首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Numerical simulation of mechanical mixing in high solid anaerobic digester   总被引:1,自引:0,他引:1  
Yu L  Ma J  Chen S 《Bioresource technology》2011,102(2):1012-1018
Computational fluid dynamics (CFD) was employed to study mixing performance in high solid anaerobic digester (HSAD) with A-310 impeller and helical ribbon. A mathematical model was constructed to assess flow fields. Good agreement of the model results with experimental data was obtained for the A-310 impeller. A systematic comparison for the interrelationship of power number, flow number and Reynolds number was simulated in a digester with less than 5% TS and 10% TS (total solids). The simulation results suggested a great potential for using the helical ribbon mixer in the mixing of high solids digester. The results also provided quantitative confirmation for minimum power consumption in HSAD and the effect of share rate on bio-structure.  相似文献   

3.
One of the major process bottlenecks for viable industrial production of second generation ethanol is related with technical–economic difficulties in the hydrolysis step. The development of a methodology to choose the best configuration of impellers towards improving mass transfer and hydrolysis yield together with a low power consumption is important to make the process cost-effective. In this work, four dual impeller configurations (DICs) were evaluated during hydrolysis of sugarcane bagasse (SCB) experiments in a stirred tank reactor (3 L). The systems tested were dual Rushton turbine impellers (DIC1), Rushton and elephant ear (down-pumping) turbines (DIC2), Rushton and elephant ear (up-pumping) turbines (DIC3), and down-pumping and up-pumping elephant ear turbines (DIC4). The experiments were conducted during 96 h, using 10 % (m/v) SCB, pH 4.8, 50 °C, 10 FPU/gbiomass, 470 rpm. The mixing time was successfully used as the characteristic parameter to select the best impeller configuration. Rheological parameters were determined using a rotational rheometer, and the power consumptions of the four DICs were on-line measured with a dynamometer. The values obtained for the energetic efficiency (the ratio between the cellulose to glucose conversion and the total energy) showed that the proposed methodology was successful in choosing a suitable configuration of impellers, wherein the DIC4 obtained approximately three times higher energetic efficiency than DIC1. Furthermore a scale-up protocol (factor scale-up 1000) for the enzymatic hydrolysis reactor was proposed.  相似文献   

4.
We investigated the effect of Agrobacterium rhizogenes-mediated transformation on antioxidant activity of Artemisia vulgaris “hairy” roots. It appeared that transformation may increase flavonoid content as well as DPPH-scavenging activity and ability to reduce Fe3+ as compared to the non-transformed plants. Some “hairy” roots accumulated flavonoids up to 73.1?±?10.6?mg RE/g DW (while the amount of flavonoids in the leaves of non-transformed plants was up to 49.4?±?5.0?mg RE/g DW). DPPH-scavenging activity of some “hairy” root lines was 3–3.8 times higher than such one of the roots of the control plants. The Fe3+-reducing power of most transgenic root extracts exceeded such power of the extracts of the roots of the control plants. The decrease in SOD activity was found in the most “hairy” root lines compared to the control roots. The increase of flavonoid content correlated with the increase of ability of extracts to scavenge DPPH*- radical and Fe3+ - reducing power. No correlation between SOD activity of extracts and concentration of flavonoids was found (p?≥?0.2).Thus, transformation has led to the alteration in flavonoid accumulation and antioxidant activity in A. vulgaris “hairy” roots. Transgenic roots with high-antioxidant properties can be selected after A. rhizogenes-mediated transformation.  相似文献   

5.
以3个转基因棉和2个亲本对照棉花品种为研究材料,分别测定了这5种棉花植株体内主要糖分与游离氨基酸含量;同时,分别用这5个棉花品种的叶片饲养棉蚜Aphis gossypii Glover并测定其蜜露分泌量及其主要营养成分。结果表明,转基因棉花“国抗22”叶片中葡萄糖、蔗糖、麦芽糖的平均含量及可溶性糖总量分别比亲本对照棉“泗棉3号”减少61.76%、 89.05%、77.86%和23.61%,转基因棉花“苏抗103”和“中抗310”叶片中葡萄糖、蔗糖、麦芽糖的平均含量及可溶性糖总量分别比亲本对照棉“苏棉12”下降14.15%、32.80%、92.22%、11.46% 和4 6.81%、93.19%、61.11%、43.91%,游离氨基酸总量及各种氨基酸、果糖、鼠李糖、海藻糖的含量在不同转基因棉与亲本对照棉花品种间也存在很大差异,其中一些处理间的差异达显著或极显著水平。这表明外源基因的导入已经影响到了转基因棉花品种中主要糖分与游离氨基酸的合成。棉蚜取食转基因棉花品种“国抗22”后,蜜露的日平均分泌量比取食对照品种“泗棉3号”减少40.54%,取食其他两个转基因棉花品种“苏抗103”和“中抗310”后蜜露的分泌量也比取食对照棉花品种“苏棉12”降低22.67%和30.0%,但棉蚜取食转基因棉花后蜜露中游离氨基酸的总量均高于对照棉花品种,蜜露中可溶性总糖、蔗糖和各种氨基酸含量在取食转基因棉和常规棉花品种间存在一定差异。  相似文献   

