首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A major catabolic enzyme of the plant hormone abscisic acid (ABA) is the cytochrome P450 monooxygenase ABA 8'-hydroxylase. For designing a specific inhibitor of this enzyme, the substrate specificity and inhibition of CYP707A3, an ABA 8'-hydroxylase from Arabidopsis thaliana, was investigated using 45 structural analogues of ABA and compared to the structural requirements for ABA activity. Substrate recognition by the enzyme strictly required the 6'-methyl groups (C-8' and C-9'), which were unnecessary for ABA activity, whereas elimination of the 3-methyl (C-6) and 1'-hydroxyl groups, which significantly affected ABA activity, had little effect on the ability of analogues to competitively inhibit the enzyme. Fluorination at C-8' and C-9' resulted in resistance to 8'-hydroxylation and competitive inhibition of the enzyme. In particular, 8',8'-difluoro-ABA and 9',9'-difluoro-ABA yielded no enzyme reaction products and strongly inhibited the enzyme (K(I) = 0.16 and 0.25 microM, respectively).  相似文献   

2.
Kim KA  Lee JS  Park HJ  Kim JW  Kim CJ  Shim IS  Kim NJ  Han SM  Lim S 《Life sciences》2004,74(22):2769-2779
Oleanolic acid (OA) and ursolic acid (UA), triterpene acids having numerous pharmacological activities including anti-inflammatory, anti-cancer, and hepato-protective effects, were tested for their ability to modulate the activities of several cytochrome P450 (CYP) enzymes using human liver microsomes. OA competitively inhibited CYP1A2-catalyzed phenacetin O-deethylation and CYP3A4-catalyzed midazolam 1-hydroxylation, the major human drug metabolizing CYPs, with IC50 (Ki) values of 143.5 (74.2) microM and 78.9 (41.0) microM, respectively. UA competitively inhibited CYP2C19-catalyzed S-mephenytoin 4'-hydroxylation with an IC50 (Ki) value of 119.7 (80.3) microM. However, other CYPs tested showed no or weak inhibition by both OA and UA. The present study demonstrates that OA and UA have inhibitory effects on CYP isoforms using human liver microsomes. It is thus likely that consumption of herbal medicines containing OA or UA, or administration of OA or UA, can cause drug interactions in humans when used concomitantly with drugs that are metabolized primarily by CYP isoforms. In addition, it appears that the inhibitory effect of OA on CYP1A2 is, in part, related to its anti-inflammatory and anticancer activities.  相似文献   

3.
Perfluorooctane sulfonate (PFOS) is a chemically stable compound extensively used as oil and water repellent, surface active agents in our daily life. Accumulative research evidence gradually appears the toxicity of PFOS against mammals, but the whole figure remains to be elucidated. The present study was conducted to know the effects of PFOS on human hepatic drug metabolizing-type cytochrome P450 (CYP) isoenzymes such as CYP1A2 (7-ethoxyresorufin as a substrate), CYP2A6 (coumarin), CYP2B6 (7-ethoxy-4-trifluoromethylcoumarin), CYP2C8 (paclitaxel), CYP2C9 (diclofenac), CYP2C19 (S-mephenytoin), CYP2D6 (bufuralol), CYP2E1 (chlorzoxazone) and CYP3A4 (testosterone) in human livers employing their typical substrates. Although all of the oxidation reactions tested were more or less inhibited by PFOS, diclofenac 4'-hydroxylation mediated mainly by CYP2C9 was most strongly inhibited (K(i) value of 40 nM), followed by paclitaxel 6α-hydroxylation mediated mainly by CYP2C8 (K(i) value of 4 μM). The substrate oxidation reactions catalyzed by CYP2A6, CYP2B6, CYP2C19 and CYP3A4 were moderately (K(i) values of 35 to 45 μM), and those by CYP1A2, CYP2D6 and CYP2E1 were weakly inhibited by PFOS (K(i) values of 190-300 μM). The inhibition by PFOS for coumarin 7-hydroxylation mainly catalyzed by human liver microsomal CYP2A6 as well as by the recombinant enzyme was found to be enhanced by the preincubation of PFOS with human liver microsomes and NADPH as compared to the case without preincubation. The inhibition of the human liver microsomal cumarin 7-hydroxylation was PFOS concentration-dependent, and exhibited pseudo-first-order kinetics with respect to preincubation time, yielding K(inact) and K(I) values of 0.06 min(-1) and 23 μM, respectively. These results suggest that the metabolism of medicines which are substrates for CYP2C9 may be altered by PFOS in human bodies, and that PFOS is a mechanism-based inhibitor of CYP2A6.  相似文献   

