首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transduction of auditory signals by cochlear hair cells depends upon the integrity of hair cell stereociliary bundles. Stereocilia contain a central core of actin filaments, cross-linked by actin bundling proteins. In the cochlea, the two proteins described to date as responsible for the spatial arrangement of actin filaments in sterocilia are fimbrin and the recently discovered espin. Fimbrin (the chick homolog of human I-plastin) belongs to the plastins/fimbrin family that includes two additional isoforms of plastins, T- and L-plastin. In the present study, we used isoform specific antibodies to investigate the presence of the T- and L-isoforms of plastin/fimbrin in the adult and developing rat cochlea. We found that T-plastin, but not L-plastin, is expressed in the rat cochlea. During postnatal development of the rat organ of Corti, T-plastin can be detected in the core of stereocilia from early stages of hair cell differentiation, and its expression gradually increases in stereocilia as hair cells mature. However, as opposed to other actin-binding proteins expressed in stereocilia, T-plastin is absent from the stereocilia of mature hair cells. Such temporally restricted expression strengthens the idea of functional differences between plastins isoforms, and suggests that T-plastin could have a specific role in stereocilia formation.  相似文献   

2.

Background

Initially detected in leukocytes and cancer cells derived from solid tissues, L-plastin/fimbrin belongs to a large family of actin crosslinkers and is considered as a marker for many cancers. Phosphorylation of L-plastin on residue Ser5 increases its F-actin binding activity and is required for L-plastin-mediated cell invasion.

Methodology/Principal Findings

To study the kinetics of L-plastin and the impact of L-plastin Ser5 phosphorylation on L-plastin dynamics and actin turn-over in live cells, simian Vero cells were transfected with GFP-coupled WT-L-plastin, Ser5 substitution variants (S5/A, S5/E) or actin and analyzed by fluorescence recovery after photobleaching (FRAP). FRAP data were explored by mathematical modeling to estimate steady-state reaction parameters. We demonstrate that in Vero cell focal adhesions L-plastin undergoes rapid cycles of association/dissociation following a two-binding-state model. Phosphorylation of L-plastin increased its association rates by two-fold, whereas dissociation rates were unaffected. Importantly, L-plastin affected actin turn-over by decreasing the actin dissociation rate by four-fold, increasing thereby the amount of F-actin in the focal adhesions, all these effects being promoted by Ser5 phosphorylation. In MCF-7 breast carcinoma cells, phorbol 12-myristate 13-acetate (PMA) treatment induced L-plastin translocation to de novo actin polymerization sites in ruffling membranes and spike-like structures and highly increased its Ser5 phosphorylation. Both inhibition studies and siRNA knock-down of PKC isozymes pointed to the involvement of the novel PKC-δ isozyme in the PMA-elicited signaling pathway leading to L-plastin Ser5 phosphorylation. Furthermore, the L-plastin contribution to actin dynamics regulation was substantiated by its association with a protein complex comprising cortactin, which is known to be involved in this process.

Conclusions/Significance

Altogether these findings quantitatively demonstrate for the first time that L-plastin contributes to the fine-tuning of actin turn-over, an activity which is regulated by Ser5 phosphorylation promoting its high affinity binding to the cytoskeleton. In carcinoma cells, PKC-δ signaling pathways appear to link L-plastin phosphorylation to actin polymerization and invasion.  相似文献   

3.

Background

Tumor cell motility and invasion is governed by dynamic regulation of the cortical actin cytoskeleton. The actin-binding protein cortactin is commonly upregulated in multiple cancer types and is associated with increased cell migration. Cortactin regulates actin nucleation through the actin related protein (Arp)2/3 complex and stabilizes the cortical actin cytoskeleton. Cortactin is regulated by multiple phosphorylation events, including phosphorylation of S405 and S418 by extracellular regulated kinases (ERK)1/2. ERK1/2 phosphorylation of cortactin has emerged as an important positive regulatory modification, enabling cortactin to bind and activate the Arp2/3 regulator neuronal Wiskott-Aldrich syndrome protein (N-WASp), promoting actin polymerization and enhancing tumor cell movement.

