首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vesicular stomatitis virus (VSV)-mediated cell fusion from without can be induced by transient exposure to low pH, subsequent to adsorption of VSV at neutral pH. To study the mechanism of VSV-induced cell fusion, we examined the effect of pH condition at virus adsorption on acid-inducible VSV-mediated cell fusion. Although the binding of VSV to BHK-21 cells was most efficient under acidic condition (pH 5.7-6.3), extensive cell fusion was not observed under this condition. A temporary exposure to low pH after binding at neutral pH also decreased fusion activity. However, return to neutral pH for 2 min just after the acid binding restored the fusion activity. These results indicate the requirement of neutral pH condition for VSV-mediated cell fusion prior to the acid stimulation which induces conformational change of the virus glycoprotein into a fusogenic form.  相似文献   

2.
Tosyl-triethylenetetramine-Sepharose (Tos-T-Sepharose) and carbenzoxytriethylenetetramine-Sepharose (Z-T-Sepharose) were found to be adsorbents utilizable in the purification of several microbial and animal proteases. The former Sepharose derivative adsorbed alpha-chymotrypsin, trypsin, subtilisin, thermolysin and neutral subtilopeptidase at neutral pH range, and acid proteases such as pepsin and Rhizopus niveus protease at pH 3.5-6.5. alpha-Chymotrypsin and trypsin were eluted with 0.1 N acetic acid and Rhizopus protease with 0.5 N acetic acid, thermolysin with 1 M guanidine-HCl or 33% ethyleneglycol, whilst pepsin was recovered by elution with 2 M guanidine-HCl at pH 3.5. The binding of neutral subtilopeptidase and subtilisin to this adsorbent was comparatively weak and both the enzymes were recovered by elution with 0.5 M NaCl at neutral pH. On the other hand, Z-T-Sepharose was found to bind tightly to these proteolytic enzymes except neutral subtilopeptidase. Trypsin and alpha-chymotrypsin were released from the adsorbent column with 1 M p-toluenesulfonate, and subtilisin with 1 M guanidine-HCl or 33% ethyleneglycol at neutral pH region. By these chromatographic procedures, the specific activities of these proteolytic enzymes increased effectively. Comparison of the binding abilities of acetyl-, benzoyl-, tosyl- and carbobenzoxy-T-Sepharoses to these enzymes suggests that hydrophobicity of tosyl and carbobenzoxy groups plays an important role in the enzyme-adsorbent interaction.  相似文献   

3.
The addition of 2 M formic acid at pH 3.75 increased the single channel H+ ion conductance of gramicidin channels 12-fold at 200 mV. Other weak acids (acetic, lactic, oxalic) produce a similar, but smaller increase. Formic acid (and other weak acids) also blocks the K+ conductance at pH 3.75, but not at pH 6.0 when the anion form predominates. This increased H+ conductance and K+ block can be explained by formic acid (HF) binding to the mouth of the gramicidin channel (Km = 1 M) and providing a source of H+ ions. A kinetic model is derived, based on the equilibrium binding of formic acid to the channel mouth, that quantitatively predicts the conductance for different mixtures of H+, K+, and formic acid. The binding of the neutral formic acid to the mouth of the gramicidin channel is directly supported by the observation that a neutral molecule with a similar structure, formamide (and malonamide and acrylamide), blocks the K+ conductance at pH 6.0. The H+ conductance in the presence of formic acid provides a lower bound for the intrinsic conductance of the gramicidin channel when there is no diffusion limitation at the channel mouth. The 12-fold increase in conductance produced by formic acid suggests that greater than 90% of the total resistance to H+ results from diffusion limitation in the bulk solution.  相似文献   

4.
Since pyrimidine motif triplex DNA is unstable at physiological neutral pH, triplex stabilization at physiological neutral pH is important for improvement of its potential to be applied to various methods in vivo, such as repression of gene expression, mapping of genomic DNA and gene-targeted mutagenesis. For this purpose, we studied the thermodynamic and kinetic effects of a chemical modification, 2'-O,4'-C-ethylene bridged nucleic acid (ENA) modification of triplex-forming oligonucleotide (TFO), on pyrimidine motif triplex formation at physiological neutral pH. Thermodynamic investigations indicated that the modification achieved more than 10-fold increase in the binding constant of the triplex formation. The increased number of the modification in TFO enhanced the increased magnitude of the binding constant. On the basis of the obtained thermodynamic parameters, we suggested that the remarkably increased binding constant by the modification may result from the increased stiffness of TFO in the unbound state. Kinetic studies showed that the considerably decreased dissociation rate constant resulted in the observed increased binding constant by the modification. We conclude that ENA modification of TFO could be a useful chemical modification to promote the triplex formation under physiological neutral condition, and may advance various triplex formation-based methods in vivo.  相似文献   

