl sulfoxide. The effects of final glycerol concentration (4% and 10%), glycerol equilibration duration (10 min 1 h, or 3 h) prefreeze, freezing rate and the addition of 0.10 M lactose or a combination of 0.10 M lactose and 0.11 M raffinose were assessed during three experiments on the cryopreservation of postmortem gamete rescue samples in TEST. In all experiments, motility and viability were reduced (P < 0.01 postthaw). Samples cryopreserved in TEST supplemented with lactose or lactose with raffinose using a fast freezing rate (−8 °C/min from 4 to −40 °C, then −65 °C/min until −165 °C) produced the highest (P < 0.05) postthaw motility (18.6 ± 5.5% and 16.9 ± 8.5%, respectively), which represented 35% to 48% retention of prefreeze motility. These results apparently were the best postthaw results of dasyurid sperm reported to date and will help lay the foundations for developing assisted reproductive technologies for marsupial species.  相似文献   

5.
Abstract

Organ transplant recipients develop pronounced cardiovascular disease, and decreased antioxidant capacity in plasma and erythrocytes is associated with the pathogenesis of this disease. These experiments tested the hypothesis that the immunosuppressant cyclosporine A (CsA) alters erythrocyte redox balance and reduces plasma antioxidant capacity. Female Sprague-Dawley rats were randomly assigned to a control or CsA treated group. Treatment animals received 25 mg/kg/day of CsA via intraperitoneal injection for 18 days. Control rats were injected with the same volume of the vehicle. Three hours after the final CsA injection, rats were exsanguinated and plasma analysed for total antioxidant status (TAS), α-tocopherol, malondialdehyde (MDA), and creatinine. Erythrocytes were analysed for superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX) and glucose-6-phosphate dehydrogenase (G6PD) activities, α-tocopherol, and MDA. CsA administration resulted in a significant (P < 0.05) decrease in plasma TAS and significant increases (P < 0.05) in plasma creatinine and MDA. Erythrocyte CAT was significantly (P < 0.05) increased in CsA treated rats compared to controls. There were no significant differences (P > 0.05) in erythrocyte SOD, GPX, G6PD, α-tocopherol or MDA between groups. In summary, CsA alters erythrocyte antioxidant defence and decreases plasma total antioxidant capacity.  相似文献   

6.
Despite the overwhelming application of sperm cryopreservation in aquaculture and broodstock management, its detrimental effects on sperm quality must be taken into account. Imbalance of reactive oxygen species is considered one of the main triggers of cell damage after cryopreservation, because the spermatozoa antioxidant system is decimated during this process, mainly because the natural antioxidants present in seminal plasma diminish when sperm is diluted in extenders. It has been demonstrated that the addition of antioxidants to the extender improves the quality of thawed sperm. Thus, the aim of the present work was to evaluate the status of the antioxidant system in cryopreserved sea bass sperm, and the possibility of enhancing this system to reduce oxidation of the membrane compounds by extender supplementation with vitamins. To do this, sperm from European sea bass (Dicentrarchus labrax) was cryopreserved using an extender control (NAM), supplemented with 0.1 mm α-tocopherol or 0.1 mm ascorbic acid. Sperm motility (computer assisted sperm analysis (CASA) parameters), viability (SYBR Green/propidium iodide (PI)), lipid peroxidation (malondialdehyde (MDA) levels) and protein oxidation (DNPH levels) were analyzed, as well as the status of the sperm antioxidant system by determining glutathione peroxidase, glutathione reductase and superoxide dismutase (GPX, GSR and SOD) activity. The results demonstrated that extenders containing vitamins significantly increased sperm motility. Total motility, velocity and linearity increased from 31.2 ± 3.0 μm/sec, 18.3 ± 1.7 μm/sec and 46.9 ± 2.0% in extender containing 0.1 mm α-tocopherol or 30.6 ± 3.9 μm/sec, 19.5 ± 1.6 μm/sec and 47.9 ± 2.2% in extender containing 1 mm ascorbic acid respect to the extender control (20.7 ± 3.3 μm/sec, 13.8 ± 1.7 μm/sec and 37.3 ± 4.1%). However, viability and levels of lipid peroxidation and protein oxidation were not affected by the presence of these antioxidants, suggesting that membrane impairment could be more associated to osmotic shock or membrane destabilization than oxidative damage. The increased activity of both GPX and GSR after cryopreservation showed that the antioxidant system of sea bass sperm must play an important role in preventing oxidation of the membrane compounds. In conclusion, the addition of α-tocopherol and ascorbic acid to the extender media, together with the antioxidant system of the spermatozoa improved sea bass sperm motility, which is one of the impairment parameters most affected by cryopreservation.  相似文献   