4.
Red wine concentrate has been reported to inhibit the catalytic activity of human recombinant cytochrome P450 (CYP) 3A4. Wine contains many polyphenolic compounds, including trans-resveratrol, which is also available commercially as a nutraceutical product. In the present study, we examined the in vitro effect of trans-resveratrol on human CYP3A catalytic activity by employing recombinant CYP3A4 and CYP3A5 as model enzymes and 7-benzyloxy-4-trifluoromethylcoumarin (BFC) as a CYP3A substrate. Trans-resveratrol inhibited BFC O-dealkylation catalyzed by CYP3A4 and CYP3A5 in a concentration-dependent manner. In each case, the inhibition was noncompetitive, as determined by Lineweaver-Burk and Dixon plots of the enzyme kinetic data. The apparent Ki values (mean +/- SEM) for the inhibition by trans-resveratrol of BFC O-dealkylation catalyzed by CYP3A4 and CYP3A5 were 10.2+/-1.1 microM and 14.7+/-0.3 microM, respectively. Preincubation of trans-resveratrol with NADPH and CYP3A4 or CYP3A5 for 10 or 15 min prior to initiation of substrate oxidation did not enhance the inhibitory effect, suggesting that this compound was not a mechanism-based inactivator of CYP3A4 or CYP3A5 when BFC was used as the substrate. Overall, our study provides the first demonstration that trans-resveratrol inhibits, in vitro, a substrate oxidation reaction catalyzed by human recombinant CYP3A4 and CYP3A5.  相似文献   

5.
We examined and compared enantioselectivity in the oxidation of propranolol (PL) by liver microsomes from humans and Japanese monkeys (Macaca fuscata). PL was oxidized at the naphthalene ring to 4-hydroxypropranolol, 5-hydroxypropranolol and side chain N-desisopropylpropranolol by human liver microsomes with enantioselectivity of [R(+)>S(-)] in PL oxidation rates at substrate concentrations of 10 microM and 1 mM. In contrast, reversed enantioselectivity [R(+)相似文献   

6.
This report describes the effect of alpha-naphthoflavone (alpha-NF), a known substrate, inhibitor and activator of several cytochromes P450 (CYP), on rabbit CYP3A6. Hepatic microsomes of rabbit pretreated with rifampicine (RIF), enriched with CYP3A6, as well as purified CYP3A6 reconstituted with isolated NADPH:CYP reductase were used as enzymatic systems in this study. The data from difference spectroscopy experiments showed that alpha-NF does yield a type I binding spectrum. This compound is oxidized by microsomal CYP3A6 into two metabolites (5,6-epoxide and trans-7,8-dihydrodiol). While alpha-NF is a substrate of CYP3A6, it also acts as an enzyme modulator. Under the conditions used, stimulation of 17beta-estradiol 2-hydroxylation by alpha-NF was observed. In contrast, this compound reversibly inhibited N-demethylation of erythromycin and tamoxifen, competitively with respect to these substrates, having the K(i) values of 51.5 and 18.0 microM, respectively. Moreover, alpha-NF was found to be an effective inactivator of progesterone and testosterone 6beta-hydroxylation catalyzed by CYP3A6 in RIF-microsomes. In addition, time- and concentration-dependent inactivation of human CYP3A4-mediated 6beta-hydroxylation of testosterone by alpha-NF, was determined. The inactivation of CYP3A6 followed pseudo-first-order kinetics and was dependent on both NADPH and alpha-NF. The concentrations required for half-maximal inactivation (K(i)) were 80.1 and 108.5 microM and the times required for half of the enzyme to be inactivated were 10.0 and 11.9 min for 6beta-hydroxylation of progesterone and testosterone, respectively. The loss of the enzyme activity was not recovered following dialysis, while 90% of the ability to form a reduced CO complex remained. This indicates the binding of alpha-NF to a CYP apoprotein molecule rather than to a heme moiety. Protection from inactivation was seen in the presence of all tested CYP3A substrates. Progesterone and testosterone protected CYP3A6 against inactivation competitively with respect to inactivator, erythromycin non-competitively and 17beta-estradiol showed a mixed type of protection. Here, we described for the first time that alpha-NF is capable of irreversible inhibition of microsomal rabbit CYP3A6 and human CYP3A4. The obtained results strongly suggest that the CYP3A active center contains at least two and probably three distinct binding sites for substrates.  相似文献   

