共查询到20条相似文献,搜索用时 15 毫秒
1.
A pot experiment was conducted to compare the availability and efficiency of three sulphur (S) fertilisers to wheat in the
first year and oilseed rape in the second year, using six agricultural soils. Four treatments were applied in the initial
year: control (no S), two forms of elemental S (either micronised S° particles or a bentonite + S° mixture) and a sulphate
fertiliser (ammonium sulphate). In the first year, the micronised S° was as effective as the sulphate fertiliser, both producing
similar increases of wheat grain yield (on average 36%) and S uptake (on average 164%) over the control. In contrast, responses
to the bentonite + S° form were minimal, indicating a limited S supply. In the second year the control treatment failed to
produce seeds in most soils, whereas the micronised S° and sulphate treatments increased seed yields of oilseed rape to an
average of 13.4 and 12.9 g pot-1, respectively. The performance of the bentonite + S° varied between soils: two soils produced yields similar to those of
the other S fertilisers, while the remaining soils had low yields. To test whether the poor performance of the bentonite clay
+ S° fertiliser was due to the lack of exposure of the prills to physical weathering in the glasshouse, the effect of freeze-thaw
action on the fertilisers performance was assessed in a separate pot experiment. The responses in wheat yield and S uptake
showed that freeze-thaw did not enhance the physical disruption of the prills or fertiliser effectiveness. These results suggest
that the release of available S from the bentonite + S° mixture was too slow to meet the requirement of wheat and oilseed
rape.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
2.
Responses of two wheat varieties to sulphur addition and diagnosis of sulphur deficiency 总被引:4,自引:0,他引:4
F. J. Zhao M. J. Hawkesford A. G. S. Warrilow S. P. McGrath D. T. Clarkson 《Plant and Soil》1996,181(2):317-327
Sulphur deficiency has become increasingly widespread in wheat in the U.K. Growth, nutrient content and biochemical responses to S and N supply of a breadmaking wheat variety (Hereward) and a non-breadmaking variety (Riband) were investigated in a pot experiment. Shoot dry matter (DM) at stem extension (Zadok's GS 37) and at maturity was increased markedly by S. Grain production of the Riband variety was more susceptible to the imbalance of N to S than the Hereward variety. At GS 37, the concentrations of total S and sulphate-S of shoots, chlorophyll meter readings and the concentrations of glutathione of the uppermost fully expanded leaves were increased significantly by increasing S supply, whereas the concentrations of nitrate and amides were decreased by S. The greatest relative changes in response to S supply were those of the glutathione and asparagine concentrations. Riband also showed greater response to S than Hereward. Critical values of various diagnostic indices at GS 37 were derived from the relationships between DM yield and different indices. The two varieties showed similar diagnostic curves except that for the ratio of total N to total S (N:S) in shoots. Either total S or sulphate-S can be used alone as a good indicator of deficiency, and with values of 1500 and 190 mg kg-1 DM in shoots for the two indices respectively. There was also a well defined relationship between DM yield and the glutathione concentration, with a critical value of 240 nmol g-1 FW. There were no advantages of using % of total S as sulphate-S. Shoot N:S ratio was found to be less accurate in predicting S deficiency than total S or sulphate-S. For prognostic purposes, a much higher S status at GS 37 was required to ensure no losses of DM yield due to S deficiency at maturity. 相似文献
3.
During the years 1998 and 1999, two field experiments were conducted at the University of Wales, Aberystwyth, UK, to test the effects of soil‐ and foliar‐applied sulphur (S) in spring wheat. S was applied at 0, 20, 40, 60 kg ha?1 in 1998 and at 60 kg ha?1 in 1999, using CaSO4 as a source for the soil application and micronised S (Thiovit, 80%), with and without an organosilicone adjuvant, as a source for the foliar application. Senescence was retarded and grain yield was increased in 1998, following application of foliar S in conjunction with the organosilicone adjuvant. Application of foliar S was associated with a reduction in the level of mildew (Erysiphe graminis) recorded on the upper leaves and ears of the canopy. In 1999, grain yield was unaffected by treatments. A low level of mildew in the crop, particularly on the ears, is thought to be the reason for the lack of response in spite of the fact that senescence was retarded with foliar S application. A combined application of foliar S and commercial fungicide (cyproconazole) to the crop appeared to be more effective at controlling mildew than either S or fungicide applied alone. The study shows that there may be a role for S in a low‐input/organic wheat production system, where there is a need to reduce artificial inputs. 相似文献
4.
