首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The human protein MED1 (also known as MBD4) was previously isolated in a two-hybrid screening using the mismatch repair protein MLH1 as a bait, and shown to have homology to bacterial base excision repair DNA N-glycosylases/lyases. To define the mechanisms of action of MED1, we implemented a sensitive glycosylase assay amenable to kinetic analysis. We show that MED1 functions as a mismatch-specific DNA N-glycosylase active on thymine, uracil, and 5-fluorouracil when these bases are opposite to guanine. MED1 lacks uracil glycosylase activity on single-strand DNA and abasic site lyase activity. The glycosylase activity of MED1 prefers substrates containing a G:T mismatch within methylated or unmethylated CpG sites; since G:T mismatches can originate via deamination of 5-methylcytosine to thymine, MED1 may act as a caretaker of genomic fidelity at CpG sites. A kinetic analysis revealed that MED1 displays a fast first cleavage reaction followed by slower subsequent reactions, resulting in biphasic time course; this is due to the tight binding of MED1 to the abasic site reaction product rather than a consequence of enzyme inactivation. Comparison of kinetic profiles revealed that the MED1 5-methylcytosine binding domain and methylation of the mismatched CpG site are not required for efficient catalysis.  相似文献   

2.
Uracil-DNA glycosylase, which acts specifically on uracil-containing DNA, was purified 250-fold from an extract of Escherichia coli 1100. The enzyme releases free uracil from DNA, producing alkali-labile apyrimidinic sites in the DNA. The enzyme is active on both native and heat-denatured DNA of phage PBS1, which contains uracil in place of thymine. piX174 DNA which had been treated with bisulfite and then at alkaline pH was susceptible to the action of uracil-DNA glycosylase. Since DNA treated with bisulfite alone was less susceptible to the enzyme, it is likely that the enzyme recognizes deaminated cytosine, namely uracil, but not bisulfite adducts of uracil and cytosine in the treated DNA. DNA treated with nitrite or hydroxylamine was not attacked by the enzyme. Enzyme activity acting on bisulfite-treated DNA was absent from an extract of E. coli mutant BD10 (ung). The mutant exhibited higher sensitivity to bisulfite than did the wild-type strain and was unable to reactivate phage T1 pre-exposed to bisulfite and weak alkali.  相似文献   

3.
The hydrolytic deamination of cytosine and 5-methylcytosine drives many of the transition mutations observed in human cancer. The deamination-induced mutagenic intermediates include either uracil or thymine adducts mispaired with guanine. While a substantial array of methods exist to measure other types of DNA adducts, the cytosine deamination adducts pose unusual analytical problems, and adequate methods to measure them have not yet been developed. We describe here a novel hybrid thymine DNA glycosylase (TDG) that is comprised of a 29-amino acid sequence from human TDG linked to the catalytic domain of a thymine glycosylase found in an archaeal thermophilic bacterium. Using defined-sequence oligonucleotides, we show that hybrid TDG has robust mispair-selective activity against deaminated U:G and T:G mispairs. We have further developed a method for separating glycosylase-released free bases from oligonucleotides and DNA followed by GC–MS/MS quantification. Using this approach, we have measured for the first time the levels of total uracil, U:G, and T:G pairs in calf thymus DNA. The method presented here will allow the measurement of the formation, persistence, and repair of a biologically important class of deaminated cytosine adducts.  相似文献   

4.
The mammalian DNA glycosylase-methyl-CpG binding domain protein 4 (MBD4)-is involved in active DNA demethylation via the base excision repair pathway. MBD4 contains an N-terminal MBD and a C-terminal DNA glycosylase domain. MBD4 can excise the mismatched base paired with a guanine (G:X), where X is uracil, thymine or 5-hydroxymethyluracil (5hmU). These are, respectively, the deamination products of cytosine, 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC). Here, we present three structures of the MBD4 C-terminal glycosylase domain (wild-type and its catalytic mutant D534N), in complex with DNA containing a G:T or G:5hmU mismatch. MBD4 flips the target nucleotide from the double-stranded DNA. The catalytic mutant D534N captures the intact target nucleotide in the active site binding pocket. MBD4 specifically recognizes the Watson-Crick polar edge of thymine or 5hmU via the O(2), N(3) and O(4) atoms, thus restricting its activity to thymine/uracil-based modifications while excluding cytosine and its derivatives. The wild-type enzyme cleaves the N-glycosidic bond, leaving the ribose ring in the flipped state, while the cleaved base is released. Unexpectedly, the C(1)' of the sugar has yet to be hydrolyzed and appears to form a stable intermediate with one of the side chain carboxyl oxygen atoms of D534, via either electrostatic or covalent interaction, suggesting a different catalytic mechanism from those of other DNA glycosylases.  相似文献   