6.
Aerated and unaerated power consumption and flow patterns in a 0.56 m diameter agitated vessel containing water with dual Rushton turbines have been studied. Under unaerated conditions with a liquid height-to-diameter ratio of 2, an impeller spacing of 2 to 3 times the impeller is required for each to draw an amount of power equal to a single impeller. For aerated conditions, if a similar spacing is used, equations for the flooding-loading transition and for power consumption for a single Rushton impeller can be extended relatively easily to dual systems. All results for this spacing are explained by reference to bulk flow patterns and gassed-filled cavity structures and the proportion of sparged gas flowing through the upper impeller is also estimated. Such a spacing is generally recommended since it maximizes the power draw and hence the potential for oxygen mass transfer. Data are presented for other spacings but the results do not fit in easily with single agitator studies because strong impeller-impeller flow pattern interactions occur.  相似文献   

7.
Xanthan gum fermentation represents a good model for the study of the mixing of rheologically complex culture broths. Most of the previous work on power consumption dealt with ‘standard’, single impellers and used model fluids to simulate xanthan broths. This work describes the characterization of three dual-impeller combinations (D/T = 0·53) for the mixing of dehydrated—reconstituted fermentation broths of Xanthomonas campestris that had matched rheology to the actual broths. The bottom impeller was a Rushton turbine (RT) and the top impeller was another RT, a 45° pitched blade turbine (PT) or an A-310 Lightnin mixer (A310). The experiments were carried out in a tank of 0·0094 m3 working volume equipped with an air bearing dynamometer. The power was measured in a wide range of xanthan concentrations (5–40 kg m−3) in aerated (0·25, 0·5 and 1·0 vvm) and unaerated conditions. Unaerated power number (Po) vs. Reynolds number (Re) curves showed similar trends for the three combinations. Exponents close to −1 were obtained in the laminar region. A minimum in Po (Pomin) occurred at Re = 30–40, then increasing to a plateau value which was evident at Re> 200. In the transition region Pomin values were 4·3 (RT and RT), 3·6 (RT and PT) and 2·4 (RT and A310). The aerated power data for (RT and PT) and (RT and A-310) showed higher torque instabilities than the dual RT combinations at higher xanthan concentrations. The higher the xanthan concentrations, the higher the drop in power and the less important the effect of the aeration rate. Among the combinations tested, when using Rushton turbines, the well-mixed ‘cavern’ reached the tank wall (i.e., fluid motion was observed) at the lowest volumetric power input. High  相似文献   

8.
The morphology of filamentous organisms in submerged cultures varies between the pelleted and the dispersed forms depending on the strain of organism and the culture conditions. The dispersed form consists of branched and unbranched hyphae (freely dispersed form) and clumps (filamentous material in aggregates). In agitated systems, the choice of impeller geometry as well as the total power input determines the mechanical forces that might affect the morphology of filamentous species (e.g. by fragmentation) with simultaneous effects on their growth and productivity. To find out more about fragmentation of Penicillium chrysogenum caused by mechanical forces of different impeller types and agitation intensities, a population balance model has been developed. The projected area measured by image analysis was used to characterise the morphology (size) of the mycelia. In the model, the kinetics of mycelial fragmentation were expressed by a breakage rate constant K, which was assumed to be only dependent on the agitation conditions. The fragmentation rate was considered to follow a first order process in size (area) which was based on assumptions made for the mechanism of mycelial break-up, and work reported in the literature. Previously published mean and distributional data from off-line fragmentation experiments in ungassed vessels of sizes from 1.4 to 180?l were used to validate the model. For the first time a model has been found that is capable of fitting changes in mycelial morphology caused by mechanical forces generated by different impellers at various power inputs and scales. Besides the mean projected areas of the mycelia, the model allowed simulations of the projected area distributions, and changes in those distributions because of the agitation. At the small scale (1.4?l), the breakage rate constant K could be correlated well with either impeller tip speed or the “energy dissipation/circulation function”, which is based on mycelial circulation through the impeller region. The simpler but commonly used power input per unit tank volume did not correlate K adequately. The scale up data showed that only the “energy dissipation/circulation function” correlated mycelial fragmentation well. The dependence of K on biomass concentration, and its detailed dependence (if any) on the fermentation conditions at sampling, which might indicate likely breakage mechanisms, remain to be elucidated.  相似文献   