5.
Annexin A4 belongs to a class of Ca(2+)-binding proteins for which different functions in the cell have proposed, e.g. involvement in exocytosis and in the coagulation process. All these functions are related to the ability of the annexins to bind to acidic phospholipids. In this study the interaction of annexin A4 with large unilamellar vesicles (LUV) prepared from phosphatidylserine (PS) or from phosphatidic acid (PA) is investigated at neutral and acidic pH. Annexin A4 strongly binds to either lipid at acidic pH, whereas at neutral pH only weak binding to PA and no binding to PS occurs. Addition of 40 microM Ca(2+) leads to a strong binding to the lipids also at neutral pH. This is caused by the different electric charge of the protein below and above its isoelectric point. Binding of annexin A4 induces dehydration of the vesicle surface. The strength of the effects is much greater at pH 4 than at pH 7.4. At pH 7.4 annexin A4 reduces the Ca(2+)-threshold concentration necessary to induce fusion of PA LUV. The Ca(2+) induced fusion of PS LUV is not affected by annexin A4 at pH 7.4. At pH 4 annexin A4 induces fusion of either vesicles without Ca(2+). Despite the low binding extents at neutral pH annexin A4 induces a Ca(2+) independent leakage of PS- or PA-LUV. The leakage extent is increased at acidic pH. From the data two suggestions are made: (1) At pH 4 annexin A4 (at least partially) penetrates into the bilayer in contrast to the preferred location at the vesicle surface at neutral pH. The conformation of annexin A4 seems to be different at the two conditions. (2) At neutral pH, Annexin A4 seems to be able to bind two PA vesicles simultaneously; however, only one PS vesicle at the same time. This behavior might be related to a recently described double Ca(2+) binding site, which appears to be uniquely suited for PS.  相似文献   

6.
The absorption spectra and circular dichroism of aqueous solutions of acridine orange mixed with polY(riboadenylic acid) [poly(rA)] have been measured for different mixing ratios at acid and neutral pH. The binding ratio of dye to poly(rA) has been determined by equilibrium dialysis. At acid pH where poly(rA) is in a double-stranded helix, monomeric dye molecules are intercalated between base pairs, first sparsely and then at neighbouring sites with mutual coupling, as the nucleotide-to-dye mixing ratio decreases. In the presence of excess dye, dimeric dye molecules of antiparallel type are bound to phosphate groups electrostatically and stack together to form linear sequences along a poly(rA) chain. At neutral pH where poly(rA) is single-stranded, isolated intercalation of monomeric dye molecules can occur in the helical parts. At intermediate mixing ratios, half-intercalated dimeric dye molecules are bound to adjacent sites and electronically coupled, inducing characteristic circular dichroism. In the presence of higher amounts of dye, external stacking of dimeric dye molecules of antiparallel type occurs along a poly(rA) chain. The binding of dye cations is suppressed to some degree at acid pH compared to that at neutral pH, owing to the repulsion exerted by protonated adenine bases.  相似文献   

7.
We analyzed the effect of 2'-O,4'-C-methylene bridged nucleic acid (2',4'-BNA) modification of triplex-forming oligonucleotide (TFO) on pyrimidine motif triplex formation at neutral pH, a condition where pyrimidine motif triplexes are unstable. The binding constant of the pyrimidine motif triplex formation at pH 6.8 with 2',4'-BNA modified TFO was about 20 times larger than that observed with unmodified TFO. The observed increase in the binding constant at neutral pH by the 2',4'-BNA modification resulted from the considerable decrease in the dissociation rate constant.  相似文献   

