首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Androgens play a critical role in the development of the male reproductive system, including the positioning of the gonads. It is not clear, however, which developmental processes are influenced by androgens and what are the target tissues and cells mediating androgen signaling during testicular descent. Using a Cre-loxP approach, we have produced male mice (GU-ARKO) with conditional inactivation of the androgen receptor (Ar) gene in the gubernacular ligament connecting the epididymis to the caudal abdominal wall. The GU-ARKO males had normal testosterone levels but developed cryptorchidism with the testes located in a suprascrotal position. Although initially subfertile, the GU-ARKO males became sterile with age. We have shown that during development, the mutant gubernaculum failed to undergo eversion, a process giving rise to the processus vaginalis, a peritoneal outpouching inside the scrotum. As a result, the cremasteric sac did not form properly, and the testes remained in the low abdominal position. Abnormal development of the cremaster muscles in the GU-ARKO males suggested the participation of androgens in myogenic differentiation; however, males with conditional AR inactivation in the striated or smooth muscle cells had a normal testicular descent. Gene expression analysis showed that AR deficiency in GU-ARKO males led to the misexpression of genes involved in muscle differentiation, cell signaling, and extracellular space remodeling. We therefore conclude that AR signaling in gubernacular cells is required for gubernaculum eversion and outgrowth. The GU-ARKO mice provide a valuable model of isolated cryptorchidism, one of the most common birth defects in newborn boys.  相似文献   

2.
3.
During male development, the testes move from a high intraabdominal position and descend into the scrotum. The gubernaculum, an inguinoscrotal ligament connecting the testis to the lower abdomen, is believed to play a critical role in this process. The first stage of testicular descent is controlled by insulin like3 hormone (INSL3), produced in testicular Leydig cells. Deletion of Insl3 or its receptor, Rxfp2, in mice causes cryptorchidism. We produced Cre/loxP regulated shRNA transgenic mice targeting RXFP2 expression. We have shown that the transgene was able to reduce Rxfp2 gene expression and thus behaved as a hypomorphic allele of Rxfp2. Variable degrees of uni- and bilateral cryptorchidism was detected in males with the activated shRNA transgene on an Rxfp2+/- background. Conditional suppression of Rxfp2 in the gubernaculum led to cryptorchidism. Gene expression analysis of a mutant cremasteric sac using Illumina microarrays indicated abnormal expression of a significant number of genes in Wnt/β-catenin and Notch pathways. We have demonstrated profound changes in the expression pattern of β-catenin, Notch1, desmin, and androgen receptor (AR), in Rxfp2-/- male embryos, indicating the role of INSL3 in proliferation, differentiation, and survival of specific cellular components of the gubernaculum. We have shown that INSL3/RXFP2 signaling is essential for myogenic differentiation and maintenance of AR-positive cells in the gubernaculum. Males with the deletion of β-catenin or Notch1 in the gubernacular ligament demonstrated abnormal development. Our data indicates that β-catenin and Notch pathways are potential targets of INSL3 signaling during gubernacular development.  相似文献   