7.
The objective was to develop a freezing protocol using a directional freezing (DF) technique for cryopreservation of rhesus macaque sperm and achieve a survival rate comparable to that achieved with a conventional freezing (CF) technique. Rhesus macaque sperm frozen with a DF technique, with cooling rates of 12 or 16 °C/min, had higher post-thaw motility (P < 0.05) than those cooled at 7 °C/min (59.3, 61.1, and 50.3%, respectively). Furthermore, sperm cryopreserved with 5% glycerol and a DF technique had similar frozen-thawed sperm motility to those cryopreserved by a CF technique (63.7 vs. 53.9%, P > 0.05). The function of sperm cryopreserved at the optimized cooling rate using a DF technique was evaluated by in vitro fertilization of oocytes collected from gonadotropin-stimulated rhesus macaques. Of the 38 mature oocytes collected, 78.9% were fertilized and 71.1, 47.4, and 42.1% of the oocytes developed to the 2-cell, morulae, and blastocyst stages, respectively. In conclusion, rhesus macaque sperm was effectively cryopreserved using a DF technique, providing a new and effective method for genetic preservation in this important species.  相似文献   

8.
This is a unique study because is the first time we are adding melatonin into an extender in order to determine its influence on cryopreserved chicken semen. The primary focus of our present study was to evaluate the influence of different concentrations of Melatonin on cryopreserved chicken semen. Semen samples were allocated into four treatments, being one control and three different combinations of antioxidants and after the freeze-thaw operation, the sperm motility, plasma membrane integrity, acrosome integrity, endogenous enzymes (GSH-Px, CAT, SOD), MDA and ROS of chicken spermatozoa were all evaluated. The collection of the semen samples was from 40 Arbor Acre roosters and this procedure was repeated twice a week and then mixed in an extender that contained different MEL treatments as follows: a diluent without MEL (control, M 0), a diluent comprising 0.125 mg/mL (M 0.125) 0.25 mg/mL, (M 0.25) and 0.5 mg/mL (M 0.5). It was revealed that the supplementation of the base extender with an optimal 0.25 mg/mL MEL led to a higher significant difference in the motility of chicken sperm (P < 0.01), higher acrosome integrity (P < 0.05) and a higher plasma membrane integrity (P < 0.01) when compared to the control group at post-thaw. Furthermore, when compared to the control group, 0.25 mg/mL MEL addition into the extender significantly enhanced the activity of endogenous enzymes (GSH-Px, CAT, and SOD) in the chicken spermatozoa at post-thaw (P < 0.05). Moreover, 0.5 mg/mL MEL supplementation into the extender enhanced the GSH-Px activity in the chicken spermatozoa when compared with the control group (P < 0.05) at post-thaw. In contrast, the addition of 0.25 mg/mL MEL into the extender resulted in a significantly lower MDA in comparison to the 0.125 mg/mL, 0.5 mg/mL MEL treatment group and the control group (P < 0.05). Also, compared to the control group, MEL concentration of 0.125 mg/mL and 0.5 mg/mL MEL into the extender resulted in a significantly low ROS concentration (P < 0.05) but the addition of 0.25 mg/mL MEL concentration resulted in a significantly lower ROS level when compared to the control group (P < 0.01). In summary, MEL improved the quality of cryopreserved chicken sperm quality by decreasing oxidative stress level and the most optimal concentration was 0.25 mg/mL.  相似文献   