Effects of site and plant species on rhizosphere community structure as revealed by molecular analysis of microbial guilds 总被引:3,自引:0,他引:3
The bacterial and fungal rhizosphere communities of strawberry (Fragaria ananassa Duch.) and oilseed rape (Brassica napus L.) were analysed using molecular fingerprints. We aimed to determine to what extent the structure of different microbial groups in the rhizosphere is influenced by plant species and sampling site. Total community DNA was extracted from bulk and rhizosphere soil taken from three sites in Germany in two consecutive years. Bacterial, fungal and group-specific (Alphaproteobacteria, Betaproteobacteria and Actinobacteria) primers were used to PCR-amplify 16S rRNA and 18S rRNA gene fragments from community DNA prior to denaturing gradient gel electrophoresis (DGGE) analysis. Bacterial fingerprints of soil DNA revealed a high number of equally abundant faint bands, while rhizosphere fingerprints displayed a higher proportion of dominant bands and reduced richness, suggesting selection of bacterial populations in this environment. Plant specificity was detected in the rhizosphere by bacterial and group-specific DGGE profiles. Different bulk soil community fingerprints were revealed for each sampling site. The plant species was a determinant factor in shaping similar actinobacterial communities in the strawberry rhizosphere from different sites in both years. Higher heterogeneity of DGGE profiles within soil and rhizosphere replicates was observed for the fungi. Plant-specific composition of fungal communities in the rhizosphere could also be detected, but not in all cases. Cloning and sequencing of 16S rRNA gene fragments obtained from dominant DGGE bands detected in the bacterial profiles of the Rostock site revealed that Streptomyces sp. and Rhizobium sp. were among the dominant ribotypes in the strawberry rhizosphere, while sequences from Arthrobacter sp. corresponded to dominant bands from oilseed rape bacterial fingerprints. 相似文献
5.
Ten soils collected from the major arable areas in Britain were used to assess the availability of soil sulphur (S) to spring
wheat in a pot experiment. Soils were extracted with various reagents and the extractable inorganic SO4-S and total soluble S(SO4-S plus a fraction of organic S) were determined using ion chromatography (IC) or inductively-coupled plasma atomic emission
spectrometry (ICP-AES), respectively. Water, 0.016 M KH2PO4, 0.01 M CaCl2 and 0.01 M Ca(H2PO4)2 extracted similar amounts of SO4-S, as measured by IC, which were consistently smaller than the total extractable S as measured by ICP-AES. The amounts of
organic S extracted varied widely between different extractants, with 0.5 M NaHCO3 (pH 8.5) giving the largest amounts and 0.01 M CaCl2 the least. Organic S accounted for approximately 30–60% of total S extracted with 0.016 M KH2PO4 and the organic C:S ratios in this extract varied typically between 50 and 70. The concentrations of this S fraction decreased
in all soils without added S after two months growth of spring wheat, indicating a release of organic S through mineralisation.
All methods tested except 0.5 M NaHCO3-ICP-AES produced satisfactory results in the regression with plant dry matter response and S uptake in the pot experiment.
In general, 0.016 M KH2PO4 appeared to be the best extractant and this extraction followed by ICP-AES determination was considered to be a good method
to standardise on. 相似文献
6.