4.
At present, male infertility remains an urgent medical concern. From year to year, despite advances in methods of diagnosis and treatment, medicine encounters an increasing number of infertile couples with male infertility playing a leading role. Prerequisites for fertility disorders very frequently appear in childhood. Urologists consider cryptorchidism a leading cause of male infertility. The aim of our study was to establish the relationship between testicular descent to the scrotum and the age of the fetus. Material and methods. The study was conducted using 195 specimens of male fetuses aged 4–10 months with 81.0–375.0 mm parietalcoccygeal length (PCL) using the methods of macromicroscopic, conventional, and microslide preparation under control of binocular loupes and morphometry. Results. At the beginning of the fetal period of human ontogenesis (fetuses 81.0–135.0 mm PCL), the right and left testicles are mainly located above the corresponding deep inguinal ring and they are less often located in a region of the iliac fossae. An analysis of topographic and anatomical features of the male reproductive glands in 5-month-old fetuses (136.0–185.0 mm PCL) revealed that the testicles were located within the large pelvis, with the lower end of both the right and left testicles located above the entrance to the deep inguinal ring at a distance that equals the length of the pelvic part of the gubernaculum testis—3.2 ± 0.3 mm (right) and 2.8 ± 0.2 mm (left). In 11 fetuses aged 7 months (231.0–270.0 mm PCL), the lower ends of the testicles and their gubernaculum testis are immersed in the corresponding deep inguinal ring. In eight fetuses, the testicles were within the deep inguinal ring. A combination of many factors contributes to the final migration of a testicle through the inguinal canal into the scrotum (fetuses: 270.0 cm–290.0 mm PCL), including muscle contraction of the anterolateral abdominal wall, an increase in intra-abdominal pressure, contractile capacity of the gubernaculum testis of the testicle, the vaginal process of the peritoneum, and the neuro-muscular system. We believe that the gubernaculum testis is a particularly significant factor in testicular descent to the scrotum. The gubernaculum testis is maximally developed prior to migration of a testicle through the inguinal canal (eighth month of antenatal development), as evidenced by the prevalence of smooth muscle cells over connective tissue elements. An analysis of testicular topography in fetuses aged 9 months (311.0–345.0 mm PCL) revealed that testicles were located in the scrotum in nine fetuses, near the superficial inguinal ring in six fetuses, within the inguinal canal in four cases, and in the deep inguinal ring in one case. In fetuses aged 10 months (346.0–375.0 mm PCL), testicles were located in the scrotum in 13 cases and within the inguinal canal in seven cases. According to our research, the fusion of layers of the vaginal process of the peritoneum occurs in fetuses aged 9–10 months, resulting in the disappearance of the communication of its cavity with the peritoneum. A delay in the fusion of the peritoneal vaginal process layers at the end of the fetal period is an anatomic prerequisite for the occurrence of congenital inguinal-scrotal hernias. Conclusions. It has been found that the rate of testicular descent to the scrotum does not always coincide with the corresponding stage of fetal development. An accelerated development of the gubernaculum testis in fetuses aged 5–8 months is a major factor of heterochronic development of a testicle and subsequent testicular descent into the scrotum.  相似文献   

5.
Targeted disruption of the Insl3 gene causes bilateral cryptorchidism.   总被引:21,自引:0,他引:21  
The sexual dimorphic position of the gonads in mammals is dependent on differential development of two ligaments, the cranial suspensory ligament (CSL) and the gubernaculum. During male embryogenesis, outgrowth of the gubernaculum and regression of the CSL result in transabdominal descent of the testes, whereas in the female, development of the CSL in conjunction with failure of the gubernaculum development holds the ovaries in a position lateral to the kidneys. Several lines of evidence suggest that regression of the CSL and induction of gubernaculum development are mediated by testosterone and a yet unidentified testicular factor, respectively. The Insl3 gene (originally designated Ley I-L), a member of the insulin-like superfamily, is specifically expressed in Leydig cells of the fetal and postnatal testis and in theca cells of the postnatal ovary. Here we show that male mice homozygous for a targeted deletion of the Insl3 locus exhibit bilateral cryptorchidism with free moving testes and genital ducts. These malformations are due to failure of gubernaculum development during embryogenesis. In double-mutant male mice for Insl3 and androgen receptor genes, testes are positioned adjacent to the kidneys and steadied in the abdomen by the CSL. These findings demonstrate, that the Insl3 induces gubernaculum development in an androgen-independent way, while androgen-mediated regression of the CSL occurs independently from Insl3.  相似文献   

6.
The descent of the testis in the fetal calf is reviewed, and the role in that process of the swelling reaction of the gubernaculum testis is discussed. The testes of 30 Dutch Friesian fetuses were examined by dissection and light microscopy of sections prepared from chemically and frozen-fixed specimens. The gubernaculum remains unattached to the scrotal fasciae until descent is completed. Shortening of the intra-abdominal gubernaculum and displacement of the testis begins at fetal week 11; the swelling reaction of the gubernaculum occurs between weeks 14 and 15. The testis is at the deep inguinal ring by week 15, and by week 20 it is in the scrotal position and the gubernaculum has regressed. It is proposed that the swelling of the gubernaculum dilates the vaginal ring and enlarges the inguinal canal. The clinical importance of these anatomical relationships and changes is discussed.  相似文献   