9.
Sperm become most sensitive to cold shock when cooled from 37 °C to 5 °C at rates that are too fast or too slow; cold shock increases the susceptibility to oxidative damage owing to its influence on reactive oxygen species (ROS) production, which are significant stress factors generated during cooling and low temperature storage. In addition, ROS may be a main cause of decreased motility and fertility upon warming. They have been shown to change cellular function through the disruption of the sperm plasma membrane and through damage to proteins and DNA. The objective of this study was to determine which cryopreservation rates result in the lowest degree of oxidative damage and greatest sperm quality. In the rhesus model, it has not been determined whether suprazero cooling or subzero freezing rates causes a significant amount of ROS damage to sperm. Semen samples were collected from male rhesus macaques, washed, and resuspended in TEST-yolk cryopreservation buffer to 100 × 106 sperm/mL. Sperm were frozen in 0.5-mL straws at four different combinations of suprazero and subzero rates. Three different suprazero rates were used between 22 °C and 0 °C: 0.5 °C/min (slow), 45 °C/min (medium), and 93 °C/min (fast). These suprazero rates were used in combination with two different subzero rates for temperatures 0 °C to −110 °C: 42 °C/min (medium) and 87 °C/min (fast). The different freezing groups were as follows: slow-med (SM), slow-fast (SF), med-med (MM), and fast-fast (FF). Flow cytometry was used to detect lipid peroxidation (LPO), a result of ROS generation. Motility was evaluated using a computer assisted sperm motion analyzer. The MM and FF treated sperm had less viable (P < 0.0001) and motile sperm (P < 0.001) than the SM, SF, or fresh sperm. Sperm exposed to MM and FF treatments demonstrated significantly higher oxidative damage than SM, SF, or fresh sperm (P < 0.05). The SM- and SF-treated sperm showed decreased motility, membrane integrity, and LPO compared with fresh semen (P < 0.001). Slow cooling from room temperature promotes higher membrane integrity and motility post thaw, compared with medium or fast cooling rates. Cells exposed to similar cooling rates with differing freezing rates were not different in motility and membrane integrity, whereas comparison of cells exposed to differing cooling rates with similar freezing rates indicated significant differences in motility, membrane integrity, and LPO. These data suggest that sperm quality seems to be more sensitive to the cooling, rather than freezing rate and highlight the role of the suprazero cooling rate in post thaw sperm quality.  相似文献   

10.
The present study evaluated the effect of increasing supplementation of all-rac-α-tocopheryl acetate and dietary fatty acid composition during a four week period after weaning on porcine tissue composition of α-tocopherol stereoisomers and fatty acids, and on hepatic expression of genes involved in transfer of α-tocopherol, and oxidation and metabolism of fatty acids. From day 28 to 56 of age, pigs were provided 5% of tallow, fish oil or sunflower oil and 85, 150, or 300 mg/kg of all-rac-α-tocopheryl acetate. Samples of liver, heart, and adipose tissue were obtained from littermates at day 56. Tissue fatty acid composition was highly influenced by dietary fat sources. Dietary fatty acid composition (P<0.001) and vitamin E supplementation (P<0.001) influenced the α-tocopherol stereoisomer composition in liver, i.e. less proportion of the RRR-α-tocopherol was observed in pigs provided fish oil and the highest dose of vitamin E in comparison with other dietary treatments. In addition, the stereoisomer composition of α-tocopherol in heart, and adipose tissue was influenced by dietary treatments. Expression of genes in liver involved in the regulation of FA conversion, SCD (P=0.002) and D6D (P=0.04) were lower in pigs fed fish oil compared to other treatments, whereas the fatty acid oxidation, as indicated by the expression of PPAR-α, was higher when sunflower and fish oil was provided (P=0.03). Expression of α-TTP in liver was higher in pigs fed fish oil (P=0.01). Vitamin E supplementation did not influence significantly the hepatic gene expression.  相似文献   

