首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genomic libraries of rice,Oryza sativa L. cv. Nipponbare, in yeast artificial chromosomes were prepared for construction of a rice physical map. High-molecular-weight genomic DNA was extracted from cultured suspension cells embedded in agarose plugs. After size fractionation of theEco RI- andNot I-digested DNA fragments, they were ligated with pYAC4 and pYAC55, respectively, and used to transformSaccharomyces cerevisiae AB1380. A total of 6932 clones were obtained containing on average ca. 350 kb DNA. The YAC library was estimated to contain six haploid genome equivalents. The YACs were examined for their chimerism by mapping both ends on an RFLP linkage map. Most YACs withEco RI fragments below 400 kb were intact colinear clones. About 40% of clones were chimeric. Genetic mapping of end clones from large size YACs revealed that the physical distance corresponding to 1 cM genetic distance varies from 120 to 1000 kb, depending on the chromosome region. To select and order YAC clones for making contig maps, high-density colony hybridization using ECL was applied. With several probes, at least one and at most ten YAC clones could be selected in this library. The library size and clone insert size indicate that this YAC library is suitable for physical map construction and map-based cloning.  相似文献   

2.
"Chimeric" yeast artificial chromosomes (YACs) are clones containing two or more noncontiguous segments of DNA and represent the most common artifact found in total genomic YAC libraries currently used for large-scale genome mapping. These YACs create spurious mapping information that complicates the construction of YAC contigs and leads to erroneous maps during chromosome walks. The presence of these artifactual clones necessitates laborious and time-consuming characterization of each isolated YAC clone, either by comparison of the physical map of the YAC with the corresponding source genomic DNA, or by demonstrating discrepant chromosomal origins for the two ends of the YAC by hybridization or polymerase chain reaction (PCR). Here, we describe a rapid and sensitive method for the assessment of YAC colinearity by fluorescence in situ suppression hybridization (FISSH) by utilizing fluorescein-12-dUTP for labeling YAC clones. We have analyzed 51 YACs and found that 43% (22 out of 51) are chimeric and significantly larger (302 kb) than colinear ones (228 kb). One of the 51 YAC clones (2%) examined contains portions of three chromosomes and 2 (4%) seem to map to a chromosome different than that of the identifying STS. FISSH analysis offers a straightforward visualization of the entire YAC insert on the chromosomes and can be used to examine many YACs simultaneously in few days.  相似文献   

3.
Cloned genes were used to probe a highly redundant library of large cloned fragments of the Dictyostelium discoideum genome carried in yeast artificial chromosomes (YACs). Each gene recognized several independent YAC clones, thereby grouping them into a contig. Individual YACs were arranged within the contig by positioning genes relative to rare restriction sites and the YAC ends. Genes that had been previously assigned to one of the six linkage groups by parasexual genetics were used to establish physically mapped regions on specific chromosomes. Previously unmapped genes were assigned to specific chromosomes when they recognized members of a mapped contig. Linkage was confirmed by congruence of large-scale restriction maps centered on either the previously mapped or the newly mapped genes. At present, the chromosome-assigned map segments comprise approximately 50% of the genome. About half of each map segment is covered by overlapping YACs.  相似文献   

4.
5.
A physical map of the genome of Drosophila melanogaster has been created using 965 yeast artificial chromosome (YAC) clones assigned to locations in the cytogenetic map by in situ hybridization with the polytene salivary gland chromosomes. Clones with insert sizes averaging about 200 kb, totaling 1.7 genome equivalents, have been mapped. More than 80% of the euchromatic genome is included in the mapped clones, and 75% of the euchromatic genome is included in 161 cytological contigs ranging in size up to 2.5 Mb (average size 510 kb). On the other hand, YAC coverage of the one-third of the genome constituting the heterochromatin is incomplete, and clones containing long tracts of highly repetitive simple satellite DNA sequences have not been recovered.  相似文献   

6.
Methods of genome analysis, including the cloning and manipulation of large fragments of DNA, have opened new strategies for uniting molecular evolutionary genetics with chromosome evolution. We have begun the development of a physical map of the genome of Drosophila virilis based on large DNA fragments cloned in bacteriophage P1. A library of 10,080 P1 clones with average insert sizes of 65.8 kb, containing approximately 3.7 copies of the haploid genome of D. virilis, has been constructed and characterized. Approximately 75% of the clones have inserts exceeding 50 kb, and approximately 25% have inserts exceeding 80 kb. A sample of 186 randomly selected clones was mapped by in situ hybridization with the salivary gland chromosomes. A method for identifying D. virilis clones containing homologs of D. melanogaster genes has also been developed using hybridization with specific probes obtained from D. melanogaster by means of the polymerase chain reaction. This method proved successful for nine of ten genes and resulted in the recovery of 14 clones. The hybridization patterns of a sample of P1 clones containing repetitive DNA were also determined. A significant fraction of these clones hybridizes to multiple euchromatic sites but not to the chromocenter, which is a pattern of hybridization that is very rare among clones derived from D. melanogaster. The materials and methods described will make it possible to carry out a direct study of molecular evolution at the level of chromosome structure and organization as well as at the level of individual genes.  相似文献   

