共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
《Mutation Research Letters》1987,190(1):1-6
T7 phage was exposed to 56 mM nitrous acid at pH 4.6 causing a 90% decrease in survival for each 10 min duration of exposure. The survival of phage made by encapsulating nitrous acid treated DNA into empty phage heads was nearly the same as the survival of phage exposed to nitrous acid in vivo. In contrast to previous reports, growth of SOS-induced wild-type E. coli showed no increase in survival. The survival of nitrous acid treated phage was not lowered when grown on E. coli strains deficient in DNA polymerase I, exonuclease III, and the uvrA component of the nucleotide excision-repair endonuclease. Therefore, these enzymes are not vital for repair of nitrous acid induced damage in bacteriophage T7. 相似文献
4.
Interactions of oligonucleotides comprising (1-beta-D-2'-deoxy-threo-pentafuranosyl)thymine and (1-beta-D-2'-deoxy-threo-pentafuranosyl)cytosine residues (oligodeoxyxylonucleotides or OXNs) with complementary single-stranded DNA fragments were investigated. Using nondenaturing gel electrophoresis, footprinting, and melting assays, pyrimidine OXNs were shown to form triplexes with the purine DNA template, which are stable at neutral pH and comparable in heat stability with the corresponding natural polypurine-polypyrimidine DNA duplexes. In such triplexes, the N3 of cytosines in one of the OXNs are protonated. As revealed by CD spectroscopy in the 210-340 nm range, the form of the triple helix depends on the nucleotide composition and sequence of the DNA template, and is intermediate between A and B. 相似文献
5.
6.
7.
We have developed a new assay for in vitro mutagenesis of bacteriophage T7 DNA that measures the generation of mutations in the specific T7 gene that codes for the phage ligase. This assay was used to examine mutagenesis caused by in vitro DNA synthesis in the presence of O6-methylguanosine triphosphate. Reversion of one of the newly generated ligase mutants by ethyl methanesulfonate was also tested. 相似文献
8.
Alasdair D.J. Freeman Anne-Cécile Déclais David M.J. Lilley 《Journal of molecular biology》2013,425(2):395-410
T7 endonuclease I is a dimeric nuclease that is selective for four-way DNA junctions. Previous crystallographic studies have found that the N-terminal 16 amino acids are not visible, neither in the presence nor in the absence of DNA. We have now investigated the effect of deleting the N-terminus completely or partially. N-terminal deleted enzyme binds more tightly to DNA junctions but cleaves them more slowly. While deletion of the N-terminus does not measurably affect the global structure of the complex, the presence of the peptide is required to generate a local opening at the center of the DNA junction that is observed by 2-aminopurine fluorescence. Complete deletion of the peptide leads to a cleavage rate that is 3 orders of magnitude slower and an activation enthalpy that is 3-fold higher, suggesting that the most important interaction of the peptide is with the reaction transition state. Taken together, these data point to an important role of the N-terminus in generating a central opening of the junction that is required for the cleavage reaction to proceed properly. In the absence of this, we find that a cruciform junction is no longer subject to bilateral cleavage, but instead, just one strand is cleaved. Thus, the N-terminus is required for a productive resolution of the junction. 相似文献
9.
Conformational Changes Leading to T7 DNA Delivery upon Interaction with the Bacterial Receptor 总被引:1,自引:0,他引:1
Verónica A. González-García Mar Pulido-Cid Carmela Garcia-Doval Rebeca Bocanegra Mark J. van Raaij Jaime Martín-Benito Ana Cuervo José L. Carrascosa 《The Journal of biological chemistry》2015,290(16):10038-10044
The majority of bacteriophages protect their genetic material by packaging the nucleic acid in concentric layers to an almost crystalline concentration inside protein shells (capsid). This highly condensed genome also has to be efficiently injected into the host bacterium in a process named ejection. Most phages use a specialized complex (often a tail) to deliver the genome without disrupting cell integrity. Bacteriophage T7 belongs to the Podoviridae family and has a short, non-contractile tail formed by a tubular structure surrounded by fibers. Here we characterize the kinetics and structure of bacteriophage T7 DNA delivery process. We show that T7 recognizes lipopolysaccharides (LPS) from Escherichia coli rough strains through the fibers. Rough LPS acts as the main phage receptor and drives DNA ejection in vitro. The structural characterization of the phage tail after ejection using cryo-electron microscopy (cryo-EM) and single particle reconstruction methods revealed the major conformational changes needed for DNA delivery at low resolution. Interaction with the receptor causes fiber tilting and opening of the internal tail channel by untwisting the nozzle domain, allowing release of DNA and probably of the internal head proteins. 相似文献
10.