8.
Phosphoglucose isomerase (PGI) is a glycolytic enzyme that exhibits extracellular cytokine activity as autocrine motility factor, neuroleukin, and maturation factor and that has been recently implicated as an autoantigen in rheumatoid arthritis. In contrast to its receptor-mediated endocytosis at neutral pH, addition of 25 microg/ml of either Alexa 568- or FITC-conjugated PGI to NIH-3T3 cells at progressively acid pH results in its quantitatively increased association with cell surface fibrillar structures that is particularly evident at pH 5. A similar pH-dependent cell surface association of PGI is observed for first passage human chondrocytes obtained from osteoarthritic joints. At acid pH, PGI colocalizes with fibronectin fibrils, and this association occurs directly upon addition of PGI to the cells. In contrast to the receptor-mediated endocytosis of PGI, fibril association of 25 microg/ml PGI at pH 5 is not competed with an excess (2 mg/ml) of unlabeled PGI. PGI binding at acid pH is therefore neither saturable nor mediated by its receptor. PGI is enzymatically active as a dimer and we show here by non-denaturing gel electrophoresis as well as by glutaraldehyde cross-linking that it exists at neutral pH in a tetrameric form. Increasingly acid pH results in the appearance of PGI monomers that correlates directly with its enhanced cell surface association. However, glutaraldehyde cross-linked PGI is endocytosed at neutral pH and still exhibits enhanced cell surface binding at pH 5. Circular dichroism analysis revealed pH-dependent changes in the near but not the far UV spectra indicating that the tertiary structure of the protein is specifically altered at pH 5. Conformational changes of PGI and exposure of the monomer-monomer interface under acidic conditions, such as those encountered in the synovial fluid of arthritic joints, could therefore result in its deposition on the surface of joints and the induction of an autoimmune response.  相似文献   

9.
Extreme instability of pyrimidine motif triplex DNA at physiological pH severely limits its use in an artificial control of gene expression in vivo. Stabilization of the pyrimidine motif triplex at physiological pH is, therefore, crucial in improving its therapeutic potential. To this end, we have investigated the thermodynamic and kinetic effects of our previously reported chemical modification, 2'-O,4'-C-methylene bridged nucleic acid (2',4'-BNA) modification of triplex-forming oligonucleotide (TFO), on pyrimidine motif triplex formation at physiological pH. The thermodynamic analyses indicated that the 2',4'-BNA modification of TFO increased the binding constant of the pyrimidine motif triplex formation at neutral pH by approximately 20 times. The number and position of the 2',4'-BNA modification introduced into the TFO did not significantly affect the magnitude of the increase in the binding constant. The consideration of the observed thermodynamic parameters suggested that the increased rigidity itself of the 2',4'-BNA-modified TFO in the free state relative to the unmodified TFO may enable the significant increase in the binding constant at neutral pH. Kinetic data demonstrated that the observed increase in the binding constant at neutral pH by the 2',4'-BNA modification of TFO resulted from the considerable decrease in the dissociation rate constant. Our results certainly support the idea that the 2',4'-BNA modification of TFO could be a key chemical modification and may eventually lead to progress in therapeutic applications of the antigene strategy in vivo.  相似文献   

10.
The acid stress chaperones HdeA and HdeB of Escherichia coli prevent the aggregation of periplasmic proteins at acidic pH. We show in this report that they also form mixed aggregates with proteins that have failed to be solubilized at acidic pH and allow their subsequent solubilization at neutral pH. HdeA, HdeB, and HdeA and HdeB together display an increasing efficiency for the solubilization of protein aggregates at pH 3. They are less efficient for the solubilization of aggregates at pH 2, whereas HdeB is the most efficient. Increasing amounts of periplasmic proteins draw increasing amounts of chaperone into pellets, suggesting that chaperones co-aggregate with their substrate proteins. We observed a decrease in the size of protein aggregates in the presence of HdeA and HdeB, from very high molecular mass aggregates to 100-5000-kDa species. Moreover, a marked decrease in the exposed hydrophobicity of aggregated proteins in the presence of HdeA and HdeB was revealed by 1,1'-bis(4-anilino)naphtalene-5,5'-disulfonic acid binding experiments. In vivo, during the recovery at neutral pH of acid stressed bacterial cells, HdeA and HdeB allow the solubilization and renaturation of protein aggregates, including those formed by the maltose receptor MalE, the oligopeptide receptor OppA, and the histidine receptor HisJ. Thus, HdeA and HdeB not only help to maintain proteins in a soluble state during acid treatment, as previously reported, but also assist, both in vitro and in vivo, in the solubilization at neutral pH of mixed protein-chaperone aggregates formed at acidic pH, by decreasing the size of protein aggregates and the exposed hydrophobicity of aggregated proteins.  相似文献   

11.
We analyzed the effect of 2′-O,4′-C-methylene bridged nucleic acid (2′,4′-BNA) modification of triplex-forming oligonucleotide (TFO) on pyrimidine motif triplex formation at neutral pH, a condition where pyrimidine motif triplexes are unstable. The binding constant of the pyrimidine motif triplex formation at pH 6.8 with 2′,4′-BNA modified TFO was about 20 times larger than that observed with unmodified TFO. The observed increase in the binding constant at neutral pH by the 2′,4′-BNA modification resulted from the considerable decrease in the dissociation rate constant.  相似文献   