5.
Studies of trpA reversions revealed that G:C leads to A:T transitions were stimulated about 30-fold in E. coli ung mutants, whereas other base substitutions were not affected. A dUTPase (dut) mutation, which increases the incorporation of uracil into DNA in place of thymine, had no significant effect on the rate of G:C leads to A:T transitions. The results support the proposal that the glycosylase functions to reduce the mutation rate in wild-type cells by acting in the repair of DNA cytosine residues that have undergone spontaneous deamination to uracil. Further support was provided by the finding that when lambda bacteriophages were treated with bisulfite, an agent known to produce cytosine deamination, the frequency of clear-plaque mutants was increased an additional 20-fold by growth on an ung host. Bisulfite-induced mutations of the cellular chromosome, however, were about equal in ung+ and ung strains; it was found that during the treatment of ung+ cells with bisulfite, the glycosylase was inactivated.  相似文献   

6.
Telomeric DNA can form duplex regions or single-stranded loops that bind multiple proteins, preventing it from being processed as a DNA repair intermediate. The bases within these regions are susceptible to damage; however, mechanisms for the repair of telomere damage are as yet poorly understood. We have examined the effect of three thymine (T) analogs including uracil (U), 5-fluorouracil (5FU) and 5-hydroxymethyluracil (5hmU) on DNA–protein interactions and DNA repair within the GGTTAC telomeric sequence. The replacement of T with U or 5FU interferes with Pot1 (Pot1pN protein of Schizosaccharomyces pombe) binding. Surprisingly, 5hmU substitution only modestly diminishes Pot1 binding suggesting that hydrophobicity of the T-methyl group likely plays a minor role in protein binding. In the GGTTAC sequence, all three analogs can be cleaved by DNA glycosylases; however, glycosylase activity is blocked if Pot1 binds. An abasic site at the G or T positions is cleaved by the endonuclease APE1 when in a duplex but not when single-stranded. Abasic site formation thermally destabilizes the duplex that could push a damaged DNA segment into a single-stranded loop. The inability to enzymatically cleave abasic sites in single-stranded telomere regions would block completion of the base excision repair cycle potentially causing telomere attrition.  相似文献   

7.
DNA cytosine methylation in mammals modulates gene expression and chromatin accessibility. It also impacts mutation rates, via spontaneous oxidative deamination of 5-methylcytosine (5mC) to thymine. In most cases the resulting T:G mismatches are repaired, following T excision by one of the thymine DNA glycosylases, TDG or MBD4. We found that C-to-T mutations are enriched in the binding sites of CCAAT/enhancer binding proteins (CEBP). Within a CEBP site, the presence of a T:G mismatch increased CEBPβ binding affinity by a factor of >60 relative to the normal C:G base pair. This enhanced binding to a mismatch inhibits its repair by both TDG and MBD4 in vitro. Furthermore, repair of the deamination product of unmethylated cytosine, which yields a U:G DNA mismatch that is normally repaired via uracil DNA glycosylase, is also inhibited by CEBPβ binding. Passage of a replication fork over either a T:G or U:G mismatch, before repair can occur, results in a C-to-T mutation in one of the daughter duplexes. Our study thus provides a plausible mechanism for accumulation of C-to-T human somatic mutations.  相似文献   

8.
Methylation of cytosine residues in CpG dinucleotides plays an important role in epigenetic regulation of gene expression and chromatin structure/stability in higher eukaryotes. DNA methylation patterns are established and maintained at CpG dinucleotides by DNA methyltransferases (Dnmt1, Dnmt3a, and Dnmt3b). In mammals and many other eukaryotes, the CpG dinucleotide is underrepresented in the genome. This loss is postulated to be the result of unrepaired deamination of cytosine and 5-methylcytosine to uracil and thymine, respectively. Two thymine glycosylases are believed to reduce the impact of 5-methylcytosine deamination. G/T mismatch-specific thymine-DNA glycosylase (Tdg) and methyl-CpG binding domain protein 4 can both excise uracil or thymine at U·G and T·G mismatches to initiate base excision repair. Here, we report the characterization of interactions between Dnmt3b and both Tdg and methyl-CpG binding domain protein 4. Our results demonstrate (1) that both Tdg and Dnmt3b are colocalized to heterochromatin and (2) reduction of T·G mismatch repair efficiency upon loss of DNA methyltransferase expression, as well as a requirement for an RNA component for correct T·G mismatch repair.  相似文献   