M. F. Dreccer A. H. C. M. Schapendonk G. A. Slafer R. Rabbinge 《Plant and Soil》2000,220(1-2):189-205
We investigated the response of spring wheat and oilseed rape to nitrogen (N) supply, focusing on the critical period for
grain number definition and grain filling. Crops were grown in containers under a shelter and treated with five combinations
of applied N. Wheat and oilseed rape produced comparable amounts of biomass and yield when corrected for the costs of biomass
synthesis (SC). From the responses of biomass and yield to late N applications and the apparent contribution of mobilised
biomass to yield, it seems that the yield of oilseed rape was more source-limited during grain filling than that of wheat,
particularly at the medium and high N levels. Both species recovered equal amounts of N from the total available N in the
soil and had similar N use efficiencies, expressed as yield per unit of N absorbed. However, oilseed rape had higher efficiency
to convert absorbed N in biomass, but lower harvest index of N than wheat. Oilseed rape had similar or lower root biomass
than wheat, depending on N level, but higher root length per unit soil volume and specific root length. The specific uptake
rate of N per unit root dry weight during the critical period for grain number determination was higher in oilseed rape than
in wheat. In wheat, N limitation affected growth through a similar or lower reduction in radiation use efficiency corrected
for synthesis costs (RUESC) than in the cumulative amount of intercepted photosynthetically active radiation (IPARc). In oilseed rape, lower growth
due to N shortage was associated more with RUESC than IPARc, during flowering while during grain filling both components contributed similarly to decreased growth. RUESC and the concentration of N in leaves and inflorescence (LIN%) decreased from flowering to maturity and were curvilinearly
related. Oilseed rape tended to have higher RUESC than wheat at high N supply during the critical period for grain number determination, and generally lower during grain filling.
The reasons for these differences and possibilities to increase yield potential are discussed in terms of the photosynthetic
efficiency of the different organs and changes in source–sink ratio during reproductive stages.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
7.
Holzschuh A Dormann CF Tscharntke T Steffan-Dewenter I 《Proceedings. Biological sciences / The Royal Society》2011,278(1723):3444-3451
Agricultural land use results in direct biodiversity decline through loss of natural habitat, but may also cause indirect cross-habitat effects on conservation areas. We conducted three landscape-scale field studies on 67 sites to test the hypothesis that mass flowering of oilseed rape (Brassica napus) results in a transient dilution of bees in crop fields, and in increased competition between crop plants and grassland plants for pollinators. Abundances of bumble-bees, which are the main pollinators of the grassland plant Primula veris, but also pollinate oilseed rape (OSR), decreased with increasing amount of OSR. This landscape-scale dilution affected bumble-bee abundances strongly in OSR fields and marginally in grasslands, where bumble-bee abundances were generally low at the time of Primula flowering. Seed set of Primula veris, which flowers during OSR bloom, was reduced by 20 per cent when the amount of OSR within 1 km radius increased from 0 to 15 per cent. Hence, the current expansion of bee-attractive biofuel crops results in transient dilution of crop pollinators, which means an increased competition for pollinators between crops and wild plants. In conclusion, mass-flowering crops potentially threaten fitness of concurrently flowering wild plants in conservation areas, despite the fact that, in the long run, mass-flowering crops can enhance abundances of generalist pollinators and their pollination service. 相似文献
8.
Susan J. Sprague John A. Kirkegaard Stephen J. Marcroft John M. Graham 《The Annals of applied biology》2010,157(1):71-80
Canola (Brassica napus) crops for grazing and grain (dual-purpose) production provide an economic break-crop alternative for dual-purpose cereals in Australian mixed farming systems. Infection by Leptosphaeria maculans is the most prevalent disease in Australian canola crops with airborne inoculum released throughout the autumn and winter when crops are grazed. Glasshouse and field experiments were conducted to investigate the effect of mechanical defoliation (simulated grazing) on disease severity at plant maturity. In glasshouse experiments, stem canker severity increased from 4% to 24% in severely defoliated plants, but light defoliation had no effect compared with undefoliated control plants. Disease severity was increased with defoliation in all field experiments. Defoliation increased crown canker severity from 22.6% to 39.3% at Wagga Wagga and from 3.0% to 7.1% at Canberra and lodging from 9.6% to 11.9% at Naracoorte in the same set of cultivars assessed at each site. The increase in disease severity with defoliation was less in canola lines with moderate to high levels of stem canker resistance. Plants defoliated before stem elongation tended to develop less disease than those defoliated during the reproductive phase of plant growth. These findings suggest that the impact of grazing on L. maculans infection of canola crops can be minimised by sowing cultivars with a high level of stem canker resistance and grazing during the vegetative stage of plant growth prior to stem elongation. Further research is required to determine whether these management strategies are applicable in canola crops defoliated by grazing animals. 相似文献
9.