Methodology/Principal Findings

In this report we have developed phosphorylation-specific antibodies against phosphorylated cortactin S405 and S418 to analyze the subcellular localization of this cortactin form in tumor cells and patient samples by microscopy. We evaluated the interplay between cortactin S405 and S418 phosphorylation with cortactin tyrosine phosphorylation in regulating cortactin conformational forms by Western blotting. Cortactin is simultaneously phosphorylated at S405/418 and Y421 in tumor cells, and through the use of point mutant constructs we determined that serine and tyrosine phosphorylation events lack any co-dependency. Expression of S405/418 phosphorylation-null constructs impaired carcinoma motility and adhesion, and also inhibited lamellipodia persistence monitored by live cell imaging.

Conclusions/Significance

Cortactin phosphorylated at S405/418 is localized to sites of dynamic actin assembly in tumor cells. Concurrent phosphorylation of cortactin by ERK1/2 and tyrosine kinases enables cells with the ability to regulate actin dynamics through N-WASp and other effector proteins by synchronizing upstream regulatory pathways, confirming cortactin as an important integration point in actin-based signal transduction. Reduced lamellipodia persistence in cells with S405/418A expression identifies an essential motility-based process reliant on ERK1/2 signaling, providing additional understanding as to how this pathway impacts tumor cell migration.  相似文献   

4.
Although prostate carcinoma is an aggressive cancer preferentially metastasizing to the bones, many prostate tumors remain localized and confined to the prostate indefinitely. Prediction of the behavior of anatomically localized and moderately differentiated prostate tumors remains difficult because of lack of prognostic markers. Cell motility is an important step in the progression of epithelial tumor toward invasive metastatic carcinomas and changes in the expression and function of adhesion molecules contribute to the acquisition of a more malignant phenotype. Proline-rich tyrosine kinase 2 (Pyk2) is implicated in regulating the organization of actin cytoskeleton, a process critical for cell migration, mitosis, and tumor metastasis. In this report, we investigated whether Pyk2 played a role in the acquisition of an aggressive phenotype in prostate cell. Data reported here demonstrate that loss of Pyk2 kinase function results in induction of cell motility and migration in EPN cells, a line of non-transformed epithelial cells derived from human normal prostate tissue. Changes in motility and migration of prostate cells were associated with changes in the expression of several proteins involved in cell adhesion and reorganization of actin cytoskeleton. Ablation of Pyk2 kinase activity caused a dramatic decrease of the expression of E-cadherin and IRS1 and an increase of the expression of alpha5-integrin. In addition, a massive reorganization of actin cytoskeleton was observed. Our data indicate that Pyk2 plays a central role in the mechanism that regulate cell-cell and cell-substrate interaction and lack of its kinase activity induces prostate cells to acquire a malignant, migrating phenotype.  相似文献   

5.
Chemokines such as SDF-1α play a crucial role in orchestrating T lymphocyte polarity and migration via polymerization and reorganization of the F-actin cytoskeleton, but the role of actin-associated proteins in this process is not well characterized. In this study, we have investigated a role for L-plastin, a leukocyte-specific F-actin-bundling protein, in SDF-1α-stimulated human T lymphocyte polarization and migration. We found that L-plastin colocalized with F-actin at the leading edge of SDF-1α-stimulated T lymphocytes and was also phosphorylated at Ser(5), a site that when phosphorylated regulates the ability of L-plastin to bundle F-actin. L-plastin phosphorylation was sensitive to pharmacological inhibitors of protein kinase C (PKC), and several PKC isoforms colocalized with L-plastin at the leading edge of SDF-1α-stimulated lymphocytes. However, PKC ζ, an established regulator of cell polarity, was the only isoform that regulated L-plastin phosphorylation. Knockdown of L-plastin expression with small interfering RNAs demonstrated that this protein regulated the localization of F-actin at the leading edge of chemokine-stimulated cells and was also required for polarization, lamellipodia formation, and chemotaxis. Knockdown of L-plastin expression also impaired the Rac1 activation cycle and Akt phosphorylation in response to SDF-1α stimulation. Furthermore, L-plastin also regulated SDF-1α-mediated lymphocyte migration on the integrin ligand ICAM-1 by influencing velocity and persistence, but in a manner that was independent of LFA-1 integrin activation or adhesion. This study, therefore, demonstrates an important role for L-plastin and the signaling pathways that regulate its phosphorylation in response to chemokines and adds L-plastin to a growing list of proteins implicated in T lymphocyte polarity and migration.  相似文献   