9.
F M Chen 《Nucleic acids research》1983,11(20):7231-7250
Solubilization as well as spectral studies of pyrene in natural DNA and synthetic deoxypolynucleotide solutions at neutral pH reveal at least two binding modes. Sites I are predominant in native DNA and in poly(dA-dT): poly(dA-dT) whereas sites II are found with denatured DNA and other polynucleotides such as poly(dA):poly(dT) and three different types of guanine containing copolymers which solubilize pyrene to a lesser extent. Spectral comparison with the covalent adducts of trans-7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10- tetrahydro-benzo(a)pyrene (anti-BPDE) and the physical complexes of its tetraols lead to the suggestion of a base sequence specific binding model for this carcinogenic metabolite to account for the puzzling fact that although its physical binding is predominantly intercalative, the covalent adducts appear not to be intercalated. It is speculated that in neutral solutions, intercalation may have little, if any, to do with the chemical lesion of this metabolite to the guanine base of the DNA and may, on the contrary, provide an efficient pathway for detoxification.  相似文献   

10.
Waters TR  Swann PF 《Mutation research》2000,462(2-3):137-147
About 23% of mutations in hereditary human diseases and 24% of mutations in p53 in human cancers are G to A transitions at sites of cytosine methylation suggesting that these sites are either foci for DNA damage, or foci for damage that is poorly repaired. Thymine produced at these sites by the hydrolytic deamination of 5-methylcytosine is removed by thymine-DNA glycosylase. Thymine-DNA glycosylase will also remove 3,N(4)-ethenocytosine and uracil from DNA. The action of this enzyme is limited by its very low k(cat) and by tight binding to the apurinic site produced when the thymine is removed. These properties of the enzyme suggest that the inefficiency of the base excision repair pathway that it initiates may be the underlying cause of the prevalence of these mutations.  相似文献   

11.
P A Mirau  D R Kearns 《Biopolymers》1985,24(4):711-724
1H-nmr relaxation has been used to study the effect of sequence and conformation on imino proton exchange in adenine–thymine (A · T) and adenine–uracil (A · U) containing DNA and RNA duplexes. At low temperature, relaxation is caused by dipolar interactions between the imino and the adenine amino and AH2 protons, and at higher temperature, by exchange with the solvent protons. Although room temperature exchange rates vary between 3 and 12s?1, the exchange activation energies (Eα) are insensitive to changes in the duplex sequence (alternating vs homopolymer duplexes), the conformation (B-form DNA vs A-form RNA), and the identity of the pyrimidine base (thymine vs uracil). The average value of the activation energy for the five duplexes studied, poly[d(A-T)], poly[d(A) · d(T)], poly[d(A-U)], Poly[d(A) · d(U)], and poly[r(A) · r(U)], was 16.8 ± 1.3 kcal/mol. In addition, we find that the average Eα for the A.T base pairs in a 43-base-pair restriction fragment is 16.4 ± 1.0 kcal/mol. This result is to be contrasted with the observation that the Eα of cytosine-containing duplexes depends on the sequence, conformation, and substituent groups on the purine and pyrimidine bases. Taken together, the data indicate that there is a common low-energy pathway for the escape of the thymine (uracil) imino protons from the double helix. The absolute values of the exchange rates in the simple sequence polymers are typically 3–10 times faster than in DNAs containing both A · T and G · C base pairs.  相似文献   

12.
The rates of cleavage of DNAs containing substituents at position 5 of thymine or cytosine have been measured for a variety of sequence-specific endonucleases, so as to determine which features in the DNA sequence are being probed. Phage phi e DNA fully substituted with 5-hydroxymethyluracil is cleaved more slowly by enzymes whose recognition sequences contain A-T base pairs than are DNAs containing thymine, but both types of DNA are cleaved at similar rates by enzymes recognizing sequences composed only of G-C base pairs. Phage PBS2 DNA with uracil completely substituted for thymine is cleaved slowly by several enzymes which recognize sequences containing A-T base pairs (endonucleases Hpa I, HindII, and HindIII), while the rates of cleavage by other enzymes (endonucleases EcoRI and BamHI) are not affected. Phage lambda- and P22 DNAs containing 5-bromouracil are cleaved more slowly by several enzymes (endonucleases HindIII, Hpa I, BamHI) than are thymine-containing DNAs. Enzymes that recognize sequence isomers with the composition G:C:2A:2T (endonucleases EcoRI, Hpa I, HindIII) are not equally affected by substitution at position 5 of thymine, suggesting that they differ in their contacts with A-T base pairs. DNA containing glucosylated 5-hydroxymethylcytosine in place of cytosine is resistant to cleavage by all the endonucleases examined.  相似文献   