10.
Helen K. Woodfield Amaury Cazenave-Gassiot Richard P. Haslam Irina A. Guschina Markus R. Wenk John L. Harwood 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2018,1863(3):339-348
With dwindling available agricultural land, concurrent with increased demand for oil, there is much current interest in raising oil crop productivity. We have been addressing this issue by studying the regulation of oil accumulation in oilseed rape (Brassica napus L). As part of this research we have carried out a detailed lipidomic analysis of developing seeds.The molecular species distribution in individual lipid classes revealed quite distinct patterns and showed where metabolic connections were important. As the seeds developed, the molecular species distributions changed, especially in the period of early (20 days after flowering, DAF) to mid phase (27DAF) of oil accumulation. The patterns of molecular species of diacylglycerol, phosphatidylcholine and acyl-CoAs were used to predict the possible relative contributions of diacylglycerol acyltransferase (DGAT) and phospholipid:diacylglycerol acyltransferase to triacylglycerol production. Our calculations suggest that DGAT may hold a more important role in influencing the molecular composition of TAG. Enzyme selectivity had an important influence on the final molecular species patterns.Our data contribute significantly to our understanding of lipid accumulation in the world's third most important oil crop. 相似文献
11.
Quantification of yield losses caused by leaf anthracnose on sorghum in Brazil 总被引:1,自引:0,他引:1 下载免费PDF全文
Luciano Viana Cota André Gomes Coelho Souza Rodrigo Veras Costa Dagma Dionísia Silva Fabrício Eustáquio Lanza Frederick Mendes Aguiar José Edson Fontes Figueiredo 《Journal of Phytopathology》2017,165(7-8):479-485
The leaf anthracnose disease in sorghum, caused by Colletotrichum sublineolum (Henn. ex Sacc. & Trotter), is widely distributed throughout its Brazilian cultivation areas. The disease can cause significant losses in grain yield and quality. This study aimed to quantify the effects of leaf anthracnose on grain yield of different sorghum genotypes. Two elite inbred lines of sorghum, BR009 (susceptible) and BR008 (moderately resistant), and the hybrids, BR304 and MR43 (susceptible), BRS310 and DKB599 (moderately resistant) and BRS308 and AG1060 (resistant), were planted in a complete randomized block design with three replicates. The disease severity (DS) was evaluated weekly, starting from the onset of the first foliar symptoms, and yield losses were estimated using linear regression analysis. Leaf anthracnose significantly reduced sorghum yields in the susceptible genotypes. The highest yield loss of 86% was observed in the inbred line BR009, when the disease severity reached 100%. For the hybrids, the grain yield loss varied from 35% (BRS310) to 72% (BRS308). According to the adjusted model, a grain yield reduction of 23.48 kg/ha for BR304, 14.57 kg/ha for BRS310 and 15.91 kg/ha for DKB599 was observed for every 1% increase in disease severity. We demonstrate for the first time the effect of leaf anthracnose disease on grain sorghum yields under Brazilian conditions. The results from this study provide a starting point for developing new strategies for the integrated disease management of sorghum anthracnose. 相似文献
12.
13.