7.
The functional roles of phenylalanine at position 120 in drug oxidation by cytochrome P450 2D6 (CYP2D6) were examined using a yeast cell expression system and bufuralol (BF) enantiomers as a chiral substrate. Two mutated cDNAs, one encoding a CYP2D6 mutant having alanine instead of Phe-120 (F120A) and another encoding a mutant having alanine instead of Glu-222 (E222A), were prepared by site-directed mutagenesis and transformed into yeast cells via pGYRI vectors. The enantiomeric BF 1'-hydroxylase activities of the mutants were compared with those of the wild type. When enantiomeric BF 1'-hydroxylase activities at a substrate concentration of 100 microM were compared, the CYP2D6 wild type showed substrate enantioselectivity of (R-BF > S-BF) and the F120A mutant exhibited substrate enantioselectivity of (R-BF < or = S-BF), whereas the product diastereoselectivity of (1'R-OH-BF < 1'-S-OH-BF) was similar between the wild type and the mutant. The activities of the other mutant (E222A) were much lower than those of the wild type and the F120A mutant, while its substrate enantioselectivity and product diastereoselectivity were the same as those of the wild type. The kinetics demonstrated that apparent K(m) values were similar among the recombinant enzymes, and V(max) values clearly reflected the selectivity described above. These results indicate that Phe-120 has a key role in the enantioselective BF 1'-hydroxylation by CYP2D6.  相似文献   

8.
Yao HT  Chang YW  Lan SJ  Chen CT  Hsu JT  Yeh TK 《Life sciences》2006,79(26):2432-2440
The inhibitory effect of saturated fatty acids (SFAs): palmitic acid (PA), stearic acid (SA) and polyunsaturated fatty acids (PUFAs): linoleic acid (LA), linolenic acid (LN), arachidonic acid (AA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on six human drug-metabolizing enzymes (CYP1A2, 2C9, 2C19, 2D6, 2E1 and 3A4) was studied. Supersomes from baculovirus-expressing single isoforms were used as the enzyme source. Phenacetin O-deethylation (CYP1A2), diclofenac 4-hydroxylation (CYP2C9), mephenytoin 4-hydroxylation (CYP2C19), dextromethorphan O-demethylation (CYP2D6), chlorzoxazone 6-hydroxylation (CYP2E1) and midazolam 1-hydroxylation (CYP3A4) were used as the probes. Results show that all the five examined PUFAs competitively inhibited CYP2C9- and CYP2C19-catalyzed metabolic reactions, with Ki values ranging from 1.7 to 4.7 microM and 2.3 to 7.4 microM, respectively. Among these, AA, EPA and DHA tended to have greater inhibitory potencies (lower IC(50) and Ki values) than LA and LN. In addition, these five PUFAs also competitively inhibited the metabolic reactions catalyzed by CYP1A2, 2E1 and 3A4 to a lesser extent (Ki values>10 microM). On the other hand, palmitic and stearic acids, the saturated fatty acids, had no inhibitory effect on the activities of six human CYP isozymes at concentrations up to 200 microM. Incubation of PUFAs with CYP2C9 or CYP2C19 in the presence of NADPH resulted in the decrease of PUFA concentrations in the incubation mixtures. These results indicate that the PUFAs are potent inhibitors as well as the substrates of CYP2C9 and CYP2C19.  相似文献   

9.
The cDNA of cytochrome P450 (CYP) 2C43 was cloned from cynomolgus monkey liver by RT-PCR. The deduced amino acid sequence showed 93% and 91% identity to human CYP2C9 and CYP2C19, respectively. The cDNA was expressed in Escherichia coli and purified by a series of chromatography steps, yielding a specific content of 11.5 nmol P450/mg protein. The substrate specificity of the purified CYP2C43 was examined in a reconstitution system comprising NADPH-P450 reductase, lipid, cytochrome b(5) and CYP2C marker substrates. The purified CYP2C43 showed high activity for testosterone 17-oxidation and progesterone 21-hydroxylation, which were also observed for CYP2C19 but not CYP2C9. In addition, CYP2C43 showed activity for (S)-mephenytoin 4'-hydroxylation, a marker reaction for CYP2C19. With CYP2C9 marker substrates, CYP2C43 exhibited low activity for diclofenac 4'-hydroxylation and no activity for tolbutamide p-methylhydroxylation. Therefore, in terms of substrate specificity, our results indicate that CYP2C43 is similar to CYP2C19, rather than CYP2C9.  相似文献   