11.
The exogenous antioxidants vitamin C (ascorbate) and vitamin E (α-tocopherol) often blunt favorable cell signaling responses to exercise, suggesting that redox signaling contributes to exercise adaptations. Current theories posit that this antioxidant paradigm interferes with redox signaling by attenuating exercise-induced reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation. The well-documented in vitro antioxidant actions of ascorbate and α-tocopherol and characterization of the type and source of the ROS/RNS produced during exercise theoretically enable identification of redox-dependent mechanisms responsible for the blunting of favorable cell signaling responses to exercise. This review aimed to apply this reasoning to determine how the aforementioned antioxidants might attenuate exercise-induced ROS/RNS production. The principal outcomes of this analysis are (1) neither antioxidant is likely to attenuate nitric oxide signaling either directly (reaction with nitric oxide) or indirectly (reaction with derivatives, e.g., peroxynitrite); (2) neither antioxidant reacts appreciably with hydrogen peroxide, a key effector of redox signaling; (3) ascorbate but not α-tocopherol has the capacity to attenuate exercise-induced superoxide generation; and (4) alternate mechanisms, namely pro-oxidant side reactions and/or reduction of bioactive oxidized macromolecule adducts, are unlikely to interfere with exercise-induced redox signaling. Out of all the possibilities considered, ascorbate-mediated suppression of superoxide generation with attendant implications for hydrogen peroxide signaling is arguably the most cogent explanation for blunting of favorable cell signaling responses to exercise. However, this mechanism is dependent on ascorbate accumulating at sites rich in NADPH oxidases, principal contributors to contraction-mediated superoxide generation, and outcompeting nitric oxide and superoxide dismutase isoforms. The major conclusions of this review are: (1) direct evidence for interference of ascorbate and α-tocopherol with exercise-induced ROS/RNS production is lacking; (2) theoretical analysis reveals that both antioxidants are unlikely to have a major impact on exercise-induced redox signaling; and (3) it is worth considering alternate redox-independent mechanisms.  相似文献   

12.
This study aimed to investigate the effects of different concentrations of soybean lecithin (SL; 0.5%, 1%, and 1.5%) and egg yolk (EY) in Tris-based extenders on the semen quality parameters of post-thawed goat semen. Sixteen ejaculates were collected from eight healthy, mature Chongming White goats (3–5 years of age). Each ejaculate was divided into five equal aliquots, and then each pellet was diluted with one of the five Tris-based extenders containing 20% EY, 0.5% SL, 1% SL, 2% SL, or 3% SL. The cooled diluted semen was loaded into 0.5 mL polyvinyl French straws and cryopreserved in liquid nitrogen. Frozen semen samples were thawed at 37 °C and assessed for sperm motility, viability, plasma acrosome integrity, membrane integrity, and mitochondria integrity, and the spermatozoa were assessed for reactive oxygen species (ROS), superoxide dismutase (SOD), and malondialdehyde (MDA). The semen extended in the 2.0% SL extract tended to have a higher sperm viability (57.44%), motility (52.14%), membrane integrity (45.31%), acrosome integrity (52.96%), and mitochondrial activity (50.21%) than the other SL-based extender concentrations (P < 0.05). The 2.0% SL treatment group was equivalent to the semen extended in 20% EY (P > 0.05). The extenders supplemented 20% EY or 2.0% SL significantly increased the SOD activity and decreased the ROS and MDA activities compared to the other groups (P < 0.05). In conclusion, the extenders supplemented with 20% EY and 2.0% SL had similar effects on spermatozoa preservation. These results indicate that a soybean lecithin-based diluent may be used as an alternative extender to egg yolk for the cryopreservation of goat semen.  相似文献   

13.
The semen cryopreservation processes are associated with state of oxidative stress induced by high levels of reactive oxygen species (ROS), causing damage to functional spermatozoa. Whereby, antioxidants have been utilized to scavenge or neutralize the elevated levels of ROS. The aim of at the present study was to evaluate the effect of adding BHT to the freezing extenders on post-thaw characteristics of domestic cat spermatozoa. Semen samples were frozen in Tris-fructose-citric acid-based extender, supplemented with different concentrations of BHT (0.5 mM, 1.0 mM and 2.0 mM) and a control sample without antioxidant. After thawing, sperm samples were assessed for motility by computer‐assisted sperm analysis and viability, acrosome integrity, superoxide anion production and membrane lipid peroxidation status by flow cytometry. In the study, the parameters of sperm motility and acrosome integrity were significantly higher in 2.0 mM BHT compared to sperm frozen in the extender with other concentrations and control (P < 0.05), in addition, this concentration reduced significantly the superoxide anion production and lipid peroxidation of the sperm. The results demonstrated that the supplementation of BHT to the freezing extender could protect the function and cellular structure of domestic cat sperm from cryoinjuries.  相似文献   