Sulphur cycling was evaluated in a 20 to 60 year old Norway spruce (Picea abies L. Karst) ecosystem in the Black Forest near Schluchsee, SW Germany, by means of stable sulphur isotope analysis.Soil and plant material were analysed for S-content and S-isotopic composition to gather information on the S-distribution in the ecosystem. Two out of three adjacent watershed areas, highly comparable to each other were fertilized with MgSO4 and (NH4)2SO4 respectively, where sulphate was enriched in the 34S-isotope compared to the sulphur present in the ecosystem. As the fertilizer S served as a tracer, comparison of the S-isotopic composition of total and inorganic S in the soil and S in spruce needles from both the treated and the control sites led to new information of S-turnover processes.The S-isotopic composition of spruce needles changed markedly after the fertilizer application. Within half a year a shift towards the S-isotopic composition of the fertilizers sulphate indicated uptake of the sulphate by the trees, although this uptake did not become visible with the S content of the needles.Regarding the soil, a shift in the S-isotopic composition of the total sulphur was not that striking as with the needles, although the phosphate extractable sulphate showed a clear shift towards the S-isotopic composition of the fertilizer sulphate. 相似文献
14.
Filip Oulehle Christopher D. Evans Jenyk Hofmeister Radovan Krejci Karolina Tahovska Tryggve Persson Pavel Cudlin Jakub Hruska 《Global Change Biology》2011,17(10):3115-3129
Sulphur (S) and nitrogen (N) deposition are important drivers of the terrestrial carbon (C) and N cycling. We analyzed changes in C and N pools in soil and tree biomass at a highly acidified spruce site in the Czech Republic during a 15 year period. Total S deposition decreased from 5 to 1.1 g m?2 yr?1 between 1995 and 2009, whereas bulk N deposition did not change. Over the same period, C and N pools in the Oa horizon declined by 116 g C and 4.2 g N m?2 yr?1, a total decrease of 47% and 42%, respectively. This loss of C and N probably originated from organic matter (OM) that had accumulated during the period of high acid deposition when litter decomposition was suppressed. The loss of OM from the Oa horizon coincided with a substantial leaching (1.3 g N m?2 yr?1 at 90 cm) in the 1990s to almost no leaching (<0.02 g N m?2 yr?1) since 2006. Forest floor net N mineralization also decreased. This had consequences for spruce needle N concentration (from 17.1 to 11.4 mg kg?1 in current needles), an increase in litterfall C/N ratio (from 51 to 63), and a significant increase in the Oi + Oe horizon C/N ratio (from 23.4 to 27.3) between 1994 and 2009/2010. Higher forest growth and lower canopy defoliation was observed in the 2000s compared to the 1990s. Our results demonstrate that reducing S deposition has had a profound impact on forest organic matter cycling, leading to a reversal of historic ecosystem N enrichment, cessation of nitrate leaching, and a major loss of accumulated organic soil C and N stocks. These results have major implications for our understanding of the controls on both N saturation and C sequestration in forests, and other ecosystems, subjected to current or historic S deposition. 相似文献
15.