7.
Two estrogen receptors, ESR1 and ESR2, are responsible for the classical actions of estrogens in mammalian species. They display different spatiotemporal expression patterns and nonoverlapping functions in various tissues and physiological conditions. In this study, a novel knock‐in mouse line that expresses codon‐improved Cre recombinase (iCre) under regulation of the natural Esr1 promoter (Esr1–iCre) was developed. Functional characterization of iCre expression by crossing them with reporter lines (ROSA26‐lacZ or Ai9‐RFP) showed that iCre is faithfully expressed in Esr1‐lineage cells. This novel transgenic mouse line will be a useful animal model for lineage‐tracing Esr1‐expressing cells, selective gene ablation in the Esr1‐lineage cells and for generating global Esr1 knockout mice.  相似文献   

8.
The embryology of testicular descent   总被引:3,自引:0,他引:3  
C J Wensing 《Hormone research》1988,30(4-5):144-152
  相似文献   

9.
10.
Reproductive biology of the relaxin-like factor (RLF/INSL3)   总被引:11,自引:0,他引:11  
The relaxin-like factor (RLF), which is the product of the insulin-like factor 3 (INSL3) gene, is a new circulating peptide hormone of the relaxin-insulin family. In male mammals, it is a major secretory product of the testicular Leydig cells, where it appears to be expressed constitutively but in a differentiation-dependent manner. In the adult testis, RLF expression is a good marker for fully differentiated adult-type Leydig cells, but it is only weakly expressed in prepubertal immature Leydig cells or in Leydig cells that have become hypertrophic or transformed. It is also an important product of the fetal Leydig cell population, where it has been demonstrated using knockout mice to be responsible for the second phase of testicular descent acting on the gubernaculum. INSL3 knockout mice are cryptorchid, and in estrogen-induced cryptorchidism, RLF levels in the testis are significantly reduced. RLF is also made in female tissues, particularly in the follicular theca cells of small antral follicles and in the corpus luteum of the cycle and pregnancy. The ruminant ovary has a very high level of RLF expression, and analysis of primary cultures of ovarian theca-lutein cells indicated that, as in the testis, expression is probably constitutive but differentiation dependent. Female INSL3 knockout mice have altered estrous cycles, where RLF may be involved in follicle selection, an idea strongly supported by observations on bovine secondary follicles. Recently, a novel 7-transmembrane domain receptor (LGR8 or Great) has been tentatively identified as the RLF receptor, and its deletion in mice leads also to cryptorchidism.  相似文献   

11.
There are two estrogen receptor (ER) subtypes in fish, Esr1 and Esr2 (formerly ERalpha and ERbeta), and in some species the Esr2 subtype has two forms, Esr2b (formerly ERbeta1) and Esr2a (formerly ERbeta2 or ERgamma). There is little information, however, on the different characteristics and functional significance of the two receptor subtypes in fish, and this is especially relevant for understanding the disruption of ER signaling by chemicals with estrogenic activity. In this study, the full-length cDNAs for esr1 (3167 base pairs [bp]) and esr2b (2318 bp), and a partial-length (267 bp) cDNA for esr2a, were cloned and characterized in fathead minnow (fhm; Pimephales promelas), and their patterns of expression established during development and in adults. Real-time polymerase chain reaction revealed some clear distinctions in the ontogenic and tissue expression of fhm esr1, esr2b, and esr2a, suggesting different functions for each ER subtype. Fhm ERs were expressed in brain, pituitary, liver, gonad, intestine, and gill of male and female fish, esr2b and esr2a were also expressed in muscle. Fhm esr1 and esr2b were expressed predominantly in the liver, whereas fhm esr2a was expressed predominantly in intestine and was lowest expressed in liver. Responses of the different hepatic ERs in male fathead minnow exposed to 100 ng estradiol/L differed, with a significant induction (5-fold) of fhm esr1 but no effect on esr2b or esr2a expression, suggesting different mechanisms of regulation for the different ERs. The detailed characterization of ERs in fathead minnow provides the foundation for understanding the molecular basis of estrogenic disruption in fish.  相似文献   