9.
A novel optical sensor was used to study mixing and mean circulation time in a model minibioreactor (12.5 mL stirred vessel, equipped with a paddle impeller). Rotational rates in the range of 10-1,000 rpm corresponding to Reynolds number between 14 and 1,350 were studied. Results suggest that depending on the impeller rotational speed, mixing times up to 214 +/- 87 s can be reproducibly achieved. The minibioreactor was operated in the transitional regime, and it was determined that the non-dimensional form for mixing time, NTheta(M) was linearly dependent on Reynolds number. A linear correlation between mean circulation time and the inverse of rotational speed was also determined. The mean circulation time dependence on rotational speed in the 12.5 mL stirred vessel is similar to those found in large-scale stirred vessels. These results suggest that mixing and circulation times found in large-scale reactors can be replicated in minibioreactors.  相似文献   

10.
Chinese hamster ovary cells were used to compare the cytotoxicity and mutagenicity of far-UV radiation emitted by a low-pressure mercury, germicidal lamp (wavelength predominantly 254 nm) with that of near-UV radiation emitted by a fluorescent lamp with a continuous spectrum (Westinghouse “Sun Lamp”), of which only the radiation with wavelengths greater than 290 nm or greater than 310 nm was transmitted to the cells. The radiation effects were compared on the basis of an equal number of pyrimidine dimers, the predominant lesion induced in DNA by far-UV, for the induction of which much more energy is needed with near-UV than with 254-nm radiation.The numbers of dimers induced were determined by a biochemical method detecting UV-endonuclease-susceptible sites. The equivalence of these sites with pyrimidine dimers was established, qualitatively and quantitatively, in studies with enzymic photoreactivation in vitro and chromatographic analysis of dimers.On the basis of induced dimers, more cells were killed by >310-nm UV than by >290-nm UV; both forms of radiation were more cytotoxic than 254-nm UV when equal numbers of dimers were induced. Moreover, 5–6 times as many mutants were induced per dimer by >310-nm UV than by >290-nm UV; the latter appeared approximately as mutagenic as 254-nm UV. The differences in lethality and mutagenicity were not caused by differences in repair of dimers: cells with an equal number of dimers induced by either 254-nm or near-UV showed the same removal of sites susceptible to a UV endonuclease specific for dimers, as well as an identical amount of repair replication.The results indicate that near-UV induces, besides pyrimidine dimers, other lesions that appear to be of high biological significance.  相似文献   

11.
The effectiveness of a range of impellers for “stirring as foam disruption” (SAFD) is assessed in a vessel of 0.72 m diameter and an aspect ratio of 2:1. Measurement of power drawn by the impeller achieving SAFD and of the three-dimensional flow field close to the dispersion surface are both used to explain the findings along with the global gas hold-up. A large radial flow Rushton turbine can disrupt foam at a great height but requires high power. Down-pumping hydrofoils are only effective when the ungassed liquid height is below the level of the impeller employed to disrupt foam. Up-pumping hydrofoils are the most effective because their flow pattern gives rise to high velocities across the dispersion surface, which are able to entrain foam in the downflow generated at the walls.  相似文献   