12.
Dissociation of bovine odorant binding protein (bOBP) dimers to monomers at pH 2.5 has been confirmed through size exclusion chromatography experiments. Moreover, structural and binding properties of the acidic monomer and neutral dimer have been compared using a combination of experimental (circular dichroism and fluorescence) and computational (molecular dynamics) techniques. The secondary and tertiary structures of bOBP are largely maintained at acidic pH, but molecular dynamics simulations suggest the loop regions (N-terminal residues, Omega-loop and C-terminal segments) are more relaxed and Phe36 and Tyr83 residues are involved in the regulation of the binding cavity entrance. The formation of a molten globule state at acidic pH, suggested by the strong enhancement of fluorescence of 8-anilino-1-naphtalenesulphonic acid (ANS), is not confirmed by any significant change in the near UV circular dichroism spectrum. Functionality measurements, deduced from the interaction of bOBP with 1-amino-anthracene (AMA), show that the binding capacity of the protein at acidic pH is preserved, though slightly looser than at neutral pH. Unfolding of acidic bOBP, induced by guanidinium chloride (GdnHCl), was investigated by means of CD spectroscopy, steady state fluorescence, fluorescence anisotropy and light scattering. The stability of the acidic monomer is lower than that of the neutral dimer, owing to the loss of the swapping interactions, but renaturation is completely reversible. Finally, in contrast with the neutral dimer, at low denaturant concentration some aggregation of the acidic monomer, which vanishes before the unfolding transition, has been observed.  相似文献   

13.
B Halle  B Lindman 《Biochemistry》1978,17(18):3774-3781
The 35Cl nuclear magnetic quadrupole relaxation enhancement on binding of chloride ions to human plasma albumin (HPA) has been studied under conditions of variable temperature, pH, ionic strength, protein, and sodium dodecyl sulfate concentration. A small number (less than 10) of chloride ions, most of which are bound to the primary detergent binding sites, contribute a major portion of the relaxation enhancement (greater than 80% at neutral pH). A comparison of the pH dependence of the relaxation rate with the hydrogen ion titration curve, which was determined and analyzed, identified ten lysyl and arginyl residues as being involved in the chloride ion binding. These data, in conjuction with NaDodSO4 titrations at different pH values and the amino acid sequence of HPA, suggests that the high-affinity chloride-binding sites are doubly cationic at neutral pH. An irreversible dimerization at acidic pH and 5 x 10(-5) m HPA was detected. The data also indicate the presence of internal modes of motion in the expanded forms of the HPA molecule, probably an independent reorientation of domains. The rate of exchange of chloride ions was shown to be much higher than the corresponding intrinsic relaxation rate in the temperature range 2--26 degrees C and pH values ranging from 4.0 to 10.5. No indications of protein-protein interaction could be found up to the physiological concentration of ca. 6 x 10(-4)m HPA at either neutral or alkaline pH. The mechanistic basis for HPA's exceptional capacity for binding of inorganic anions was discussed.  相似文献   

14.
Summary Thiobacillus thiooxidans was grown at constant pH. No growth was obtained above pH 4.3. Sulfur was oxidized over the entire range tested (pH 0.9 to 7.0). This was confirmed by pH shift experiments. Carbon dioxide fixation stopped 30 min after shift from low pH to neutral values. On return to high acidity, the rate of CO2 assimilation increased but not always to the original value. The intracellular binding of glycerol which is passively permeable was also inhibited by raising the pH of the medium. The data suggested that ATP formation may be inhibited at neutral pH. Intracellular ATP pool was reduced by 80% on neutralization of the acid growth medium. These results are compared to recent studies on acid-base transients in T. novellus by Cole and Aleem (1971).  相似文献   

15.
Both the sialoglycoprotein of human erythrocyte membranes, glycophorin, and the sialic acid free protein, obtained by treatment of glycophorin with neuraminidase (EC 3.2.1.18), increase the fluorescence of 8-anilino-1-naphthalene sulfonate (ANS). Binding of ANS to glycophorin is weak compared with the binding to bovine serum albumin (BSA). equilibrium dialysis gives an apparent binding constant of about 4 X 10(3) M(-1) at neutral pH, but Ka increases 1.75 times when NaCl or CaCl2 are added and 10-fold when the pH is lowered to 3.0. Sialic acid groups do not significantly affect ANS binding, although they have some effect at low ionic strength and neutral pH. Fluorescence studies indicate only one to two binding sites for ANS, with apparent pK = 3.8 +/- 0.2, and located close to aromatic residues in glycophorin. Polarization and quantum efficiency of the fluorescence of ANS associated with glycophorin fail to indicate changes in the vicinity of the binding site when the pH is lowered.  相似文献   