12.
Masculinization of the altricial rodent brain is driven by estrogen signaling during a perinatal critical period. Genetic deletion of estrogen receptor alpha (Esr1/ERα) results in altered hypothalamic-pituitary-gonadal (HPG) axis signaling and a dramatic reduction of male sexual and territorial behaviors. However, the role of ERα in masculinizing distinct classes of neurons remains unexplored. We deleted ERα in excitatory or inhibitory neurons using either a Vglut2 or Vgat driver and assessed male behaviors. We find that Vglut2-Cre;Esr1lox/lox mutant males lack ERα in the ventrolateral region of the ventromedial hypothalamus (VMHvl) and posterior ventral portion of the medial amygdala (MePV). These mutants recapitulate the increased serum testosterone levels seen with constitutive ERα deletion, but have none of the behavioral deficits. In contrast, Vgat-Cre;Esr1lox/lox males with substantial ERα deletion in inhibitory neurons, including those of the principal nucleus of the bed nucleus of the stria terminalis (BNSTpr), posterior dorsal MeA (MePD), and medial preoptic area (MPOA) have normal testosterone levels, but display alterations in mating and territorial behaviors. These mutants also show dysmasculinized expression of androgen receptor (AR) and estrogen receptor beta (Esr2). Our results demonstrate that ERα masculinizes GABAergic neurons that gate the display of male-typical behaviors.  相似文献   

13.
14.
Estrogen's presence in the male reproductive system has been known for over 60 years, but its potential function in the epididymis remains an important area of investigation. Estrogen is synthesized by germ cells, producing a relatively high concentration in rete testis fluid. There are two estrogen receptors (ESR), the presence of which in the head of the epididymis is well documented and consistent between species; however, in other regions of the epididymis, their expression appears to be isotype, species, and cell specific. ESR1 is expressed constitutively in the epididymis; however, its presence is downregulated by high doses of estrogen, making the design of experiments complicated, as the phenotype of the Cyp19a1(-/-) mouse does not resemble that of the Esr1(-/-) mouse. Ligand-independent and DNA-binding Esr1 mutant models further demonstrate the complexity and importance of both signaling pathways in maintenance of efferent ductules and epididymis. Data now reveal the presence of not only classical nuclear receptors, but also cytoplasmic ESR and rapid responding membrane receptors; however, their importance in the epididymis remains undetermined. ESR1 regulates ion transport and water reabsorption in the efferent ducts and epididymis, and its regulation of other associated genes is continually being uncovered. In the male, some genes, such as Aqp9 and Slc9a3, contain both androgen and estrogen response elements and are dually regulated by these hormones. While estrogen pathways are a necessity for fertility in the male, future studies are needed to understand the interplay between androgens and estrogens in epididymal tissues, particularly in cell types that contain both receptors and their cofactors.  相似文献   

15.
Reducing endogenous estrogen leads to increased proliferation of porcine Sertoli cells during the first 2 months of life. The resulting increase in porcine Sertoli cell numbers is maintained through puberty. The reduced estrogen appears to be the direct hormonal mediator because essentially no changes are observed in other hormones. However, the mechanism for this effect on Sertoli cell proliferation is unknown. The objective of these studies was to evaluate estrogen receptors alpha and beta (ESR1 and ESR2) in conjunction with androgen receptor (AR) on Sertoli cells and other testicular cell types, as an initial step toward understanding how reduced estrogen leads to increased Sertoli cell numbers. Testis sections from treated animals (aromatase inhibition to decrease endogenous estrogen beginning at 1 week of age) and from littermate controls treated with vehicle were subjected to immunocytochemical labeling for ESR1, ESR2, and AR. Three observers scored Sertoli cells, interstitial cells, peritubular myoid cells, and germ cells for intensity of labeling (0: absent; 1+: weak; 2+: moderate; or 3+: strong labeling). AR in Sertoli cells was readily detected at 1 week of age, was very faint in 2-month vehicle controls, and labeling appeared to increase in 3-month vehicle controls. AR in Sertoli cells, interstitial cells, and apparently germ cells was increased in treated animals at 2 months of age compared with the vehicle controls. This increase was confirmed in western blots. ESR1 and ESR 2 were clearly present in Sertoli cells from 1-week-old animals; ESR in Sertoli cells generally decreased with age with the decrease more apparent for ESR2. ESR1 in Sertoli cells and peritubular myoid cells exhibited some treatment-related effects but reduction of endogenous estrogen did not appear to affect ESR2 in the boar testis. The observed alterations in AR and ESR1 may mediate the increases in Sertoli cell proliferation following inhibition of endogenous estrogen production or may reflect the altered function of the Sertoli cells and peritubular myoid cells.  相似文献   