6.
Temporal and spatial regulation of the actin cytoskeleton is vital for cell migration. Here, we show that an epithelial cell actin-binding protein, villin, plays a crucial role in this process. Overexpression of villin in doxycyline-regulated HeLa cells enhanced cell migration. Villin-induced cell migration was modestly augmented by growth factors. In contrast, tyrosine phosphorylation of villin and villin-induced cell migration was significantly inhibited by the src kinase inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2) as well as by overexpression of a dominant negative mutant of c-src. These data suggest that phosphorylation of villin by c-src is involved in the actin cytoskeleton remodeling necessary for cell migration. We have previously shown that villin is tyrosine phosphorylated at four major sites. To further investigate the role of tyrosine phosphorylated villin in cell migration, we used phosphorylation site mutants (tyrosine to phenylalanine or tyrosine to glutamic acid) in HeLa cells. We determined that tyrosine phosphorylation at residues 60, 81, and 256 of human villin played an essential role in cell migration as well as in the reorganization of the actin cytoskeleton. Collectively, these studies define how biophysical events such as cell migration are actuated by biochemical signaling pathways involving tyrosine phosphorylation of actin binding proteins, in this case villin.  相似文献   

7.
Caldesmon phosphorylation in actin cytoskeletal remodeling   总被引:2,自引:0,他引:2  
Caldesmon is an actin-binding protein that is capable of stabilizing actin filaments against actin-severing proteins, inhibiting actomyosin ATPase activity, and inhibiting Arp2/3-mediated actin polymerization in vitro. Caldesmon is a substrate of cdc2 kinase and Erk1/2 MAPK, and phosphorylation by either of these kinases reverses the inhibitory effects of caldesmon. Cdc2-mediated caldesmon phosphorylation and the resulting dissociation of caldesmon from actin filaments are essential for M-phase progression during mitosis. Cells overexpressing the actin-binding carboxyterminal fragment of caldesmon fail to release the fragment completely from actin filaments during mitosis, resulting in a higher frequency of multinucleated cells. PKC-mediated MEK/Erk/caldesmon phosphorylation is an important signaling cascade in the regulation of smooth muscle contraction. Furthermore, PKC activation has been shown to remodel actin stress fibers into F-actin-enriched podosome columns in cultured vascular smooth muscle cells. Podosomes are cytoskeletal adhesion structures associated with the release of metalloproteases and degradation of extracellular matrix during cell invasion. Interestingly, caldesmon is one of the few actin-binding proteins that is associated with podosomes but excluded from focal adhesions. Caldesmon also inhibits the function of gelsolin and Arp2/3 complex that are essential for the formation of podosomes. Thus, caldesmon appears to be well positioned for playing a modulatory role in the formation of podosomes. Defining the roles of actin filament-stabilizing proteins such as caldesmon and tropomyosin in the formation of podosomes should provide a more complete understanding of molecular systems that regulate the remodeling of the actin cytoskeleton in cell transformation and invasion.  相似文献   