Zhang Z Kebreab E Jing M Rodriguez-Lecompte JC Kuehn R Flintoft M House JD 《Animal : an international journal of animal bioscience》2009,3(6):826-837
The objectives of the current study included the characterization of the temporal changes in indices of sulphur amino acid metabolism in piglets in response to vitamin B6 deficiency and repletion with graded levels of pyridoxine hydrochloride. In Experiment 1, 12 piglets (average initial weight = 5.3 kg; n = 6 per group) were fed a semi-purified diet containing either 0 (deficiency group) or 3 mg (control group) pyridoxine·HCl/kg diet, using a pair-feeding design, for 6 weeks. Piglets consuming vitamin B6-deficient diets exhibited decreased average daily gains on the 4th week and feed conversion efficiency from the 4th week until the end of the trial (P < 0.05). Plasma pyridoxal-5'-phosphate (PLP), in pigs consuming vitamin B6-deficient diets, was significantly lower than controls throughout the experiment (P < 0.01), reaching a nadir of 14% of the control animals' value by the end of the trial. Indices of sulphur amino acid metabolism, including activities of hepatic cystathionine-β-synthase (CBS), cystathionine-γ-lyase (CGL) and serine hydroxymethyltransferase, as well as hepatic-free cysteine concentrations were markedly decreased after 6 weeks of B6 deficiency (P < 0.05). Total hepatic mRNA expressions for CBS and CGL were not affected. Concurrently, hepatic-free homocysteine concentrations increased by more than eight-fold (P < 0.01) at the end of the trial. An examination of plasma total homocysteine and cysteine concentrations revealed significant (P < 0.05) differences between treatments, with evidence of an abrupt shift in concentrations at 3 weeks post-initiation of dietary treatments (>25-fold increase in homocysteine; halving of cysteine values). At the end of Experiment 1, vitamin B6 deficiency significantly increased plasma methionine and serine levels, but decreased plasma glycine concentrations (P < 0.05). In Experiment 2, 20 pigs of 14 days old (initial BW = 5.0 kg) were subjected to a 4-week vitamin B6 depletion protocol, based on results obtained in Experiment 1. After the depletion period and assessment of baseline status (four pigs), remaining pigs were allocated to one of four dietary vitamin B6 repletion treatments: 0.75, 1.5, 2.25 and 3 mg/kg diet as pyridoxine·HCl (n = 4 per level) for 14 days. Significant dose-dependent increases in plasma PLP and cysteine, and decreases in homocysteine were observed, and these were sensitive to the duration of repletion. In conclusion, data from the current studies support the use of both plasma PLP and homocysteine as sensitive indices of vitamin B6 status in the pig. Additionally, the observed patterns of responses in vitamin B6-sensitive metabolites are supportive of an inclusion level of 2.25 mg/kg diet, as pyridoxine·HCl, in diets for young pigs. 相似文献
16.
B. Borghi M. Perenzin 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1994,89(7-8):975-981
Combining ability for grain yield, yield components, and several agronomic and qualitative traits, was studied in a seven-parent diallel cross. The 21 F1 hybrids and the seven parental cultivars were grown in replicated plot trials sown at normal seed density in three locations in the years 1992 and 1993. The effects of general combining ability (gca) were highly significant for all the traits measured with the exception of seeds per spikelet, while the specific combining ability (sca) effects were statistically significant for grain yield, plant height, heading time, for all the yield components, and for the Chopin alveographic parameters P and P/L ratio. For the majority of the traits measured gca was greater than sca. Standard heterosis (sh) for grain yield, i.e., the superiority of the hybrids over the best pure line cultivar(cv Eridano), was only 3.3%, confirming previous finding which indicate sh effects in the range of 10%. The most interesting hybrid derived from the cross Maestra x Golia revealed a yield level approaching that of the highest yielding cv Eridano but appeared more interesting because of its reduced plant height and superior bread-making quality, signifying a selling price 30% higher. It was concluded, therefore, that the first generation of hybrids, likely to appear on the market in the next few years, will be characterized by a yield potential only slightly superior to that of the best standard cvs but associated with other desirable traits, such as bread-making quality. 相似文献
17.
In developing seeds of mustard ( Brassica juncea L. cv. RLM 198) the period between 20 and 30 days after fertilization (DAF) was identified as the period of active lipid biosynthesis, although dry matter continued to accumulate until maturity. The period of lipid synthesis was associated with a decrease in starch, soluble sugars and protein, thus, giving rise to precursors for the biosynthesis of lipids. Besides decreasing the dry matter content (on both % and seed basis), Zn and S deficiency caused a significant ( P > 0.05) reduction in oil content. As compared to control, the decrease in oil content was 11, 12 and 18% at 30 DAF and 4, 9 and 16% at maturity in Zn, S and (Zn+S) deficient treatments, respectively. Throughout the period of seed development, a significant decrease in starch and protein with a slight accumulation of soluble sugars was observed due to deficiency of Zn or S. The rate of [l-14 C]-acetate incorporation into total lipids, which was maximal at 30 DAF, also displayed a significant decrease due to the abovementioned mineral deficiencies. Addition of Zn or S in vitro, enhanced the lipid synthesis at all stages of seed development. Under Zn and S deficiency, the phospholipids increased from 10 to 30 DAF and then declined until maturity. However, the proportion of glycolipids and free fatty acids increased, with a corresponding decrease in total glycerides. Further, in deficiency treatments, there was an increase in 22:1 with a corresponding decrease in 18:1, 18:2 and 18:3 in developing and mature mustard seeds. 相似文献
18.