10.
We designed and synthesized AHI4 that has an axial hydroxyl group instead of geminal methyl groups at C-6' of AHI1, previously reported as a lead compound for the development of non-azole inhibitors of ABA 8'-hydroxylase. (+)-AHI4 competitively inhibited 8'-hydroxylation of ABA by recombinant CYP707A3. The K(I) value was found to be 0.14 microM, 10-fold less than that of (+)-AHI1, suggesting that enzyme affinity increased by a factor of 10 due to substitution of the hydroxyl group by the geminal methyls at C-6'. This finding should assist in the design of more effective, non-azole ABA 8'-hydroxylase inhibitors.  相似文献   

11.
CYP2C19 is selective for the 4'-hydroxylation of S-mephenytoin while the highly similar CYP2C9 has little activity toward this substrate. To identify critical amino acids determining the specificity of human CYP2C19 for S-mephenytoin 4'-hydroxylation, we constructed chimeras by replacing portions of CYP2C9 containing various proposed substrate recognition sites (SRSs) with those of CYP2C19 and mutating individual residues by site-directed mutagenesis. Only a chimera containing regions encompassing SRSs 1--4 was active (30% of wild-type CYP2C19), indicating that multiple regions are necessary to confer specificity for S-mephenytoin. Mutagenesis studies identified six residues in three topological components of the proteins required to convert CYP2C9 to an S-mephenytoin 4'-hydroxylase (6% of the activity of wild-type CYP2C19). Of these, only the I99H difference located in SRS 1 between helices B and C reflects a change in a side chain that is predicted to be in the substrate-binding cavity formed above the heme prosthetic group. Two additional substitutions, S220P and P221T residing between helices F and G but not in close proximity to the substrate binding site together with five differences in the N-terminal portion of helix I conferred S-mephenytoin 4'-hydroxylation activity with a K(M) similar to that of CYP2C19 but a 3-fold lower K(cat). Three residues in helix I, S286N, V292A, and F295L, were essential for S-mephenytoin 4'-hydroxylation activity. On the basis of the structure of the closely related enzyme CYP2C5, these residues are unlikely to directly contact the substrate during catalysis but are positioned to influence the packing of substrate binding site residues and likely substrate access channels in the enzyme.  相似文献   

12.
13.
Betel quid chewing is known to cause cheek cancer in a wide area covering Africa to Asia. Areca nut contained in the betel quid is believed to give rise to carcinogenic N-nitrosamines. In the present study, the roles of human cytochromes P450 (P450 or CYP) in the mutagenic activation of betel quid-specific N-nitrosamines such as 3-(N-nitrosomethylamino)propionitrile (NMPN), 3-(N-nitrosomethylamino)propionaldehyde (NMPA) and N-nitrosoguvacoline (NG) were examined by using genetically engineered Salmonella typhimurium YG7108 expressing each form of human P450 together with NADPH-P450 reductase, which had been established in our laboratory. Among typical P450s (CYP1A1, CYP1A2, CYP1B1, CYP2A6, CYP2A13, CYP2D6 or CYP3A4) examined, CYP2A6 was the most efficient activator of NMPN, followed by CYP1A1 and CYP1B1. The mutagenic activation of NMPN by CYP2A6 was seen at the substrate concentrations of microM levels (approximately 100 microM). The activation of NMPA was catalyzed predominantly by CYP2A13 and to lesser extents by CYP2A6, CYP1A1, CYP1A2 and CYP1B1. The activation of NMPA by CYP2A13 was detectable at the substrate concentrations of microM levels (approximately 1 microM). NG was activated by CYP2A13 and CYP2A6, the genotoxicity of NG being much lower than that of NMPA or NMPN. Based on these data, we conclude that human CYP2A subfamily members play important roles in the mutagenic activation of essentially all betel quid-related N-nitrosamines tested in the present study.  相似文献   