14.
The objectives were to evaluate postthaw sperm quality and the response to an inducer of in vitro sperm capacitation in boar sperm, cryopreserved with (T) or without (C) α-tocopherol. Boar sperm frozen in 0.2-mL pellets were thawed and washed (W) or selected by three methods: Percoll discontinuous gradient (PS) or Sephadex (Sigma-Aldrich, St. Louis, MO, USA) (neutral [S] or with ion exchange [S+IO] columns). All separation methods enhanced sperm motility, plasma membrane integrity, and functionality and acrosome integrity for both C and T samples (P < 0.05). The best results were obtained with S and ionic Sephadex column. There was a decrease (P < 0.05) in capacitation-like changes in C samples separated with Sephadex (W: 19 ± 0.9%, PS: 22 ± 2.5%, S: 17 ± 1.2%, and S+IO: 17 ± 2.0%). Cryopreservation with α-tocopherol decreased (P < 0.05) the percentage of cryocapacitated sperm (W: 14 ± 0.7%, PS: 14 ± 1.0%, S: 13 ± 1.0%, and S+IO: 14 ± 0.9%) compared with C samples, without differences among selection techniques. Freezing with α-tocopherol and subsequent selection decreased lipid peroxidation (W: 20.79 ± 2.64 nmol thiobarbituric acid reactive substances (TBARS)/108 sperm; PS: 13.15 ± 2.39 nmol TBARS/108 sperm; S: 13.20 ± 2.18 nmol TBARS/108 sperm, and S+IO: 13.62 ± 2.76 nmol TBARS/108 sperm), with respect to washed and selected C samples (W: 37.69 ± 5.34 nmol TBARS/108 sperm, PS: 25.61 ± 5.85 nmol TBARS/108 sperm, S: 19.16 ± 3.28 nmol TBARS/108 sperm, and S+IO: 22.16 ± 6.09 nmol TBARS/108 sperm). In vitro capacitation levels were significantly higher for neutral Sephadex-selected T samples in comparison with C and unselected samples. These results were confirmed with a follicular fluid-induced acrosome reaction. In conclusion, cryopreserved sperm with α-tocopherol and subsequent Sephadex selection, improved postthaw quality and functionality of boar sperm, which could be useful for assisted reproductive techniques.  相似文献   

15.
The periparturient period represents a stressful time for dairy cows as they transition from late gestation to early lactation. Oxidation stress occurs during this period owing to the increased metabolic activity. Antioxidants supplementation slightly above the suggested requirements may be beneficial in relieving this kind of stress. The objective of this study was to determine whether supplementing selenium (Se) yeast to diets with adequate Se concentrations affects Se status, oxidative stress, and antioxidant status in dairy cows during the periparturient period. Twenty multiparous Holstein cows were randomly divided into two groups with ten replicates in each group. During the last 4 weeks before calving, cows were fed Se-yeast at 0 (control) or 0.3 mg Se/kg dry matter (Se-yeast supplementation), in addition to Na selenite at 0.3 mg Se/kg dry matter in their rations. The concentrations of Se, reactive oxygen species (ROS), hydrogen peroxide (H2O2), hydroxyl radical, malonaldehyde (MDA), α-tocopherol and glutathione (GSH), the activities of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and catalase (CAT), and the total antioxidant capacity (T-AOC) in plasma or erythrocyte of dairy cows were measured at 21 and 7 days prepartum, and at 7 and 21 days postpartum. Cows fed Se-yeast supplement during the last 4 weeks of gestation had higher plasma Se and lower MDA concentrations at 7 days prepartum, and at 7 and 21 days postpartum, and had higher whole blood Se and lower plasma ROS and H2O2 concentrations at 7 and 21 days postpartum compared with control cows. Se-yeast supplementation increased plasma and erythrocyte GSH-Px activities and erythrocyte GSH concentration at 7 days postpartum as compared to Se-adequate control cows. Compared with control cows, the enhanced SOD and CAT activities, increased α-tocopherol and GSH concentrations, and improved T-AOC in plasma at 7 and 21 days postpartum in Se-yeast-supplemented cows were also observed in this study. The results indicate that feeding Se-adequate cows a Se-yeast supplement during late gestation increases plasma Se status, improves antioxidant function, and relieves effectively oxidative stress occurred in early lactation.  相似文献   