J. Carpezat S. Bothorel G. Daverdin M.H. Balesdent M. Leflon 《The Annals of applied biology》2014,164(3):430-440
The oilseed rape (Brassica napus) stem canker disease, due to the fungal pathogen Leptosphaeria maculans, is mainly controlled by host genetic resistance. Since 2004, the specific resistance gene Rlm7 is widely used in France. Specific resistance is effective when fungal populations are mainly composed of avirulent isolates. The development of molecular tools for the identification of virulent isolates towards Rlm7 was needed to undertake large‐scale surveys and to monitor the emergence of virulent populations in fields. Previous studies have described a large diversity of molecular events leading to virulence towards Rlm7, rendering conventional polymerase chain reaction (PCR) methods inapplicable to identify virulent isolates. Interestingly, a very limited nucleotide polymorphism was observed for avirulent, AvrLm7, alleles. Such characteristics were exploited here to develop a diagnostic method based on high resolution melting (HRM) analysis of the AvrLm4‐7 gene. High resolution melting analysis of a collection of 206 reference isolates revealed only four different profiles within 100 avirulent isolates and 87% of virulent isolates showed either no amplification or HRM curves distinct from those of avirulent isolates. The reliability of the method was confirmed using a second set of 119 unknown isolates, for which biological phenotyping and HRM genotyping were in agreement for 93% of the isolates. HRM combined with the PCR amplification of a larger fragment encompassing AvrLm4‐7 led to a correct diagnostic for 97.5% of the isolates. 相似文献
19.
Abstract: Field trials were carried out at three locations in the cool‐wet western and one location in the semiarid eastern ecozones of the Amhara State of Ethiopia to determine the effects of nitrogen fertilizer on pest infestation and yield losses caused by lepidopterous stemborers in maize and sorghum. Three N fertilizer levels, i.e. 60, 120 and 180 kg/ha for maize, and 41, 64, and 87 kg/ha for sorghum, were compared with a zero N treatment. The dominant pest species were the noctuid Busseola fusca (Fuller) and the invasive crambid Chilo partellus (Swinhoe). Leaf N content was positively related to N fertilizer dosage. In general, pest density, parasitism, plant growth and borer damage variables increased with crop growth stage. On sorghum, in the cool‐wet western Amhara, increasing levels of N fertilizer also tended to increase pest density, plant growth and damage variables. In the semiarid ecozone, parasitism by the exotic parasitoid Cotesia flavipes Cameron tended to increase with N level. In the cool‐wet ecozone, sorghum yields increased by up to 74% because of fertilization; losses caused by stemborers decreased linearly with N dosage from 49% to 36%. In maize, because of low borer densities, there were no discernable trends for pest infestation and yield losses. In the cool‐wet ecozone, sorghum yields were positively related to insecticide application and plant height, and negatively to damage variables such as tunnelling and peduncle damage. In semiarid eastern Amhara, the effects of fertilizer on pest, damage and yield were low on both crops because of the higher soil fertility. The results indicate that the profitability of nitrogen fertilizer as an integrated pest management tactic in the control of cereal stemborers depends, among others, on the severity of borer damage and the soil fertility status prevailing in an area. It is concluded that N fertilizer helps minimize the impact of borers on grain yields, especially on sorghum and in the cool‐wet ecozone. 相似文献