8.
Several studies have reported the up-regulation of EphB receptor-tyrosine kinases and ephrin-B ligands in a variety of tumors, suggesting a functional relation between EphB/ephrin-B signaling and tumor progression. The ability of the EphB receptors to regulate cell migration and promote angiogenesis likely contributes to tumor progression and metastasis. Here we show that EphB receptors, and especially EphB4, regulate the migration of murine melanoma cells. Highly malignant melanoma cells express the highest levels of EphB4 receptor and migrate faster than less malignant melanoma cells. Furthermore, inhibition of EphB receptor forward signaling by overexpression of a form of EphB4 lacking the cytoplasmic portion or by treatment with competitively acting soluble EphB2-Fc results in slower melanoma cell migration. In contrast, overexpression of active EphB4 significantly enhances cell migration. The effects of EphB4 receptor on cell migration and cell morphology require its kinase activity because the inhibition of EphB4 kinase activity by overexpression of kinase dead EphB4 inhibits cell migration and affects the organization of actin cytoskeleton. Activation of EphB4 receptor with its ligand ephrin-B2-Fc enhances the migratory ability of melanoma cells and increases RhoA activity, whereas inhibiting EphB receptor forward signaling decreases RhoA activity. Moreover, expression of dominant negative RhoA blocks the effects of active EphB4 on cell migration and actin organization. These data suggest that EphB4 forward signaling contributes to the high migratory ability of invasive melanoma cells by influencing RhoA-mediated actin cytoskeleton reorganization.  相似文献   

9.
Reorganization of cytoskeleton via actin remodeling is a basic step of cell locomotion. Although cell migration of normal and cancer cells can be stimulated by a variety of intra- and extra-cellular factors, all paths ultimate on the regulation of cofilin activity. Cofilin is a small actin-binding protein able to bind both forms of actin, globular and filament, and is regulated by phosphorylation at Serine 3. Following phosphorylation at serine 3 cofilin is inactive, therefore cannot bind actin molecules and cytoskeleton remodeling is impaired. The histone methyltransferase EZH2 is frequently over expressed in many tumour types including colorectal cancer (CRC). EZH2 over activity, which results in epigenetic gene-silencing, has been associated with many tumour properties including invasion, angiogenesis and metastasis but little is known about the underneath molecular mechanisms. Herein, we report that EZH2 is able to control cofilin activity and consequently cell locomotion of CRC cell lines through a non-conventional novel axis that involves integrin signaling. Indeed, we show how genetic and pharmacological inhibition (DZNep and GSK343) of EZH2 function produces hyper phosphorylation of cofilin and reduces cell migration. We previously demonstrated by chromatin immuno-precipitation that Integrin alpha 2 (ITGα2) expression is regulated by EZH2. In the present study we provide evidence that in EZH2-silenced cells the signaling activity of the de-repressed ITGα2 is able to increase cofilin phosphorylation, which in turn reduces cell migration. This study also proposes novel mechanisms that might provide new anti-metastatic strategies for CRC treatment based on the inhibition of the epigenetic factor EZH2 and/or its target gene.  相似文献   

10.
Epidemiological evidence suggests that obesity can significantly increase the risk of various cancers, although the mechanisms underlying this link are completely unknown. Here, we analyzed the effect of adipocytes on melanoma and colon cancer cells proliferation, migration, and invasion. The potential effects of conditioned media (CM) obtained from differentiated mouse 3T3-L1 cells and human adipose tissue-derived mesenchymal stem cells (hAMSC) on the proliferation, migration, and invasion of B16BL6 melanoma and colon 26-L5 cancer cells were investigated. The 3T3-L1 and hAMSC CM increased cell proliferation, migration, and invasion in both the cell lines. In addition, adipocytes CM increased matrix metalloproteinase 9 (MMP-9) and MMP-2 activity in both B16BL6 and colon 26-L5 cells. These effects were found to be associated with an increased expression of various oncogenic proteins in B16BL6 and colon 26-L5 cells. Also, adipocyte CM induced Akt and mTOR activation in both tumor cell lines, and the pharmacological inhibition of Akt and mTOR blocked the CM induced Akt as well as mTOR activation and CM-stimulated melanoma and colon cancer cell proliferation, migration, and invasion. These data suggest that adipocyte promotes melanoma and colon cancer progression through modulating the expression of diverse proteins associated with cancer growth and metastasis as well as modulation of the Akt/mTOR signaling.  相似文献   