16.
Oxidized low density lipoprotein (LDL) has a major impact in the development of atherosclerosis. Risk for oxidative modification of LDL is usually determined indirectly by measuring the capability of LDL to resist radical insult. We compared three different methods quantifying the antioxidative capacity of LDL ex vivo in dyslipidemic patients with coronary heart disease. Plasma samples were obtained from two double-blinded cross-over trials. The duration of all interventions (placebo, lovastatin 60 mg/day, RRR-α-tocopherol 300 mg/day and lovastatin + RRR-α-tocopherol combined) was 6 weeks. The total radical capturing capacity of LDL (TRAP) in plasma was determined using 2,2-azobis(2,4-dimethyl-valeronitrile) (AMVN)-induced oxidation, and measuring the extinction time of chemiluminescence. TRAP was compared to the variables characterizing formation of conjugated dienes in copper-induced oxidation. Also the initial concentrations and consumption times of reduced α-tocopherol (α-TOH) and ubiquinol in AMVN-induced oxidation were determined.

Repeatability of TRAP was comparable to that of the lag time in conjugated diene formation. Coefficient of variation within TRAP assay was 4.4% and between TRAP assays 5.9%. Tocopherol supplementation produced statistically significant changes in all antioxidant variables except those related to LDL ubiquinol. TRAP increased by 57%, the lag time in conjugated diene formation by 34% and consumption time of α-TOH by 88%. When data of all interventions were included in the analyses, TRAP correlated with the lag time (r = 0.75, p < 10-6), with LDL α -TOH (r = 0.50, p < 0.001) and with the consumption time of α-TOH (r = 0.58, p < 0.0001). In the baseline data, the associations between different antioxidant variables were weaker. TRAP correlated with the lag time (r = 0.55, p < 0.001) and α-TOH consumption time (r = 0.48, p < 0.05), and inversely with apolipoprotein Al (r = -0.51, p < 0.05). Lag time at the baseline did not correlate with ubiquinol or tocopherol parameters, or with any plasma lipid or lipoprotein levels analyzed. Lovastatin treatment did not significantly affect the antioxidant capacity of LDL. In conclusion, TRAP reflects slightly different properties of LDL compared to the lag time. Thus, LDL TRAP assay may complement the other methods used to quantify the antioxidant capacity of LDL. However, TRAP and the lag time react similarly to vitamin E supplementation.  相似文献   

17.
The protection of the developing organism from oxidative damage is ensured by antioxidant defense systems to cope with reactive oxygen species (ROS), which in turn can be influenced by dietary polyunsaturated fatty acids (PUFAs). PUFAs in membrane phospholipids are substrates for ROS-induced peroxidation reactions. We investigated the effects of dietary supplementation with omega-3 PUFAs on lipid peroxidation and antioxidant enzyme activities in rat cerebrum, liver and uterus. Pups born from dams fed a diet low in omega-3 PUFAs were fed at weaning a diet supplying low α-linolenic acid (ALA), adequate ALA or enriched with eicosapentaenoic acid (EPA) plus docosahexaenoic acid (DHA). Malondialdehyde (MDA), a biomarker of lipid peroxidation, and the activities of superoxide dismutase 1 (SOD1), SOD2, catalase (CAT) and glutathione peroxidase (GPX) were determined in the three target organs. Compared to low ALA feeding, supplementation with adequate ALA or with EPA + DHA did not affect the cerebrum MDA content but increased MDA content in liver. Uterine MDA was increased by the EPA + DHA diet. Supplementation with adequate ALA or EPA + DHA increased SOD2 activity in the liver and uterus, while only the DHA diet increased SOD2 activity in the cerebrum. SOD1, CAT and GPX activities were not altered by ALA or EPA + DHA supplementation. Our data suggest that increased SOD2 activity in organs of the growing female rats is a critical determinant in the tolerance to oxidative stress induced by feeding a diet supplemented with omega-3 PUFAs. This is may be a specific cellular antioxidant response to ROS production within the mitochondria.  相似文献   