13.
14.
The mammalian thymine DNA glycosylase (TDG) is implicated in active DNA demethylation via the base excision repair pathway. TDG excises the mismatched base from G:X mismatches, where X is uracil, thymine or 5-hydroxymethyluracil (5hmU). These are, respectively, the deamination products of cytosine, 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC). In addition, TDG excises the Tet protein products 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) but not 5hmC and 5mC, when paired with a guanine. Here we present a post-reactive complex structure of the human TDG domain with a 28-base pair DNA containing a G:5hmU mismatch. TDG flips the target nucleotide from the double-stranded DNA, cleaves the N-glycosidic bond and leaves the C1′ hydrolyzed abasic sugar in the flipped state. The cleaved 5hmU base remains in a binding pocket of the enzyme. TDG allows hydrogen-bonding interactions to both T/U-based (5hmU) and C-based (5caC) modifications, thus enabling its activity on a wider range of substrates. We further show that the TDG catalytic domain has higher activity for 5caC at a lower pH (5.5) as compared to the activities at higher pH (7.5 and 8.0) and that the structurally related Escherichia coli mismatch uracil glycosylase can excise 5caC as well. We discuss several possible mechanisms, including the amino-imino tautomerization of the substrate base that may explain how TDG discriminates against 5hmC and 5mC.  相似文献   

15.
Liu P  Burdzy A  Sowers LC 《DNA Repair》2003,2(2):199-210
The oxidation of the thymine methyl group can generate 5-formyluracil (FoU). Template FoU residues are known to miscode, generating base substitution mutations. The repair of the FoU lesion is therefore important in minimizing mutations induced by DNA oxidation. We have studied the repair of FoU in synthetic oligonucleotides when paired with A and G. In E. coli cell extract, the repair of FoU is four orders of magnitude lower than the repair of U and is similar for both FoU:A and FoU:G base pairs. In HeLa nuclear extract, the repair of FoU:A is similarly four orders of magnitude lower than the repair of uracil, although the FoU:G lesion is repaired 10 times more efficiently than FoU:A. The FoU:G lesion is shown to be repaired by E. coli mismatch uracil DNA glycosylase (Mug), thermophile mismatch thymine DNA glycosylase (Tdg), mouse mismatch thymine DNA glycosylase (mTDG) and human methyl-CpG-binding thymine DNA glycosylase (MBD4), whereas the FoU:A lesion is repaired only by Mug and mTDG. The repair of FoU relative to the other pyrimidines examined here in human cell extract differs from the substrate preferences of the known glycosylases, suggesting that additional, and as yet unidentified glycosylases exist in human cells to repair the FoU lesion. Indeed, as observed in HeLa nuclear extract, the repair of mispaired FoU derived from misincorporation of dGMP across from template FoU could promote rather than minimize mutagenesis. The pathways by which this important lesion is repaired in human cells are as yet unexplained, and are likely to be complex.  相似文献   

16.
Human thymine DNA glycosylase (TDG) was discovered as an enzyme that can initiate base excision repair at sites of 5-methylcytosine- or cytosine deamination in DNA by its ability to release thymine or uracil from G.T and G.U mismatches. Crystal structure analysis of an Escherichia coli homologue identified conserved amino acid residues that are critical for its substrate recognition/interaction and base hydrolysis functions. Guided by this revelation, we performed a mutational study of structure function relationships with the human TDG. Substitution of the postulated catalytic site asparagine with alanine (N140A) resulted in an enzyme that bound mismatched substrates but was unable to catalyze base removal. Mutation of Met-269 in a motif with a postulated role in protein-substrate interaction selectively inactivated stable binding of the enzyme to mismatched substrates but not so its glycosylase activity. These results establish that the structure function model postulated for the E. coli enzyme is largely applicable to the human TDG. We further provide evidence for G.U being the preferred substrate of TDG, not only at the mismatch recognition step of the reaction but also in base hydrolysis, and for the importance of stable complementary strand interactions by TDG to compensate for its comparably poor hydrolytic potential.  相似文献   

