首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
G F Bryce  J H Jacoby 《Life sciences》1978,22(24):2215-2223
Several commonly used serotonin receptor antagonists were studied for their ability to influence basal plasma insulin and glucagon (using 30K antibody) levels as well as the response of these hormones to a glucose or arginine challenge administered systematically to overnight fasted rats. Cyproheptadine, in contrast to other antagonists employed, induced large increases of insulin, glucagon and glucose, although this hyperinsulinemia was of a smaller magnitude when compared with hormone levels observed during an equivalent hyperglycemia resulting from glucose administration. The pancreatic response to a glucose load (increased insulin and decreased glucagon release) and an arginine load (increased insulin and glucagon release) were prevented by cyproheptadine pretreatment. Basal insulin levels were bot consistently altered by methysergide or cinanserin and were slightly elevated by metergoline. Basal glucagon levels were unaffected by these drugs. These three agents potentiated the insulinotropic effect of an arginine load whereas only metergoline exerted a similar effect on the response to glucose loading. Glucagon release in response to these stimuli was not significantly altered by drug pretreatment.  相似文献   

2.
There are conflicting results regarding the impact of cyclic AMP on pancreatic glucagon release. The effect of aminophylline, a phosphodiesterase inhibitor, on glucagon secretion was studied in four non-obese, non-diabetic, healthy young male volunteers. The subjects received separate infusions of: 1) aminophylline; 2) aminophylline and propranolol; 3) arginine; 4) aminophylline and arginine; 5) insulin; 6) aminophylline and insulin; and 7) aminophylline and isoproterenol. Aminophylline not only failed to alter glucagon levels but also did not affect the glucagon responses observed after arginine and insulin-induced hypoglycemia. The concurrent infusion of isoproterenol and aminophylline also failed to cause a glucagon response. Although glucagon release has been evoked by cyclic AMP in some in vitro systems, administration of aminophylline to human subjects does not enhance secretion. These results indirectly suggest that cyclic AMP is of little importance in the control of glucagon secretion in man, though the effects of aminophylline at the cellular level may be complex.  相似文献   

3.
W D Matthews  C D Smith 《Life sciences》1980,26(17):1397-1403
The head shake response in rats after systemic administration of the serotonin (5HT) precursor 5-hydroxytryptophan (5HTP) was pharmacologically characterized and shown to be a useful animal model to quantify brain 5HT receptor activation. The behavior occurred in a dose-dependent manner after injection of 5HTP and the 5HT agonist quipazine. Head shakes were also observed after injection of L-tryptophan, 5-methoxydimethyltryptamine and fenfluramine. The 5HT antagonists cyproheptadine and metergoline were potent blockers of the response. Xylamidine, a peripheral 5HT antagonist, had no effect on head shaking. Inhibition of 5HT uptake with fluoxetine potentiated the head shake response after 5HTP. Manipulation of central cholinergic or GABAergic mechanisms did not alter 5HTP-induced shakes. Alpha-noradrenergic receptor blockade had no significant effect on head shakes. However, desmethylimipramine was equipotent with methysergide as an antagonist of the behavior. Beta-noradrenergic receptor blockade had no specific effect on 5HTP head shakes. Concomitant dopamine receptor activation with SK&;F 38393 did not affect head shakes but the neuroleptics chlorpromazine and pimozide reduced the number of head shakes after 5HTP. The H1 receptor antagonist pyrilamine had no effect on head shakes. It is concluded that 5HTP-induced head shakes in rats is a quantitative model of brain 5HT receptor activation which is particularly sensitive to 5HT antagonists.  相似文献   

4.
It was early proposed that somatostatin-producing delta-cells in pancreatic islets have local inhibitory effects on the release of insulin and glucagon. Recent observations that pulses of insulin and glucagon are antisynchronous make it important to examine the temporal characteristics of glucose-induced somatostatin release. Analysis of 30 s fractions from the perfused rat pancreas indicated that increase of glucose from 3 to 20 mmol/l results in initial suppression of somatostatin release followed by regular 4-5 min pulses. During continued exposure to 20 mmol/l glucose, the pulses of somatostatin overlapped those of insulin with a delay of 30 s. Somatostatin and glucagon pulses were coupled in antisynchronous fashion (phase shift 2.4+/-0.2 min), supporting the idea that the delta-cells have a local inhibitory effect on glucagon release. It was possible to remove the pulses of somatostatin and glucagon with maintenance of the insulin rhythmicity by addition of 1 micromol/l of the P2Y(1) receptor antagonist MRS 2179.  相似文献   