12.
《Chronobiology international》2013,30(10):1169-1178
We compared two “3?×?8” shift rotas with backward rotation and quick return (morning and night shift in the same day) in a 5- or 6-day shift cycle, and a “2?×?12” shift rota with forward rotation in a 5-d shift cycle. A total of 294 nurses (72.6% women, mean age 33.8) were examined in a survey on work-related stress, including the Standard Shiftwork Index. Ten nurses per each shift roster recorded their activity and rest periods by actigraphy, rated sleepiness and sleep quality, and collected salivary cortisol throughout the whole shift cycle. Nurses engaged in the “2?×?12” rota showed lower levels of sleep disturbances and, according to actigraphy, sleep duration was more balanced and less fragmented than in the “3?×?8” rosters. The counter-clockwise shift rotation and quick return of “3?×?8” schedules reduce possibility of sleep and recovery. The insertion of a morning shift before the day with quick return increases night sleep by about 1?h. Nurses who take a nap during the night shift require 40% less sleep in the morning after. The “2?×?12” clockwise roster, in spite of 50% increased length of shift, allows a better recovery and more satisfying leisure times, thanks to longer intervals between work periods. Sleepiness increased more during the night than day shifts in all rosters, but without significant difference between 8-h and 12-h rosters. However, the significantly higher level at the start of the night shift in the “3?×?8” rotas points out that the fast backward rotation with quick return puts the subjects in less efficient operational conditions. Some personal characteristics, such as morningness, lability to overcome drowsiness, flexibility of sleeping habits and age were significantly associated to sleep disturbances in nurses engaged in the “3?×?8” rotas, but not in the “2?×?12” schedule.  相似文献   

13.
We studied the effect of genetic transformation on biologically active compound (artemisinin and its co-products (ART) as well as sugars) accumulation in Artemisia vulgaris and Artemisia dracunculus “hairy” root cultures. Glucose, fructose, sucrose, and mannitol were accumulated in A. vulgaris and A. dracunculus “hairy” root lines. Genetic transformation has led in some cases to the sugar content increasing or appearing of nonrelevant for the control plant carbohydrates. Sucrose content was 1.6 times higher in A. vulgaris “hairy” root lines. Fructose content was found to be 3.4 times higher in A. dracunculus “hairy” root cultures than in the control roots. The accumulation of mannitol was a special feature of the leaves of A. vulgaris and A. dracunculus control roots. A. vulgaris “hairy” root lines differed also in ART accumulation level. The increase of ART content up to 1.02?mg/g DW in comparison with the nontransformed roots (up to 0.687?mg/g DW) was observed. Thus, Agrobacterium rhizogenes-mediated genetic transformation can be used for obtaining of A. vulgaris and A. dracunculus “hairy” root culture produced ART and sugars in a higher amount than mother plants.  相似文献   

14.
The objective of this study was to determine the role of agitation conditions in the oxidation of nitrite ions by Nitrobacter. Batch reaction kinetic experiments were conducted in baffled stirred tanks. The range of agitation conditions studied was 6200 ? 95700 ergs/cm3 sec. This power input corresponds to 3.2 ? 45.6 hp/ 1000 gal, or a “hem Scale” of 3 ? 9. After a lag phase, the reaction kinetics were found to be zero order with respect to nitrite over a concentration range of 590 to 10 mg/liter nitrite nitrogen (NO2?-N). The zero-order rate constants were found to significantly decrease with increasing impeller power input per volume of liquid (P / V).  相似文献   

15.
A flat plate model was used to calculate heat loss from the pinnae of the animated elephant Dumbo. In conditions of high wind velocity and large gradients, Dumbo could potentially dissipate more heat than he produces. This suggests that he may need the large ears to help lose the excess heat produced while flying.  相似文献   

16.
The Dumbo rat possesses some characteristics that evoke several human syndromes, such as Treacher-Collins: shortness of the maxillary, zygomatic and mandibular bones, and low position of the ears. Knowing that many homeobox genes are candidates in craniofacial development, we investigated the involvement of the Msx1 and Dlx1 genes in the Dumbo phenotype with the aim of understanding their possible role in abnormal craniofacial morphogenesis and examining the possibility of using Dumbo rat as an experimental model for understanding abnormal craniofacial development. We studied the expression of these genes during craniofacial morphogenesis by RT-PCR method. We used Dumbo embryos at E12 and E14 and included the Wistar strain as a control. Semi-quantitative PCR analysis demonstrated that Msx1 and Dlx1 are expressed differently between Dumbo and Wistar rats, indicating that their low expression may underly the Dumbo phenotype.  相似文献   