11.
Ezrin, primarily acts as a linker between the plasma membrane and the cytoskeleton, is involved in many cellular functions, including regulation of actin cytoskeleton, control of cell shape, adhesion, motility, and modulation of signaling pathways. Although ezrin is now recognized as a key component in tumor metastasis, its roles and the underlying mechanisms remain unclear. In the present study, we chose highly metastatic human lung carcinoma 95D cells, which highly express the ezrin proteins, as a model to examine the functional roles of ezrin in tumor suppression. An ezrin-silenced 95D cell line was established using lentivirus-mediated short hairpin RNA method. CCK-8 assay and soft agar assay analysis showed that downregulation of ezrin significantly suppressed the tumorigenicity and proliferation of 95D cells in vitro. cell migration and invasion studies showed that ezrin-specific deficiency in the cells caused the substantial reduction of the cell migration and invasion. In parallel, it also induced rearrangements of the actin cytoskeleton. Flow cytometry assay showed that changes in the ezrin protein level significantly affected the cell cycle distribution and eventual apoptosis. Furthermore, further studies showed that ezrin regulated the expression level of E-cadherin and CD44, which are key molecules involved in cell growth, migration, and invasion. Meanwhile, the suppression of ezrin expression also sensitized cells to antitumor drugs. Altogether, our results demonstrated that ezrin played an important role in the tumorigenicity and metastasis of lung cancer cells, which will benefit the development of therapeutic strategy for lung cancer.  相似文献   

12.

Background

Estrogen is an established enhancer of breast cancer development, but less is known on its effect on local progression or metastasis. We studied the effect of estrogen receptor recruitment on actin cytoskeleton remodeling and breast cancer cell movement and invasion. Moreover, we characterized the signaling steps through which these actions are enacted.

Methodology/Principal Findings

In estrogen receptor (ER) positive T47-D breast cancer cells ER activation with 17β-estradiol induces rapid and dynamic actin cytoskeleton remodeling with the formation of specialized cell membrane structures like ruffles and pseudopodia. These effects depend on the rapid recruitment of the actin-binding protein moesin. Moesin activation by estradiol depends on the interaction of ERα with the G protein Gα13, which results in the recruitment of the small GTPase RhoA and in the subsequent activation of its downstream effector Rho-associated kinase-2 (ROCK-2). ROCK-2 is responsible for moesin phosphorylation. The Gα13/RhoA/ROCK/moesin cascade is necessary for the cytoskeletal remodeling and for the enhancement of breast cancer cell horizontal migration and invasion of three-dimensional matrices induced by estrogen. In addition, human samples of normal breast tissue, fibroadenomas and invasive ductal carcinomas show that the expression of wild-type moesin as well as of its active form is deranged in cancers, with increased protein amounts and a loss of association with the cell membrane.

Conclusions/Significance

These results provide an original mechanism through which estrogen can facilitate breast cancer local and distant progression, identifying the extra-nuclear Gα13/RhoA/ROCK/moesin signaling cascade as a target of ERα in breast cancer cells. This information helps to understand the effects of estrogen on breast cancer metastasis and may provide new targets for therapeutic interventions.  相似文献   

13.
Ou-Yang M  Liu HR  Zhang Y  Zhu X  Yang Q 《Biochimie》2011,93(5):954-961
Three closely related proteins, ezrin, radixin, and moesin (ERM), which primarily act as a linker between the plasma membrane and the cytoskeleton, are involved in many cellular functions, including regulation of actin cytoskeleton, control of cell shape, adhesion and motility, and modulation of signaling pathways. Although, ezrin is now recognized as a key component in tumor metastasis, the functional role of the radixin and moesin in tumor metastasis has not been established. In the present study, we chose highly metastatic human gastric carcinoma SGC-7901 cells, which express all of the ERM proteins as a model to examine the functional roles of these proteins in tumor metastasis. Ezrin, radixin or moesin stable knockdown SGC-7901 cell lines were established using siRNA methodology. In vitro cell migration and invasion studies showed that either ezrin, radixin or moesin specific deficiency in the cells caused the substantial reduction of the cell migration and invasion. Western blotting and immunofluorescence analysis showed that the expression of E-cadherin was also significantly increased when any member of ERM proteins was downregulated. Our results indicated that these three ERM proteins play similar roles in the SGC-7901 cell metastatic potential and their roles of upregulating the expression of E-cadherin may be important in tumor progression.  相似文献   