5.
The in vivo effect of adenosine on the serum levels of glucose, insulin and glucagon in rats fasted for twenty four hours or after an oral glucose load were studied. Under fasting conditions adenosine produced an hyperglycaemia without change in the insulin or glucagon serum levels. After a glucose load adenosine induced a marked hyperglycaemia concomitant to a decrease in insulin serum levels and an increase in glucagon serum levels. Adenosine did not alter the relationship between insulin and glucagon. In vivo adenosine administration altered the secretion of hormones by the islets of Langerhans (increased the release of glucagon and decreased the secretion of insulin) but this was only clearly observable under stimulated conditions. Adenosine did not alter the regulatory mechanism(s) that modulate the relationship between insulin and glucagon.  相似文献   

6.
In the smooth muscles of mollusc Anodonta cygnea the regulatory action of hormones on adenylyl cyclase signaling system (ACSS) are realized through the receptors of serpentine type (biogenic amines, isoproterenol, glucagon) and receptor tyrosine kinase (insulin) type. Intracellular mechanisms of their interaction are interconnected. Application of hormones, their antagonists and pertussis toxin in combination with insulin and biogenic amines or glucagon on adenylyl cyclase (AC) activity allows revealing the possible sites of cross-linking in the mechanisms of their action. Combined influence of insulin and serotonin or glucagon leads to decreased stimulation of adenylyl cyclase (AC) by these hormones, whereas combined application of insulin and isoproterenol suppresses AC-stimulating effect of insulin, but AC-inhibiting effect of isoproterenol is maintained in the presence and absence of non-hydrolysable analog of GTP—guanylyl imido diphosphate (GIDP). The specific blockage of AC-stimulating effect of serotonin by cyproheptadine—antagonist of serotonin receptors, did not change AC stimulation by insulin. Beta-adrenoblockers (propranolol and alprenolol) prevent inhibition of AC activity by isoproterenol, but did not change AC stimulation by insulin. Pertussis toxin blocked AC-inhibiting effect of isoproterenol and weakened AC-stimulating action of insulin. Thus, in the muscles of Anodonta cygnea negative interaction between ACS have been revealed, which are realized under combined influence of insulin and serotonin or glucagon, most probably, at the level of receptor of serpentine type (serotonin, glucagon), whereas under action of insulin and isoproterenol at the level of Gi protein and AC interaction.  相似文献   

7.
The expression of glucagon-like peptide-1 (GLP-1) receptor and the effects of GLP-1-(7-36) amide (t-GLP-1) on glucose metabolism and insulin release by pancreatic islets during rat development were studied. GLP-1 receptor mRNA was found in significant amounts in pancreatic islets from all age groups studied, GLP-1 receptor expression being maximal when pancreatic islets were incubated at physiological glucose concentration (5.5 mM), but decreasing significantly when incubated with either 1.67 or 16.7 mM glucose. Glucose utilization and oxidation by pancreatic islets from fetal and adult rats rose as a function of glucose concentration, always being higher in fetal than in adult islets. The addition of t-GLP-1 to the incubation medium did not modify glucose metabolism but gastric inhibitory polypeptide and glucagon significantly increased glucose utilization by fetal and adult pancreatic islets at 16.7 mM glucose. At this concentration, glucose produced a significant increase in insulin release by the pancreatic islets from 10-day-old and 20-day-old suckling rats and adult rats, whereas those from fetuses showed only a significant increase when glucose was raised from 1.67 to 5.5 mM. t-GLP-1 elicited an increase in insulin release by pancreatic islets from all the experimental groups when the higher glucose concentrations were used. Our findings indicate that GLP-1 receptors and the effect of t-GLP-1 on insulin release are already present in the fetus, and they therefore exclude the possibility that alterations in the action of t-GLP-1 are responsible for the unresponsiveness of pancreatic beta cells to glucose in the fetus, but stimulation of t-GLP-1 release by food ingestion in newborns may partially confer glucose competence on beta cells.  相似文献   