17.
Detection of Tryptophan to Tryptophan Energy Transfer in Proteins   总被引:4,自引:0,他引:4  
Förster resonance energy transfer (FRET) studies usually involve observation of intensity or life-time changes in the donor or acceptor molecule and usually these donor and acceptor molecules differ (heterotransfer). The use of polarization to monitor FRET is far less common, although it was one of the first methods utilized. In 1960, Weber demonstrated that homotransfer between tryptophan molecules contributes to depolarization. He also discovered that the efficiency of homotransfer becomes much less effective upon excitation near the red-edge of the absorption. This “red-edge effect” was shown to be a general phenomenon of homotransfer. We have utilized Weber's red-edge effect to study tryptophan homotransfer in proteins. Specifically, we determined the polarization of the tryptophan fluorescence upon excitation at 295 nm and 310 nm (near the red-edge). Rotational diffusion leads to depolarization of the emission excited at either 295 nm or 310 nm, but homotransfer only contributes to depolarization upon excitation at 295 nm. Hence, the 310/295 polarization ratio gives an indication of tryptophan to tryptophan energy transfer. In single tryptophan systems, the 310/295 ratios are generally below 2 whereas in multi-tryptophan systems, the 310/295 ratios can be greater than 3.  相似文献   

18.
A rationally designed “air chargeable” energy storage device is demonstrated, which can be effectively charged by harvesting pervasive energy from the ambient environment. For an “air chargeable” zinc‐ion capacitor system, the system simply consists of a flexible bifunctional “U” shaped electrode (with the functions of energy harvesting and storage), a zinc metal electrode in middle, and two different polyelectrolytes (polyacrylamide and sodium polyacrylate) sandwiched between the zinc metal and “U” shaped electrode. When the zinc‐ion capacitor is exhausted, it can be quickly charged to 88% within 10 min by simply opening the sealing tape and allowing the air diffuse in. The capacitor exhausting‐air charging processes are repeated 60 times and the whole system works well. When the external power supplier is available, both the zinc‐ion capacitor and “air charging” component can be fully recovered. A large capacity (≈1000 mAh) “air chargeable” zinc‐vanadium battery is also demonstrated. The zinc‐vanadium battery can be fully charged by air in 1 h. This work offers a usage scenario independent reliable self‐chargeable power supply system as a promising approach to solve the intermittent and unpredictable nature of currently developed self‐chargeable devices.  相似文献   

19.
Polarized luminescence was used to study the mobility of tryptophan residues in polypeptide chains of different chemical composition and structural organization. It has been shown that the luminescence depolarization of tryptophan residues in coillike, helical, and β-structural polypeptide chains is mainly caused by “fast” torsional vibrations and “slow” rotational isomerization of indole groups of tryptophan side chains. The characteristics of these types of motions are practically the same for tryptophan residues included in coillike chains of different chemical structure. Helix–coil transitions in copolymers of glutamic acid and lysine with tryptophan (Glu, Trp) and (Lys, Trp) (where side groups of tryptophan residues weakly interact with the surrounding side groups) do not appreciably change the amplitude of torsional vibrations or rotational isomerization. At the same time, in the helical state of glutamic acid–leucine–tryptophan copolymers (Glu, Leu, Trp) and in the β-structural state of (Lys, Trp) copolymers (where direct interactions of Trp side groups with other side groups are possible), the amplitudes of the torsional vibrations are smaller and the rotational isomerization times larger than in the coil. The transition of (Glu, Leu, Trp) polypeptide chains into a compact state is accompanied by a marked decrease of both “fast” and “slow” intra-molecular mobility and by an increase of the contribution made by the rotation of the macromolecule as a whole, as shown by the decrease of the luminescence polarization.  相似文献   

20.
The dynamic environment within a bioreactor and in the purification equipment is known to affect the activity and yield of enzyme production. The present research focuses on the effect of hydrodynamic flow parameters (average energy dissipation rate, maximum energy dissipation rate, average shear rate, and average normal stress) and the interfacial flow parameters (specific interfacial area and mass transfer coefficient) on the activity of lysozyme. Flow parameters were estimated using CFD simulation based on the k-epsilon approach. Enzyme deactivation was investigated in 0.1, 0.3, 0.57, and 1 m i.d. vessels. Enzyme solution was subjected to hydrodynamic stress using various types of impellers and impeller combinations over a wide range of power consumption (0.03 < P(G)/V < 7, kW/m3). The effects of tank diameter, impeller diameter, blade width, blade angle, and the number of blades on the extent of deactivation were investigated. At equal value of P(G)/V, epsilon(max), and gamma(avg), the extent of deactivation was dramatically different for different impeller types. The extent of deactivation was found to correlate well with the average turbulent normal stress and the mass transfer coefficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号