14.
Phosphorylation of actin-binding proteins plays a pivotal role in the remodeling of the actin cytoskeleton to regulate cell migration. Palladin is an actin-binding protein that is phosphorylated by growth factor stimulation; however, the identity of the involved protein kinases remains elusive. In this study, we report that palladin is a novel substrate of extracellular signal-regulated kinase (ERK). Suppression of ERK activation by a chemical inhibitor reduced palladin phosphorylation, and expression of active MEK alone was sufficient for phosphorylation. In addition, an in vitro kinase assay demonstrated direct palladin phosphorylation by ERK. We found that Ser77 and Ser197 are essential residues for phosphorylation. Although the phosphorylation of these residues was not required for actin cytoskeletal organization, we found that expression of non-phosphorylated palladin enhanced cell migration. Finally, we show that phosphorylation inhibits the palladin association with Abl tyrosine kinase. Taken together, our results indicate that palladin phosphorylation by ERK has an anti-migratory function, possibly by modulating interactions with molecules that regulate cell migration.  相似文献   

15.
Lener T  Burgstaller G  Gimona M 《FEBS letters》2004,556(1-3):221-226
Metastasis of diseased cells is the basic event leading to death in individuals with cancer. Establishment of metastasis requires that tumour cells migrate from the site of the primary tumour into the circulation system, escape from the vasculature and form secondary tumours at novel sites. These processes depend to a large degree on cytoskeletal remodeling. We show here that multiple copies of the short actin-binding module CLIK(23) from human or Caenorhabditis elegans calponin proteins effectively inhibit cell motility on two dimensional matrices and suppress soft agar colony formation of metastatic melanoma and adenocarcinoma cells of murine and human origin. Ectopic expression of CLIK(23) modules for 30 days results in the formation of multinucleated cells. The repeat displays true modular behaviour, resulting in increased cytoskeletal effects in direct correlation with the increase in number of modules. Our results demonstrate that the role of calponin in the signature profile of metastasising cells is that of a mechanical stabiliser of the actin cytoskeleton, which interferes with actin turnover by binding at a unique interface along the actin filament.  相似文献   

16.
BackgroundEzrin, links the plasma membrane to the actin cytoskeleton, and plays an important role in the development and progression of human esophageal squamous cell carcinoma (ESCC). However, the roles of ezrin S66 phosphorylation in tumorigenesis of ESCC remain unclear.MethodsDistribution of ezrin in membrane and cytosol fractions was examined by analysis of detergent-soluble/-insoluble fractions and cytosol/membrane fractionation. Both immunofluorescence and live imaging were used to explore the role of ezrin S66 phosphorylation in the behavior of ezrin and actin in cell filopodia. Cell proliferation, migration and invasion of ESCC cells were investigated by proliferation and migration assays, respectively. Tumorigenesis, local invasion and metastasis were assessed in a nude mouse model of regional lymph node metastasis.ResultsEzrin S66 phosphorylation enhanced the recruitment of ezrin to the membrane in ESCC cells. Additionally, non-phosphorylatable ezrin (S66A) significantly prevented filopodia formation, as well as caused a reduction in the number, length and lifetime of filopodia. Moreover, functional experiments revealed that expression of non-phosphorylatable ezrin (S66A) markedly suppressed migration and invasion but not proliferation of ESCC cells in vitro, and attenuated local invasion and regional lymph node metastasis, but not primary tumor growth of ESCC cells in vivo.ConclusionEzrin S66 phosphorylation enhances filopodia formation, contributing to the regulation of invasion and metastasis of esophageal squamous cell carcinoma cells.  相似文献   