16.
Mitra RC  Zhang Z  Alexov E 《Proteins》2011,79(3):925-936
Protein-protein association is a pH-dependent process and thus the binding affinity depends on the local pH. In vivo the association occurs in a particular cellular compartment, where the individual monomers are supposed to meet and form a complex. Since the monomers and the complex exist in the same micro environment, it is plausible that they coevolved toward its properties, in particular, toward the characteristic subcellular pH. Here we show that the pH at which the monomers are most stable (pH-optimum) or the pH at which stability is almost pH-independent (pH-flat) of monomers are correlated with the pH-optimum of maximal affinity (pH-optimum of binding) or pH interval at which affinity is almost pH-independent (pH-flat of binding) of the complexes made of the corresponding monomers. The analysis of interfacial properties of protein complexes demonstrates that pH-dependent properties can be roughly estimated using the interface charge alone. In addition, we introduce a parameter beta, proportional to the square root of the absolute product of the net charges of monomers, and show that protein complexes characterized with small or very large beta tend to have neutral pH-optimum. Further more, protein complexes made of monomers carrying the same polarity net charge at neutral pH have either very low or very high pH-optimum of binding. These findings are used to propose empirical rule for predicting pH-optimum of binding provided that the amino acid compositions of the corresponding monomers are available.  相似文献   

17.
Conformational transitions of HAFP in the pH-range 2-12 were studied by fluorescence spectroscopy, fluorescence polarization measurements, circular dichroism and hydrophobic chromatography in order to compare molecular architecture of HAFP and that of human serum albumin. It was found that HAFP has a remarkably hydrophilic exposed molecular surface at neutral pH and possesses extensive hydrophobic binding sites located in crevices. Conformational changes occur in HAFP in the acid and alkaline pH regions; extensive hydrophobic areas in HAFP are exposed by both acid and alkaline transitions. The alpha-helix contents of HAFP were determined as 67% at pH 7.6, 47% at pH 2.11.  相似文献   

18.
The circular dichroism (CD) spectrum of the Rev protein from HIV-1 indicates that Rev contains about 50% alpha helix and 25% beta sheet at 5 degrees C in potassium phosphate buffer, pH 3, and 300 mM KF. The spectrum is independent of protein concentration over a 20-fold range. At neutral pH, Rev is relatively insoluble but can be brought into solution by binding to its specific RNA binding site, the Rev-responsive element (RRE), at a Rev:RNA ratio of about 3:1. Nonspecific binding to tRNA does not solubilize Rev. As judged by difference CD spectra, the conformation of Rev when bound to the RRE at neutral pH is similar to the conformation of unbound Rev at pH 3, although changes in the RNA may also contribute to the difference spectrum. Indeed, some difference is observed near 260 nm, consistent with a conformational change of the RRE upon Rev binding. Rev alone at pH 3 shows irreversible aggregation as the temperature is raised, while Rev bound to the RRE at neutral pH shows a reversible transition with a Tm of 68 degrees C.  相似文献   

19.
1. A purification of l(+)-lactate dehydrogenase is described. 2. The final preparation is active with NADH and NADPH and with a number of keto acids, but evidence is presented to support the view that a single enzyme is involved. 3. NAD(+) showed product inhibition, but at slightly acid pH values there was evidence of co-operative binding. 4. At acid pH values ATP was a potent inhibitor and appears to be an allosteric effector. At neutral or alkaline pH values ATP behaved as a weak competitive inhibitor. 5. The physiological significance of inhibition by ATP is discussed.  相似文献   

20.
The serum amyloid P component (SAP) has been found to associate in vitro with a variety of polysaccharide and proteinaceous ligands including the yeast cell wall polysaccharide preparation, zymosan, in the presence of calcium at neutral pH. In the present study, we have investigated the role of copper and zinc and other divalent cations and acidic pH on the binding of SAP to zymosan. We report that binding occurs not only in the presence of calcium, but in the presence of copper, zinc, and cadmium as well. No binding occurs in the absence of added metal, or in the presence of barium, cobalt, magnesium, manganese, or nickel. 125I-SAP binding in the presence of metals is inhibited by presaturating the zymosan surface with unlabeled SAP. Whereas calcium-mediated binding decreases by more than 50% as the pH is lowered to 5, copper-mediated binding increases substantially at the more acidic pH values while zinc-mediated binding is essentially unchanged. These data indicate that, in addition to calcium at neutral pH, copper (and zinc) at neutral and particularly acidic pH values mediates SAP binding to polysaccharide ligands. This suggests that SAP may well be considered a copper- as well as a calcium-dependent protein under certain conditions and that this reactivity is favored under those conditions of lowered pH which may result from metabolic processes occurring at local sites of inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号