Glycyrrhizin (GL), a molecule of glycyrrhetinic acid (GA), is an aqueous extract from licorice root. These compounds are well known for their anti-inflammatory, hepatocarcinogenesis, antiviral, and interferon-inducing activities. This study is the first attempt to investigate the binding of GL and GA with DNA. The effect of ligand complexation on DNA aggregation and condensation was investigated in aqueous solution at physiological conditions, using constant DNA concentration (6.25?mM) and various ligands/polynucleotide (phosphate) ratios of 1/240, 1/120, 1/80, 1/40, 1/20, 1/10, 1/5, 1/2, and 1/1. Fourier transform infrared and ultraviolet (UV)-visible spectroscopic methods were used to determine the ligand binding modes, the binding constants, and the stability of ligand-DNA complexes in aqueous solution. Spectroscopic evidence showed that GL and GA bind DNA via major and minor grooves as well as the backbone phosphate group with overall binding constants of K(GL-DNA)=5.7×10(3) M(-1), K(GA-DNA)=5.1×10(3) M(-1). The affinity of ligand-DNA binding is in the order of GL>GA. DNA remained in the B-family structure, whereas biopolymer aggregation occurred at high triterpenoid concentrations. 相似文献
11.
12.
13.
DNA injection and genetic recombination of alkylated bacteriophage T7 in the presence of nalidixic acid. 总被引:3,自引:1,他引:3
下载免费PDF全文

Marker rescue experiments with alkylated T7 bacteriophage carried out in the presence and in the absence of nalidixic acid suggest that the gradient in rescue is due to two alkylation-induced causes: a DNA injection defect and an interference with DNA synthesis. 相似文献
14.
Double-stranded DNA sequencing with T7 polymerase 总被引:11,自引:0,他引:11
Y Wang 《BioTechniques》1988,6(9):843-845
15.
Optimization of the in vitro packaging efficiency of bacteriophage T7 DNA: effects of neutral polymers 总被引:1,自引:0,他引:1
The in vitro DNA packaging of several DNA bacteriophages is stimulated by the presence of neutral polymers. To optimize bacteriophage T7 DNA packaging and to understand the basis for optimization, the efficiency of T7 DNA packaging has been determined at completion, as a function of the type, molecular mass, and concentration of the polymer added. When the polymer used was polyethylene glycol (PEG) of 0.2, 0.6 or 12.6 kDa, the efficiency of DNA packaging reached maximum at an intermediate concentration of polymer. The osmotic pressure (Pos) at maximum efficiency was either in, or close to, the range of colloid Pos measured for the intact host cell. The optimum Pos increased as the size of the polymer used decreased. PEG-100 (of 0.1 kDa) did not stimulate in vitro T7 DNA packaging. Dextran of 10 kDa also stimulated packaging and produced maximum efficiency at a physiological Pos. The degree of stimulation increases as DNA packaging extract concentration decreases; stimulation by as much as two to three orders of magnitude is observed. The presence of added polymer reduces fluctuations in DNA packaging efficiency caused by variability in the concentration of DNA packaging extracts. For reproducible and high efficiency packaging, the dextran was more reliable than the PEGs, possibly because the Pos of the dextran solutions is less sensitive to polymer concentration than is the Pos of PEG solutions. The optimum concentration of dextran at completion was also the optimum at all times before completion. 相似文献
16.