17.
Fimbrin is an actin-bundling protein found in intestinal microvilli, hair cell stereocilia, and fibroblast filopodia. The complete protein sequence (630 residues) of chicken intestine fimbrin has been determined from two full-length cDNA clones. The sequence encodes a small amino-terminal domain (115 residues) that is homologous with two calcium-binding sites of calmodulin and a large carboxy-terminal domain (500 residues) consisting of a fourfold-repeated 125-residue sequence. This repeat is homologous with the actin-binding domain of alpha-actinin and the amino-terminal domains of dystrophin, actin-gelation protein, and beta-spectrin. The presence of this duplicated domain in fimbrin links actin bundling proteins and gelation proteins into a common family of actin cross-linking proteins. Fimbrin is also homologous in sequence with human L-plastin and T-plastin. L-plastin is found in only normal or transformed leukocytes where it becomes phosphorylated in response to IL 1 or phorbol myristate acetate. T-plastin is found in cells of solid tissues where it does not become phosphorylated. Neoplastic cells derived from solid tissues express both isoforms. The differences in expression, sequence, and phosphorylation suggest possible functional differences between fimbrin isoforms.  相似文献   

18.
19.
The majority of patients who succumb to cancer die from metastatic disease progression rather than from the primary tumor. Elucidation of the mechanisms underlying tissue-specific metastasis is essential to the development of effective therapies. The mitogen-activated protein kinase kinase (MEK) pathway is frequently activated in human tumors and has been shown to regulate genes involved in proliferation, migration, and invasion. Studies with MEK-transformed EpH4 mouse mammary epithelial cells showed that these cells are highly tumorigenic but have a limited metastatic ability. Detachment of epithelial cells from the extracellular matrix causes disruption of the actin cytoskeleton and induces apoptosis. Several metastatic breast carcinoma cell lines have been shown to be resistant to cell death following actin disruption. This death-resistant phenotype can be modeled by overexpressing the antiapoptotic Bcl-2 protein in cells. This suggests that mechanisms that regulate survival of extravasated tumor cells may enhance metastatic efficiency. Therefore, we examined whether expression of Bcl-2 in MEK-transformed EpH4 mammary epithelial cells could provide a survival advantage and promote metastasis. Expression of Bcl-2 in parental EpH4 mammary epithelial cells or MEK-transformed cells was insufficient to induce increased migration, invasion, or tumor development. However, Bcl-2 expression markedly enhanced spontaneous lung metastasis from orthotopically implanted primary tumors. These results clearly show that mechanisms that regulate primary tumor development are distinct from those that promote metastasis and that assays designed to isolate genes involved in transformation may fail to identify genes that are critical regulators of metastasis.  相似文献   

20.
Reactive oxygen species (ROS) generation is linked to dynamic actin cytoskeleton reorganization, which is involved in tumor cell motility and metastasis. Thus, inhibition of ROS generation and actin polymerization in tumor cells may represent an effective anticancer strategy. However, the molecular basis of this signaling pathway is currently unknown. Here, we show that the Ecklonia cava-derived antioxidant dieckol downregulates the Rac1/ROS signaling pathway and inhibits Wiskott-Aldrich syndrome protein (WASP)-family verprolin-homologous protein 2 (WAVE2)-mediated invasive migration of B16 mouse melanoma cells. Steady-state intracellular ROS levels were higher in malignant B16F10 cells than in parental, nonmetastatic B16F0 cells. Elevation of ROS by H2O2 treatment increased migration and invasion ability of B16F0 cells to level similar to that of B16F10 cells, suggesting that intracellular ROS signaling mediates the prometastatic properties of B16 mouse melanoma cells. ROS levels and the cell migration and invasion ability of B16 melanoma cells correlated with Rac1 activation and WAVE2 expression. Overexpression of dominant negative Rac1 and depletion of WAVE2 by siRNA suppressed H2O2-induced cell invasion of B16F0 and B16F10 cells. Similarly, dieckol attenuates the ROS-mediated Rac1 activation and WAVE2 expression, resulting in decreased migration and invasion of B16 melanoma cells. In addition, we found that dieckol decreases association between WAVE2 and NADPH oxidase subunit p47phox. Therefore, this finding suggests that WAVE2 acts to couple intracellular Rac1/ROS signaling to the invasive migration of B16 melanoma cells, which is inhibited by dieckol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号