7.
A new YAC (yeast artificial chromosome) physical map of the 12 rice chromosomes was constructed utilizing the latest molecular linkage map. The 1439 DNA markers on the rice genetic map selected a total of 1892 YACs from a YAC library. A total of 675 distinct YACs were assigned to specific chromosomal locations. In all chromosomes, 297 YAC contigs and 142 YAC islands were formed. The total physical length of these contigs and islands was estimated to 270 Mb which corresponds to approximately 63% of the entire rice genome (430 Mb). Because the physical length of each YAC contig has been measured, we could then estimate the physical distance between genetic markers more precisely than previously. In the course of constructing the new physical map, the DNA markers mapped at 0.0-cM intervals were ordered accurately and the presence of potentially duplicated regions among the chromosomes was detected. The physical map combined with the genetic map will form the basis for elucidation of the rice genome structure, map-based cloning of agronomically important genes, and genome sequencing.  相似文献   

8.
In order to generate a physical map of the Arabidopsis thaliana genome based on bacterial artificial chromosome clones (BACs), an iterative high throughput hybridisation strategy was applied and its efficiency was evaluated. Thus, probes generated from both ends of 500 BAC clones selected from the Arabidopsis –IGF–BAC library were hybridised to the entire library gridded on high density filters. The 1000 hybridisation reactions identified 4496 clones (41.8% of the complete library, or 50.3% if organellar, centromeric, and ribosomal DNA carrying clones are excluded) which were assembled into a minimum of 220 contigs. These results demonstrate the viability of the applied ‘double-end clone-limited/sampling without replacement’ hybridisation strategy for the generation of a high resolution physical map, and provide a highly useful resource for map-based gene cloning approaches and further genome analysis.  相似文献   

9.
A. Infante  S. Lo    J. L. Hall 《Genetics》1995,141(1):87-93
We have constructed and characterized a Chlamydomonas reinhardtii total genomic library in yeast artificial chromosomes (YACs). The library contains 7500 clones with inserts ranging in size from 100-200 kb. The representation of the library was assessed by screening one-third of it with a probe derived from the dispersed repeat, Gulliver, which occurs ~13 times in the genome. At least 10 of these Gulliver loci were isolated within 15 independent YACs. Two of these YACs encompass the Gulliver element designated G, which was reported to map to the uni linkage group (ULG). The end clones of these two YACs have been genetically mapped by RFLP analysis in an interspecific cross and thereby shown to be closely linked to the APM locus on the ULG. A third uni-specific YAC has also been isolated and its ends have been mapped by RFLP analysis. Genetic and RFLP analysis of these and other YACs indicates that the frequency of chimeric YACs in the library is very low. The library was constructed in a second generation vector that enables plasmid rescue of YAC end clones as well as copy number amplification of artificial chromosomes. We provide evidence that amplification of intact YACs requires a rad1:rad52 yeast strain.  相似文献   

10.
Physical mapping of the rice genome with YAC clones   总被引:6,自引:0,他引:6  
Construction of a rice physical map covered by YAC clones which have been arranged over half of the genome length is presented here. A total of 1285 RFLP and RAPD markers almost evenly distributed on the rice genetic map could select 2974 YAC clones and 2443 clones of them were located on their original positions. Rice YACs carrying 350 kb average insert fragments of 2443 clones could cover 222 megabase length of the rice genome, corresponding to 52% of the whole genome size (4.3 Mb). Chromosome landing with many YAC clones on the high-density genetic map loci efficiently integrated the genetic map with a physical map. This is the first step to generate a comprehensive genome map of rice. An integrated genome map should be an indispensable tool to figure out genome structure as well as to clone trait genes by map-based cloning.  相似文献   