8.
1. The effects of subcutaneous injection of cysteamine (2-mercaptoethylamine, 300 mg/kg) were investigated in 5-6 week-old chickens. 2. In the short term (1 hr), cysteamine increased plasma levels of glucose, free fatty acids and insulin, and decreased that of alpha-amino non protein nitrogen. 3. In a longer term (17-24 hr), cysteamine increased the plasma level of glucose, did not modify those of alpha-amino non protein nitrogen, insulin and glucagon and decreased that of free fatty acids. 4. The disposal of an oral glucose load was impaired and the glucose-induced inhibition of pancreatic glucagon and stimulation of insulin release were blunted 17 hr after cysteamine administration. 5. Therefore, cysteamine exerts multiple effects on chicken pancreatic islet cells.  相似文献   

9.
Pancreastatin is a novel peptide, isolated from porcine pancreatic extracts, which has been shown to inhibit glucose-induced insulin release "in vitro". To achieve further insight into the influence of pancreastatin on pancreatic hormone secretion, we have studied the effects of this peptide on unstimulated insulin, glucagon and somatostatin output, as well as on the responses of these hormones to glucose and to tolbutamide in the perfused rat pancreas. Pancreastatin strongly inhibited unstimulated insulin release as well as the insulin responses to glucose and to tolbutamide. It did not significantly affect glucagon or somatostatin output under any of the above-mentioned conditions. These findings suggest that pancreastatin inhibits B-cell secretory activity directly, and not through an A-cell or D-cell paracrine effect.  相似文献   

10.
We have investigated the effect of rat leptin as well as the 22-56 fragment of this molecule on pancreatic hormone secretion in the perfused rat pancreas. In pancreases from fed rats, leptin failed to alter the insulin secretion elicited by glucose, arginine or tolbutamide, but inhibited the insulin response to both CCK-8 and carbachol, secretagogues known to act on the B-cell by increasing phospholipid turnover. This insulinostatic effect was also observed with the 22-56 leptin fragment. In pancreases obtained from 24-hour fasted rats, no effect of leptin on carbachol-induced insulin output was found, perhaps as a consequence of depressed B-cell phospholipid metabolism. Leptin did not influence glucagon or somatostatin release. Our results do not support the concept of leptin as a major regulator of B-cell function. Leptin inhibition of carbachol-induced insulin output might reflect a restraining effect of this peptide on the cholinergic stimulation of insulin release.  相似文献   

11.
The hypothesis that a serotonin neural pathway stimulates ACTH secretion in rats was supported by pharmacologic data. Fluoxetine, an inhibitor of serotonin reuptake, caused a dose-related elevation of plasma corticosterone levels in intact but not in hypophysectomized rats. The previously-reported elevation of plasma corticosterone by 5-hydroxytryptophan (5HTP) was confirmed and shown to be stereospecific, L-5HTP being much more active than D-5HTP. Simultaneous injection of subeffective doses of fluoxetine and L-5HTP caused marked elevation of plasma corticosterone. Fluoxetine pretreatment potentiated the elevation of plasma corticosterone by L-5HTP. Although the elevation of plasma corticosterone by fluoxetine was of short duration (perhaps due to compensatory reduction of serotonin release), the potentiation of the L-5HTP effect by fluoxetine lasted for more than 24 hrs as predicted by the duration of uptake inhibition by fluoxetine. The dose-response characteristics for corticosterone elevation and L-5HTP potentiation by fluoxetine were similar to those for serotonin uptake blockade.  相似文献   

12.
The effects of nicotinic receptor agonists 5-fluoronicotine, noranhydroecgonine and pyridyl-methylpyrrolidine on the cortical release of acetylcholine (ACh), norepinephrine (NE), dopamine (DA) and serotonin (5-HT) were investigated with microdialysis in rat. 5-Fluoronicotine significantly elevated ACh to 76% above basal values and DA to 69% above baseline. Pyridyl-methylpyrrolidine significantly increased the release of ACh to 39% above basal values and NE to 63% above baseline. Noranhydroecgonine significantly elevated NE to 64% above basal values and DA to 147% above baseline. 5-Fluoronicotine did not affect NE release; pyridylmethylpyrrolidine did not alter DA release; and noranhydroecgonine did not significantly elevate ACh release. None of these agonists increased the release of 5-HT. All responses were blocked by prior administration of mecamylamine, a nicotinic receptor antagonist. The distinctive neurotransmitter-related profiles for the three agonists are suggestive of activity at subtypes of nicotinic receptors, an effect that may be related to the structural diversity of these compounds.  相似文献   