14.
15.
A highly sensitive method for the determination of coumarin 7-hydroxylation and 7-ethoxycoumarin O-deethylation by human cytochrome P450 (P450 or CYP) enzymes was developed using high-performance liquid chromatography (HPLC). The newly developed HPLC method was found to be about 100-fold more sensitive than the previous spectrofluorimetric method in detecting the metabolite 7-hydroxycoumarin (umbelliferone). With this high sensitivity, the kinetics of coumarin 7-hydroxylation and 7-ethoxycoumarin O-deethylation catalyzed by human liver microsomal and recombinant P450 enzymes were determined more precisely. With 36 different substrate concentrations in these two reactions, coumarin 7-hydroxylation was found to be catalyzed mainly by a single enzyme CYP2A6 and 7-ethoxycoumarin was oxidized by at least two enzymes CYP2E1 and CYP1A2 in human liver microsomes.  相似文献   

16.
Studies to identify the cytochrome P450 (CYP) isoform(s) involved in chlorpromazine 7-hydroxylation were performed using human liver microsomes and cDNA-expressed human CYPs. The kinetics of chlorpromazine 7-hydroxylation in human liver microsomes showed a simple Michaelis-Menten behavior. The apparent Km and Vmax values were 3.4+/-1.0 microM and 200.5+/-83.7 pmol/min/mg, respectively. The chlorpromazine 7-hydroxylase activity in human liver microsomes showed good correlations with desipramine 2-hydroxylase activity (r = 0.763, p < 0.05), a marker activity for CYP2D6, and phenacetin O-deethylase activity (r = 0.638, p < 0.05), a marker activity for CYP1A2. Quinidine (an inhibitor of CYP2D6) completely inhibited while alpha-naphthoflavone (an inhibitor of CYP1A2) marginally inhibited the chlorpromazine 7-hydroxylase activity in a human liver microsomal sample showing high CYP2D6 activity. On the other hand, alpha-naphthoflavone inhibited the chlorpromazine 7-hydroxylase activity to 55-65% of control in a human liver microsomal sample showing low CYP2D6 activity. Among eleven cDNA-expressed CYPs studied, CYP2D6 and CYP1A2 exhibited significant activity for the chlorpromazine 7-hydroxylation. The Km values for the chlorpromazine 7-hydroxylation of both cDNA-expressed CYP2D6 and CYP1A2 were in agreement with the Km values of human liver microsomes. These results suggest that chlorpromazine 7-hydroxylation is catalyzed mainly by CYP2D6 and partially by CYP1A2.  相似文献   

17.
The debrisoquine/sparteine-type polymorphism of drug oxidation presumably is caused by the absence or deficiency of cytochrome P-450 (P-450) isozyme(s). Using bufuralol 1'-hydroxylation as a prototype reaction of this polymorphism, two functionally distinct forms, P-450 buf I and P-450 buf II, with identical apparent Mr of 50,000 were purified from liver microsomes of three different human livers. P-450 buf I exhibited a marked selectivity for the (+)-enantiomer of bufuralol ((-)/(+) ratio = 0.15), P-450 buf II was nonstereoselective((-)/(+) ratio = 1.03). The Km values for (-)- and (+)-bufuralol were 31 and 54 microM with P-450 buf I and 314 and 245 microM with P-450 buf II. P-450 buf II generated two other metabolites in addition to 1'-OH-bufuralol which were not observed with P-450 buf I. Using the inhibitor quinidine, a Ki of 0.06 microM was observed with P-450 buf I as opposed to 80 microM with P-450 buf II for bufuralol 1'-hydroxylation. A strong immunochemical relatedness of P-450 buf I and P-450 buf II was found since polyclonal antibodies against either form recognized the heterologous antigen to the same extent as the homologous antigen on Western blots and in immunoinhibition and in immunoprecipitation experiments. Cross-reactivity of these antibodies with a microsomal nonheme protein of unknown function (apparent Mr 50,000) also was noted. Western blots of microsomes of in vivo and in vitro phenotyped extensive and poor metabolizer individuals revealed no correlation of in vivo-determined metabolic ratio, microsomal activity, and amount of immunoreactive material. Antibodies against P-450 buf I and P-450 buf II inhibited bufuralol 1'-hydroxylation in microsomes of in vivo and in vitro phenotyped poor metabolizer individuals demonstrating that the residual activities are immunochemically related to the activities in extensive metabolizers.  相似文献   