16.
Estrogen, largely produced in testis and adrenal gland, may play important roles in male reproduction. Most of the effects of estrogens are mediated by binding of estrogen to one or both of the two estrogen receptor (ER) subtypes alpha and beta. Recently, they have been described in testis, prostate, and efferent ducts, mostly in rodents. The goal of this study was to prove the evidence of ERs in human corpus cavernosum and male urethra, exploring the protein expression of these receptors by immunohistochemistry. Corpus cavernosum and corpus spongiosum smooth muscle was immunoreactive for the androgen receptor (AR), ER alpha, and strongly for ER beta. Endothelial cells were negative for AR, sporadically positive for ER alpha, and positive for ER beta. Urethral epithelium showed strong nuclear expression of AR, predominantly in the basal cell layer, and nuclear expression of ER alpha in the intermediate cells. ER beta was highly expressed in almost all urethral nuclei and, much more weakly, in cytoplasm. Progesterone receptor (PGR) was negative in all cases and all tissues. These results represent the first report that ER alpha and particularly ER beta are regularly expressed in human penile tissue.  相似文献   

17.
Murine CD46 (mCD46) is a type 1 membrane protein expressed predominantly in testicular germ cells, the distribution profile of which is in contrast to that of human CD46 showing a ubiquitous tissue distribution. We have identified an additional message of mCD46 that encodes a putative secretory form [Nomura et al. (1999) Immunogenetics 50, 245-254]. Here, we cloned three cDNAs encoding putative soluble CD46 from murine testis. These soluble form messages were yielded on insertion of unidentified nucleotide sequences, 77, 179, and 73 ntds, into the junctions between the SCR3 and SCR4 (variant 2), ST(c) and UK (variant 3), and SCR4 and ST(c) (variant 1) domains, respectively, the last one corresponding to the reported soluble form. The exons corresponding to these three inserts were identified in the murine CD46 genome, indicating that the alternative splicing of mRNA participates in the generation of these various CD46 messages. In normal mouse sera and cell lines, however, virtually no soluble CD46 was detected on immunoblotting. On Northern blotting analysis with specific probes, on the other hand, variant 1 was found to be predominantly expressed in the liver and heart. In addition, all variant messages were detected on PCR in all organs examined. When a rabbit cell line, RK13 cells, was transfected with cDNA of variant 1, protein synthesis was detected on immunoblotting. Although the mCD46 protein production was inefficient, this variant 1 exhibited factor I-cofactor activity as to inhibition of the complement cascade. Since the mCD46 protein was reported to be markedly up-regulated on infection of murine cells with mCMV, the soluble mCD46 proteins may act as a complement regulator that controls the systemic complement system under the conditions of a viral infection.  相似文献   