11.
Map positions have been determined for 42 non-redundant Arabidopsis expressed sequence tags (ESTs) showing similarity to disease resistance genes (R-ESTs), and for three Pto-like sequences that were amplified with degenerate primers. Employing a PCR-based strategy, yeast artificial chromosome (YAC) clones containing the EST sequences were identified. Since many YACs have been mapped, the locations of the R-ESTs could be inferred from the map positions of the YACs. R-EST clones that exhibited ambiguous map positions were mapped as either cleavable amplifiable polymorphic sequence (CAPS) or restriction fragment length polymorphism (RFLP) markers using F8 (Ler x Col-0) recombinant inbred (RI) lines. In all cases but two, the R-ESTs and Pto-like sequences mapped to single, unique locations. One R-EST and one Pto-like sequence each mapped to two locations. Thus, a total of 47 loci were identified in this study. Several R-ESTs occur in clusters suggesting that they may have arisen via gene duplication events. Interestingly, several R-ESTs map to regions containing genetically defined disease resistance genes. Thus, this collection of mapped R-ESTs may expedite the isolation of disease resistance genes. As the cDNA sequencing projects have identified an estimated 63% of Arabidopsis genes, a very large number of R-ESTs (~95), and by inference disease resistance genes of the leucine-rich repeat-class probably occur in the Arabidopsis genome.  相似文献   

12.
The cloning of large genomic fragments corresponding to the major histocompatibility complex (MHC) class I region provides the necessary framework for a better understanding of its organization and for the localization of new genes involved in MHC-associated disease. Two human genomic libraries constructed in yeast artificial chromosomes (YACs) have been prepared using complete Not I or Mlu I digestion of source DNA. From these libraries three YAC clones with inserts belonging to the MHC class I region have been isolated. They correspond to exact copies of three genomic fragments of 210, 145, and 50 kilobases (kb), respectively and have been precisely located in the restriction map of the region. Detailed rare-cutter restriction maps of the inserts have been generated. Within these clones we have demonstrated the presence of two class I genes, one of which is HLA-E, and of at least three Hpa II tiny fragment (HTF) islands, corresponding to three putative new transcribed sequences. End clones, which are of particular interest in the extension and refinement of the regional map, have been rescued by systematic subcloning of purified YACs.  相似文献   

13.
Summary We have constructed a yeast artificial chromosome (YAC) library of tomato for chromosome walking that contains the equivalent of three haploid genomes (22 000 clones). The source of high molecular weight DNA was leaf protoplasts from the tomato cultivars VFNT cherry and Rio Grande-PtoR, which together contain loci encoding resistance to six pathogens of tomato. Approximately 11 000 YACs have been screened with RFLP markers that cosegregate withTm-2a andPto — loci conferring resistance to tobacco mosaic virus andPseudomonas syringae pv.tomato, respectively. Five YACs were identified that hybridized to the markers and are therefore starting points for chromosome walks to these genes. A subset of the library was characterized for the presence of various repetitive sequences and YACs were identified that carried TGRI, a repeat clustered near the telomeres of most tomato chromosomes, TGRII, an interspersed repeat, and TGRIIl, a repeat that occurs primarily at centromeric sites. Evaluation of the library for organellar sequences revealed that approximately 10% of the clones contain chloroplast sequences. Many of these YAC clones appear to contain the entire 155 kb tomato chloroplast genome. The tomato cultivars used in the library construction, in addition to carrying various disease resistance genes, also contain the wild-type alleles corresponding to most recessive mutations that have been mapped by classical linkage analysis. Thus, in addition to its utility for physical mapping and genome studies, this library should be useful for chromosome walking to genes corresponding to virtually any phenotype that can be scored in a segregating population.  相似文献   

14.
We previously described the construction and characterization of aChlamydomonasgenomic library in yeast artificial chromosomes (YACs). Here we describe the isolation and genetic mapping of YACs at the FLA10 locus on theunichromosome as well as isolation of a YAC spanning the PF14 locus on chromosome VI. Genetic mapping of YAC end clones by RFLP analyses in interspecific crosses reveals that YACs with a physical size of 150 kb commonly span genetic intervals defined by one or two recombination events in crosses of approximately 20 tetrads. This promises to make chromosomal walking inChlamydomonasa relatively efficient enterprise. We also describe our development of a method for direct complementation of mutant genes by transformation with amplified wildtype YAC DNA. The use of positional cloning using YACs and this direct functional assay for the presence of a gene in a YAC represent powerful molecular genetic tools enabling the cloning of most anyChlamydomonasgene.  相似文献   

15.
Molecular mapping of rice chromosomes   总被引:108,自引:0,他引:108  
Summary We report the construction of an RFLP genetic map of rice (Oryza sativa) chromosomes. The map is comprised of 135 loci corresponding to clones selected from a PstI genomic library. This molecular map covers 1,389 cM of the rice genome and exceeds the current classical maps by more than 20%. The map was generated from F2 segregation data (50 individuals) from a cross between an indica and javanica rice cultivar. Primary trisomics were used to assign linkage groups to each of the 12 rice chromosomes. Seventy-eight percent of the clones assayed revealed RFLPs between the two parental cultivars, indicating that rice contains a significant amount of RFLP variation. Strong correlations between size of hybridizing restriction fragments and level of polymorphism indicate that a significant proportion of the RFLPs in rice are generated by insertions/delections. This conclusion is supported by the occurrence of null alleles for some clones (presumably created by insertion or deletion events). One clone, RG229, hybridized to sequences in both the indica and javanica genomes, which have apparently transposed since the divergence of the two cultivars from their last common ancestor, providing evidence for sequence movement in rice. As a by product of this mapping project, we have discovered that rice DNA is less C-methylated than tomato or maize DNA. Our results also suggest the notion that a large fraction of the rice genome (approximately 50%) is single copy.  相似文献   