13.
During the digestion of pancreatic pieces with collagenase for prepartion of isolated islets the enzymes in incubation medium (collangenolytic and/or proteolytic) can alter the secretion behavior of A- and B-cells. Insulin release after such an enzymatic attack is characterized by an enhanced basal secretion and a diminished and delayed glucose response. Overdigestion results in a decreased glucagon secretion in response to arginine, a diminished insulin content, and a decreased thiol-protein-disulfide-oxidoreductase activity of the islets. Increased albumin concentrations did not prevent the collagenase effect.  相似文献   

14.
Normal and hypophysectomized (hypox) rats, fed ad libitum, received intraperitoneal injections of tolbutamide (75 mg/kg/day) or of saline for 6 weeks. 24 h after the last injection, blood samples were taken for glucose, insulin and glucagon determinations. In normal rats, tolbutamide treatment did not alter serum glucose, insulin and glucagon, although it suppressed the secretion of insulin and glucagon by the pancreatic islets. In hypox rats, tolbutamide decreased serum glucose and insulin, elevated serum glucagon and stimulated the secretion of glucagon, but not that of insulin by the pancreatic islets. In addition, tolbutamide treatment increased the glucagon response to arginine in normal, but not in hypox rats. The serum glucose response to arginine was decreased by tolbutamide treatment and by hypophysectomy and, thus, appeared independent of the glucagon rise or preexisting glucagon level. We conclude that tolbutamide treatment decreased the secretion of glucagon and insulin in normal rats and stimulated that of glucagon in hypox rats, perhaps because of the low levels of insulin in the serum and in the pancreas of the latter. Our results are compatible with the hypothesis that the pancreatic action of tolbutamide is influenced by the pituitary.  相似文献   

15.
The effect of galanin on pancreatic hormone release was studied using isolated perifused rat pancreatic islets. In the presence of 100 mg/dl glucose, 10(-8) mol/L galanin significantly inhibited the basal somatostatin release compared with the perifusion without galanin, whereas there was no significant change in the basal insulin and glucagon release. However, under stimulation of 20 mmol/L arginine, 10(-8) mol/L galanin significantly enhanced glucagon release and suppressed insulin and somatostatin release. These effects disappeared immediately after cessation of galanin infusion. Additionally, 10(-8) mol/L galanin significantly enhanced the first and second phase of glucagon release stimulated by arginine, whereas arginine-stimulated insulin and somatostatin releases were significantly inhibited in both phases. In the cysteamine-treated rat islets, neither enhancement of glucagon release nor suppression of insulin release by galanin was reproducible. These findings indicate two possible explanations. First, it is suggested that the effects of galanin on insulin and glucagon release may be direct and reversed by non-specific effect of cycteamine. Secondly, it seems likely that galanin-enhanced glucagon release may be indirect and in part due to the concomitant somatostatin suppression. Galanin may have an important regulatory function on endocrine pancreas.  相似文献   

16.
Although isoproterenol is a very effective hyperglycemic agent in dogs, other species such as rats, baboons and man are resistant to this effect. In each of these species catecholamines exert pronounced effects on insulin and glucagon release from the pancreas. In man, baboons, and rats catecholamine-induced alterations in pancreatic hormone release indirectly influence the hyperglycemic response to these amines: glucagon release supports and insulin release limits hyperglycemic responses. In contrast, the present study demonstrates that in dogs catecholamine-induced hyperglycemic responses are relatively independent of concurrent alterations in pancreatic hormone release. In dogs isoproterenol produces hyperglycemia equal to or greater than responses to epinephrine despite large increases in insulin release produced by isoproterenol. Moreover, catecholamine-induced hyperglycemia is not significantly altered when insulin and glucagon release are blocked with somatostatin.  相似文献   

17.
1. Adipocytes isolated from epididymal fat-pads of fed rats were incubated with different concentrations of glucagon, insulin, adrenaline and adenosine deaminase, and the effects of these agents on the ;initial' activity of acetyl-CoA carboxylase in the cells were studied. 2. Glucagon (at concentrations between 0.1 and 10nm) inhibited acetyl-CoA carboxylase activity. Maximal inhibition was approx. 70% of the ;control' activity in the absence of added hormone, and the concentration of hormone required for half-maximal inhibition was 0.3-0.5nm-glucagon. 3. Incubation of cells with adenosine deaminase resulted in a similar inhibition of acetyl-CoA carboxylase activity. Preincubation of adipocytes with adenosine deaminase did not alter either the sensitivity of carboxylase activity to increasing concentrations of glucagon or the maximal extent of inhibition. 4. Adrenaline inhibited acetyl-CoA carboxylase to the same extent as glucagon. Preincubation of the cells with glucagon did not alter the sensitivity of enzyme activity to adrenaline or the degree of maximal inhibition. 5. Insulin activated the enzyme by 70-80% of ;control' activity. Preincubation of the cells with glucagon did not alter the concentration of insulin required to produce half the maximal stimulatory effect (about 12muunits of insulin/ml). The effects of insulin and glucagon appeared to be mediated completely independently, and were approximately quantitatively similar but opposite. These characteristics resulted in the mutual cancellation of the effects of the two hormones when they were both present at equally effective concentrations. 6. The implications of these findings with regard to current concepts about the mechanism of regulation of acetyl-CoA carboxylase and to the regulation of the enzyme in vivo are discussed.  相似文献   