18.
Abnormalities of testicular descent   总被引:11,自引:0,他引:11  
Testicular descent occurs in two stages. The transabdominal phase (8–15 weeks) is controlled by enlargement of the caudal genito-inguinal ligament (gubernaculum) and regression of the cranial ligament. Insulin-like 3 from the Leydig cell appears to be the prime stimulator of gubernacular growth, augmented by Müllerian inhibiting substance/anti-Müllerian hormone. Testosterone causes regression of the cranial ligament. The inguinoscrotal phase (25–35 weeks) requires the migration of the gubernaculum from the groin to the scrotum; this migration is guided by the genito-femoral nerve releasing calcitonin gene-related peptide under the influence of androgen. The neonatal gonocyte transforms into a type A spermatogonium at 3–12 months of age, a step that is now known to be crucial for subsequent fertility, as the stem cells for spermatogenesis are created in this structure. This step is blocked in undescended testis and, hence, orchidopexy is currently recommended at 6–12 months of age. Congenital cryptorchidism is caused by the failure of gubernacular migration to the scrotum (1%–2%) but we now recognise that another 1%–2% of boys have acquired cryptorchidism, secondary to the failure of spermatic cord elongation with growth of the boy. These latter cases come to operation at 5–10 years of age. Surgery remains the mainstay of treatment, as hormonal therapy has not been proven to be effective, presumably because testicular descent is a complex anatomical mechanism.  相似文献   

19.
In various species, androgens and estrogens regulate the function of testicular Leydig, Sertoli, peritubular myoid, and germ cells by binding to their respective receptors and eliciting a cellular response. Androgen receptor (AR) is expressed in Sertoli cells, peritubular myoid cells, Leydig cells and perivascular smooth muscle cells in the testis depending on the species, but its presence in germ cells remains controversial. Two different estrogen receptors have been identified, estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ), and their localization and function in testicular cells varies depending on the species, developmental stage of the cell and type of receptor. The localization of AR in an immature and mature stallion has been reported but estrogen receptors have only been reported for the mature stallion. In the present study, the localizations of AR and ERα/ERβ were investigated in pre-pubertal, peri-pubertal and post-pubertal stallions. Testes were collected by routine castration from 21 horses, of light horse breeds (3 months-27 years). Animals were divided into the following age groups: pre-pubertal (3-11 months; n=7), peri-pubertal (12-23 months; n=7) and post-pubertal (2-27 years; n=7). Testicular tissue samples were fixed and embedded, and the presence of AR, ERα and ERβ was investigated by immunohistochemistry (IHC) using procedures previously validated for the horse. Primary antibodies used were rabbit anti-human AR, mouse anti-human ERβ and rabbit anti-mouse ERα. Sections of each region were incubated with normal rabbit serum (NRS; AR and ERα) or mouse IgG (ERβ) instead of primary antibody to generate negative controls. Androgen receptors were localized in Leydig, Sertoli and peritubular myoid cells of all ages. Estrogen receptor alpha was localized in Leydig and germ cells of all ages but only in pre- and peri-pubertal Sertoli cells and post-pubertal peritubular myoid cells. Estrogen receptor beta was localized in Leydig and Sertoli cells of all ages but in only pre-pubertal germ cells and absent in peritubular myoid cells of all ages. Taken together, the data suggest that estrogen regulates steroidogenesis by acting through ERα and ERβ in the Leydig cells and promotes gametogenesis by acting through ERβ in the Sertoli cells and ERα in the germ cells. In contrast androgen receptors are not found in germ cells throughout development and thus are likely to support spermatogenesis by way of a paracrine/autocrine pathway via its receptors in Leydig, Sertoli and peritubular myoid cells.  相似文献   

20.
The present study characterizes constitutively expressed rat testicular interleukin-1α (IL-1α) proteins. IL-1 bioactivity of crude testis protein was completely neutralized by IL-1α antiserum, IL-1 receptor antagonist, and soluble type I IL-1 receptor. Upon non-denaturating gel permeation chromatography, bioactive IL-1 eluted at molecular sizes of 45, 31, and 17 kDa and at charges of pH 5.7 and 6.0 after chromatofocusing. SDS-PAGE/Western blot analysis of proteins extracted from whole testis, seminiferous tubules, interstitial, and seminiferous tubule fluids all demonstrated IL-1α immunoreactivity at 45, 24, and 19 kDa. Activated macrophages and tissue proteins from endotoxin treated rats showed immunoreactive 31 and 19 kDa IL-1α. The results indicate that the testis produces three isoforms of IL-1α proteins that are secreted into the interstitial compartment and tubular lumen where they may exert paracrine functions. The testicular IL-1α isoforms may represent posttranslationally modified precursor, mature IL-1α, and a 24-kDa alternate splice form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号