17.
Escherichia coli endodeoxyribonuclease V acts at many sites of damage in duplex DNA, including apurinic/apyrimidinic sites, lesions induced by ultraviolet light which are not pyrimidine dimers, adducts of 7-bromomethylbenz[a]anthracene, and, as demonstrated earlier (Gates, F. T., and Linn, S. (1977a) J. Biol. Chem. 252. 1647-1653), it degrades uracil-containing duplex DNA most efficiently. The cleavage rate increases with increasing substitution of uracil for thymine in T5 DNA, with a replacement of one-eight of thymine generating the apparent maximum cleavage rate. However, the apparent reaction limit with DNA containing 3.8% of thymine replaced by uracil corresponds to cleavage at only 6% of the dUMP residues. Evidently, the enzyme recognizes some peculiarities of abnormal DNA structure, but not simply distortions, since some lesions, including pyrimidine dimers, are not substrates. Endonuclease V generates double strand breaks in a constant ratio to single strand nicks, regardless of the substrate. It degrades DNA processively, completing the digestion of one substrate molecule before proceeding to the next. The enzyme also appears to act cooperatively. Cleavage at methylbenz[a]anthracene adducts is usually or always 5' to the lesion. Endonuclease V seems well suited to act as a DNA repair enzyme, surveying the genome for structural distortions generated by lesions for which specific repair systems might not exist.  相似文献   

18.
The secondary structure of the alternating polydeoxynucleotide sequence poly[d(C-T)] was studied as a function of pH by ultraviolet absorbance and circular dichroism spectroscopy and by the analysis of UV-induced photoproducts. As the pH was lowered, poly[d(C-T)] underwent a conformational transition that was characterized by changes in the long-wavelength region (280-320 nm) of the CD spectrum. These changes have previously been interpreted as evidence for the formation of a core of stacked, protonated C X C+ base pairs in a double-helical complex of poly[d(C-T)], with the thymidyl residues being looped out into the solvent [Gray, D. M., Vaughan, M., Ratliff, R. L., & Hayes, F. N. (1980) Nucleic Acids Res. 8, 3695-3707]. In the present work, poly[d(C-T)] was labeled with [U-14C]cytosine and [methyl-3H]thymine and irradiated at pH values both above and below the conformational transition point (monitored by CD spectroscopy). The distribution of radioactivity in uracil means value of uracil dimers, uracil means value of thymine dimers (the deamination products of cytosine means value of cytosine and cytosine means value of thymine dimers, respectively), and thymine-means value of thymine dimers was then determined. As the pH was decreased, we found an increase in the yield of uracil means value of uracil dimers and a decrease in the yield of uracil means value of thymine dimers, which occurred concomitantly with the change in the CD spectrum.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The (cytosine-5) DNA methyltransferase M.HhaI causes its target cytosine base to be flipped completely out of the DNA helix upon binding. We have investigated the effects of replacing the target cytosine by other, mismatched bases, including adenine, guanine, thymine and uracil. We find that M.HhaI binds more tightly to such mismatched substrates and can even transfer a methyl group to uracil if a G:U mismatch is present. Other mismatched substrates in which the orphan guanine is changed exhibit similar behavior. Overall, the affinity of DNA binding correlates inversely with the stability of the target base pair, while the nature of the target base appears irrelevant for complex formation. The presence of a cofactor analog. S-adenosyl-L-homocysteine, greatly enhances the selectivity of the methyltransferase for cytosine at the target site. We propose that the DNA methyltransferases have evolved from mismatch binding proteins and that base flipping was, and still is, a key element in many DNA-enzyme interactions.  相似文献   

20.
Uracil in the genome can result from misincorporation of dUTP instead of dTTP during DNA synthesis, and is primarily removed by uracil DNA glycosylase (UNG) during base excision repair. Telomeres contain long arrays of TTAGGG repeats and may be susceptible to uracil misincorporation. Using model telomeric DNA substrates, we showed that the position and number of uracil substitutions of thymine in telomeric DNA decreased recognition by the telomere single-strand binding protein, POT1. In primary mouse hematopoietic cells, uracil was detectable at telomeres, and UNG deficiency further increased uracil loads and led to abnormal telomere lengthening. In UNG-deficient cells, the frequencies of sister chromatid exchange and fragility in telomeres also significantly increased in the absence of telomerase. Thus, accumulation of uracil and/or UNG deficiency interferes with telomere maintenance, thereby underscoring the necessity of UNG-initiated base excision repair for the preservation of telomere integrity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号