18.
The mechanism of free radical production by complex I deficiency is ill-defined, although it is of significant contemporary interest. This study studied the ROS production and antioxidant defenses in children with mitochondrial NADH dehydrogenase deficiency. ROS production has remained significantly elevated in patients compared to controls. The expression of all antioxidant enzymes significantly increased at mRNA level. However, the enzyme activities did not correlate with high mRNA or protein expression. Only the activity of superoxide dismutase (SOD) was found to correlate with higher mRNA expression in patient derived cell lines. The activities of the enzymes such as glutathione peroxidase (GPx), Catalase (CAT) and glutathione-S-transferase (GST) were significantly reduced in patients (p<0.05 or p<0.01). Glutathione reductase (GR) activity and intracellular glutathione (GSH) levels were not changed. Decreased enzyme activities could be due to post-translational or oxidative modification of ROS scavenging enzymes. The information on the status of ROS and marking the alteration of ROS scavenging enzymes in peripheral lymphocytes or lymphoblast cell lines will provide a better way to design antioxidant therapies for such disorders.  相似文献   

19.
Cactus (Opuntia ficus-indica) is a xerophyte plant that belongs to the Cactaceae family. The present study was designed to investigate the possible protective effects of cactus cladodes extract (CCE) on sodium dichromate-induced testis damage in adult male Wistar rats. For this purpose, CCE at a dose of 100 mg/kg was orally administrated, followed by 10 mg/kg sodium dichromate (intraperitoneal injection). After 40 days of treatment, the rats were sacrificed, and the testes were excised for histological, lipid peroxidation (LPO), and antioxidant enzyme analyses. Sodium dichromate treatment significantly (P?<?0.01) decreased the body, testis, and accessory sex organ weights, sperm count and motility, and serum testosterone level. In addition, histological analysis revealed pronounced morphological alterations with tubular necrosis and reduction in the number of gametes in the lumen of the seminiferous tubules of sodium dichromate-intoxicated rats. Furthermore, exposure to sodium dichromate significantly (P?<?0.01) increased LPO level and decreased superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities in testis. Interestingly, pretreatment with CCE significantly (P?<?0.01) restored the serum testosterone level, sperm count, and motility to the levels of the control group. Moreover, CCE administration was capable of reducing the elevated level of LPO and significantly (P?<?0.01) increased SOD, CAT, and GPx activities in testis. Cactus cladodes supplementation minimized oxidative damage and reversed the impairment of spermatogenesis and testosterone production induced by sodium dichromate in the rat testis.  相似文献   

20.
This investigation was designed to evaluate the effects of feeding either free range or in confinement using concentrated diets with the same ingredients and oil source (5.5% of olive oleins) but with different antioxidant supplementation [control diet with a basal level of α-tocopheryl acetate (control); 200 mg/kg synthetic all-rac-α-tocopheryl acetate (Eall-rac); 200 mg/kg natural RRR-α-tocopheryl-acetate (ERRR-); flavonoid extract-enriched diet (AFlav); and phenolic compound-enriched extract (APhen)] on the fatty acid composition and lipid oxidation of Iberian pig muscle longissimus dorsi. The α-tocopherol concentration was significantly higher in muscles from free-range and ERRR- pigs than in muscles from Eall-rac pigs, and γ-tocopherol was only detected in muscles from free-range pigs. Longissimus dorsi muscles from free-range pigs had a significantly lower content of saturated fatty acids and higher content of polyunsaturated fatty acids than muscles from the other five groups of pigs fed in confinement; however, no significant effect on monounsaturated fatty acids was observed. No effect of dietary antioxidant supplementation (synthetic or natural α-tocopherol, flavonoid extract, or phenol extract) on the fatty acid composition of muscles was observed. A significant influence of dietary treatment on lipid oxidation was observed after 3 (P < 0.01), and 7 and 10 (P < 0.001) days of refrigerated storage, respectively. The lowest thiobarbituric acid-reactive substances (TBARS) values were found in pork chops from the free-range and ERRR- groups, intermediate values from the Eall-rac group, followed by AFlav and APhen, while the highest TBARS values corresponded to muscles from pigs fed the control concentrate. The source of α-tocopherol had a significant effect on lipid oxidation (P < 0.05), whereas the AFlav and APhen groups had similar TBARS values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号