16.
Danilova TV  Birchler JA 《Chromosoma》2008,117(4):345-356
To study the correlation of the sequence positions on the physical DNA finger print contig (FPC) map and cytogenetic maps of pachytene and somatic maize chromosomes, sequences located along the chromosome 9 FPC map approximately every 10 Mb were selected to place on maize chromosomes using fluorescent in situ hybridization (FISH). The probes were produced as pooled polymerase chain reaction products based on sequences of genetic markers or repeat-free portions of mapped bacterial artificial chromosome (BAC) clones. Fifteen probes were visualized on chromosome 9. The cytological positions of most sequences correspond on the pachytene, somatic, and FPC maps except some probes at the pericentromeric regions. Because of unequal condensation of mitotic metaphase chromosomes, being lower at pericentromeric regions and higher in the arms, probe positions are displaced to the distal ends of both arms. The axial resolution of FISH on somatic chromosome 9 varied from 3.3 to 8.2 Mb, which is 12-30 times lower than on pachytene chromosomes. The probe collection can be used as chromosomal landmarks or as a "banding paint" for the physical mapping of sequences including transgenes and BAC clones and for studying chromosomal rearrangements.  相似文献   

17.
A multiple-hit bacteriophage P1 library containing DNA fragments from Drosophila melanogaster in the size range 75–100 kb was created and subjected to a preliminary evaluation for completeness, randomness, fidelity, and clone stability. This P1 library presently contains 3840 individual clones, or approximately two genome equivalents. The library was screened with a small set of unique-sequence test probes, and clones containing the sequences have been recovered. In situ hybridization with salivary gland chromosomes indicates that the clones originate from the site of the probe sequences in the genome, and filter hybridization of restriction digests suggests that the clones are not rearranged in comparison with the genomic sequences. Approximately 1.7% of the clones contain sequences that hybridize with ribosomal DNA. A small subset of these clones was tested for stability by examination of restriction fragments produced after repeated subculturing, and no evidence for instability was found. The P1 cloning system has general utility in molecular genetics and may provide an important intermediate level of resolution in physical mapping of the Drosophila genome.by W. Hennig  相似文献   

18.
I. Felger  D. Sperlich 《Chromosoma》1989,98(5):342-350
To study the middle repetitive fraction of the Drosophila subobscura genome, 26 phage clones containing repetitive sequences were examined by Southern DNA blot analysis and by in situ hybridization to polytene chromosomes. These results led to a classification of the clones according to five different types of hybridization patterns. Two types, each containing seven clones, are characterized by hybridization at 100 to 300 sites dispersed over the euchromatic parts of the chromosomes, and in addition by one prominently labelled chromosome band. One of these two classes also showed strong labelling of the chromocentre. The remaining types of hybridization pattern lacked a prominent band but showed hybridization either to the euchromatic regions or to the chromocentre or both. Chromosome A (=X) was the preferred location of prominently labelled bands and it also showed an excess of labelling by some clones. Some of the cloned dispersed sequences were localized cytologically on chromosomes of larvae from crosses between different strains of D. subobscura and between two closely related species, in order to detect heterozygosity at hybridization sites. Comparisons of the chromosomal distribution of labelling sites showed differences in number and location, indicating the possibility of transposition events.  相似文献   

19.
20.
We report the construction and characterization of the first soybean yeast artificial chromosome (YAC) library using high-molecular weight DNA isolated from leaf nuclei of the cultivar Conrad 94 that carries Phytophthora resistance genes Rps1-k and Rps6. The quality of this library has been evaluated through analysis of 393 randomly selected YAC clones. The library consists of 36,864 clones, of which 19,956 carry single soybean YACs with an average size of about 285 kb. The library represents approximately five soybean genome equivalents. The probability of finding any soybean sequences from this library is about 0.99. The library was screened for 43 SSR markers representing the whole soybean genome. We were able to identify positive YAC pools for 95% of the SSR markers. Two YAC clones carrying molecular markers linked to the Rps6 gene were identified. The YAC library reported here would be a useful resource for map-based cloning of agronomically important soybean genes and also to complement the effort towards construction of the physical map for the soybean genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号