18.
The effect of infused acetylcholine and (2-acetyllactoyloxyethyl)-trimethylammonium hemi-1,5-naphthalenedisulfonate (aclatonium napadisilate), a new cholinergic drug . On endocrine and exocrine secretory responses was simultaneously investigated during the perfusion of isolated rat pancreases. Acetylcholine (1.1 microM) stimulated the output of pancreatic juice and amylase, and significantly elicited the production of both insulin and glucagon. Its effect on somatostatin secretion, however, was minimal. Both pancreatic juice flow and amylase output were also significantly stimulated by aclatonium napadisilate (12 microM). These stimulatory effects of aclatonium napadisilate on the exocrine pancreas were blocked by atropine (25 microM). Aclatonium napadisilate could stimulate glucagon, but could not influence insulin and somatostatin secretion. The addition of atropine had no effect on the release of insulin, glucagon, and somatostatin. These results indicate that the effects of aclatonium napadisilate is cholinergic, and that the action is muscarinic. In addition, it can be concluded that pancreatic somatostatin secretion, as well as other hormones from islet cells, is controlled by the parasympathetic nervous system.  相似文献   

19.
Although the alpha-adrenergic antagonist phentolamine potentiates glucose-stimulated insulin secretion of intact animals, it either does not alter, or it inhibits in vitro insulin secretion. This may be because in the higher concentration used in in vitro studies, phentolamine exerts a second pharmacological effect that counterbalances its primary effect of blocking monoamine action. We recently demonstrated that pancreatic islets contain substantial amounts of monoamine oxidase (MAO), and that MAO inhibitors such as iproniazid and tranylcypromine can alter insulin secretion. In the present study, we determined if other drugs that affect insulin secretion, alter the MAO activity of homogenates of rabbit pancreatic islets (collagenase technique) or liver. Phentolamine, phenoxybenzamine and propranolol (10 muM and 100 muM) inhibit islet and hepatic MAO. Haloperidol (10muM) inhibits hepatic but not islet MAO, while haloperidol (10muM) does not inhibit MAO in either tissue. Ethanol (270 to 2.7mM) inhibits islet MAO. Hepatic MAO is inhibited by high (270 to 180mM) but not by low (27 to 2.7mM) concentrations of ethanol. Collagenase digestion does not increase the sensitivity of islet and liver MAO to inhibition by phentolamine or ethanol. In the absence of added monoamines, phentolamine and phenoxybenzamine do not alter basal or glucose-stimulated insulin secretion from rabbit pancreas. Preincubation of rabbit pancreas with the serotonin precursor 5-hydroxytryptophan (5-HTP) increases the beta cell serotonin content and inhibits glucose-stimulated insulin secretion. Alpha adrenergic antagonists not only fail to block, but actually potentiate the serotonin inhibition of insulin secretion. We conclude that inhibition of islet MAO may cause an increase in islet monoamine content and these monoamines may alter in vitro insulin secretion. One mechanism through which adrenergic antagonists and ethanol modify in vitro insulin secretion may be by inhibiting pancreatic islet MAO.  相似文献   

20.
The effect of secretin on glucagon and insulin release and its interaction with glucose has been studied in cultured mouse pancreatic islets by column perifusion. Glucose alone showed the well-known stimulation of insulin release and inhibition of glucagon release. Addition of 10 mM secretin increased glucagon secretion at 3 mM D-glucose by 300% while no change in insulin release could be seen at this low glucose concentration. At maximal stimulation of insulin release by 20 mM D-glucose addition of 10 nM secretin increased insulin release by 30%. Despite this insulin concentration and the high glucose concentration an increase in glucagon secretion of 1800% was found. These effects of secretin were dose-dependent at 10 mM D-glucose with 1 nM secretin being the lowest effective dose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号