18.
The structure of the anti-inflammatory drug diclofenac bound in the active site of rabbit microsomal cytochrome P450 2C5/3LVdH was determined by X-ray crystallography to 2.1 A resolution. P450 2C5/3LVdH and the related enzyme 2C5dH catalyze the 4'-hydroxylation of diclofenac with apparent K(m) values of 80 and 57 microM and k(cat) values of 13 and 16 min(-1), respectively. Spectrally determined binding constants are similar to the K(m) values. The structure indicates that the pi-electron system of the dichlorophenyl moiety faces the heme Fe with the 3'- and 4'-carbons located 4.4 and 4.7 A, respectively, from the Fe. The carboxyl moiety of the substrate is hydrogen bonded to a cluster of waters that are also hydrogen bonded to the side chains of N204, K241, S289, and D290 as well as the backbone of the protein. The proximity of the diclofenac carboxylate to the side chain of D290 together with an increased binding affinity at lower pH suggests that diclofenac is protonated when bound to the enzyme. The structure exhibits conformational changes indicative of an adaptive fit to the substrate reflecting both the hydration and size of the substrate. These results indicate how structurally diverse substrates are recognized by drug-metabolizing P450 enzymes.  相似文献   

19.
Cai H  Jiang J  Yang Q  Chen Q  Deng Y 《PloS one》2012,7(6):e38395
The CYP2D family members are instrumental in the metabolism of 20-25% of commonly prescribed drugs. Although many CYP2D isoforms have been well characterized in other animal models, research concerning the chicken CYP2Ds is limited. In this study, a cDNA encoding a novel CYP2D enzyme (CYP2D49) was cloned from the chicken liver for the first time. The CYP2D49 cDNA contained an open reading frame of 502 amino acids that shared 52%-57% identities with other CYP2Ds. The gene structure and neighboring genes of CYP2D49 are conserved and similar to those of human CYP2D6. Additionally, similar to human CYP2D6, CYP2D49 is un-inducible in the liver and expressed predominantly in the liver, kidney and small intestine, with detectable levels in several other tissues. Metabolic assays of the CYP2D49 protein heterologously expressed in E. coli and Hela cells indicated that CYP2D49 metabolized the human CYP2D6 substrate, bufuralol, but not debrisoquine. Moreover, quinidine, a potent inhibitor of human CYP2D6, only inhibited the bufuralol 1'-hydroxylation activity of CYP2D49 to a negligible degree. All these results indicated that CYP2D49 had functional characteristics similar to those of human CYP2D6 but measurably differed in the debrisoquine 4'-hydroxylation and quinidine inhibitory profile. Further structure-function investigations that employed site-directed mutagenesis and circular dichroism spectroscopy identified the importance of Val-126, Glu-222, Asp-306, Phe-486 and Phe-488 in keeping the enzymatic activity of CYP2D49 toward bufuralol as well as the importance of Asp-306, Phe-486 and Phe-488 in maintaining the conformation of CYP2D49 protein. The current study is only the first step in characterizing the metabolic mechanism of CYP2D49; further studies are still required.  相似文献   

20.
CYP4F1 was discovered by Chen and Hardwick (Arch. Biochem. Biophys. 300, 18-23, 1993) as a new CYP4 cytochrome P450 (P450) preferentially expressed in rat hepatomas. However, the catalytic function of this P450 remained poorly defined. We have purified recombinant CYP4F1 protein to a specific content of 12 nmol of P450/mg of protein from transfected yeast cells by chromatography of solubilized microsomes on an amino-n-hexyl Sepharose 4B column, followed by sequential HPLC on a DEAE column and two hydroxylapatite columns. The purified P450 was homogeneous as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis with an apparent molecular weight of 53 kDa. The enzyme catalyzed the omega-hydroxylation of leukotriene B(4) with a K(m) of 134 microM and a V(max) of 6.5 nmol/min/nmol of P450 in the presence of rabbit hepatic NADPH-P450 reductase and cytochrome b(5). In addition, 6-trans-LTB(4), lipoxin A(4), prostaglandin A(1), and several hydroxyeicosatetraenoic acids (HETEs) were also omega-hydroxylated. Of several eicosanoids examined, 8-HETE was the most efficient substrate, with a K(m) of 18.6 microM and a V(max) of 15.8 nmol/min/nmol of P450. In contrast, no activity was detected toward lipoxin B(4), laurate, palmitate, arachidonate, and benzphetamine. The results suggest that CYP4F1 participates in the hepatic inactivation of several bioactive eicosanoids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号