The T7 DNA primase synthesizes tetraribonucleotides that prime DNA synthesis by T7 DNA polymerase but only on the condition that the primase stabilizes the primed DNA template in the polymerase active site. We used NMR experiments and alanine scanning mutagenesis to identify residues in the zinc binding domain of T7 primase that engage the primed DNA template to initiate DNA synthesis by T7 DNA polymerase. These residues cover one face of the zinc binding domain and include a number of aromatic amino acids that are conserved in bacteriophage primases. The phage T7 single-stranded DNA-binding protein gp2.5 specifically interfered with the utilization of tetraribonucleotide primers by interacting with T7 DNA polymerase and preventing a productive interaction with the primed template. We propose that the opposing effects of gp2.5 and T7 primase on the initiation of DNA synthesis reflect a sequence of mutually exclusive interactions that occur during the recycling of the polymerase on the lagging strand of the replication fork. 相似文献
17.
He ZG Rezende LF Willcox S Griffith JD Richardson CC 《The Journal of biological chemistry》2003,278(32):29538-29545
Gene 2.5 of bacteriophage T7 is an essential gene that encodes a single-stranded DNA-binding protein (gp2.5). Previous studies have demonstrated that the acidic carboxyl terminus of the protein is essential and that it mediates multiple protein-protein interactions. A screen for lethal mutations in gene 2.5 uncovered a variety of essential amino acids, among which was a single amino acid substitution, F232L, at the carboxyl-terminal residue. gp2.5-F232L exhibits a 3-fold increase in binding affinity for single-stranded DNA and a slightly lower affinity for T7 DNA polymerase when compared with wild type gp2.5. gp2.5-F232L stimulates the activity of T7 DNA polymerase and, in contrast to wild-type gp2.5, promotes strand displacement DNA synthesis by T7 DNA polymerase. A carboxyl-terminal truncation of gene 2.5 protein, gp2.5-Delta 26C, binds single-stranded DNA 40-fold more tightly than the wild-type protein and cannot physically interact with T7 DNA polymerase. gp2.5-Delta 26C is inhibitory for DNA synthesis catalyzed by T7 DNA polymerase on single-stranded DNA, and it does not stimulate strand displacement DNA synthesis at high concentration. The biochemical and genetic data support a model in which the carboxyl-terminal tail modulates DNA binding and mediates essential interactions with T7 DNA polymerase. 相似文献
18.
Sedimentation velocity runs as a function of temperature in the region of the alkaline helix-coil transition have enabled us to demonstrate the existence of stable two-stranded intermediates in the strand-separation process for T7 DNA. The strand-separation transition under these conditions has an intrinsic breadth of ~1°C, and within this temperature range (Tm + 2°C < T < Tm + 3°C) the intermediate forms are progressively converted (as a function of temperature) to single-stranded DNA. Parallel characterizations of the strand-separation transition by viscosity and absorbance–renaturation studies in the alkaline solvent are entirely consistent with the sedimentation experiments. Comparison of the experimental mean sedimentation coefficient of the intermediate forms with theoretical predictions for branched structures suggests that in these molecules the two strands are connected at a single point, not centrally located with respect to the ends of the molecule. 相似文献
19.
We have found that the burst size of bacteriophage T7 was decreased in two Escherichia coli temperature-sensitive gyrase mutants incubated at the restrictive temperature. This reduction in burst size indicates that gyrase may be required for T7 growth. 相似文献
20.
The flow-induced degradation of T7 DNA (Molecular Size = 40 Kbp) was studied in a flow device that generates converging flow rather than simple shear flow. We discovered that the sizes of the degradation products were very broadly distributed, covering the range from 10 Kbp to 36 Kbp. An explanation for the broadness of the distribution is given based on a computer simulation of the experiment. The significance of converging flow to the routine handling of large DNA is emphasized. 相似文献