首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
D Hughes  J F Atkins    S Thompson 《The EMBO journal》1987,6(13):4235-4239
This is the first report of ribosomal frameshifting promoted by mutants of the elongation factor Tu (EF-Tu). EF-Tu mutants can suppress both -1 and +1 frameshift mutations. The level of nonsense readthrough is also increased at some UGA (this paper) and UAG (Hughes, 1987) sites by these mutants. Suppression occurs when a mutant tuf allele is paired with a wild-type copy of the other tuf gene but is most efficient when both tuf genes are mutant. Frameshifting mediated by the tuf alleles studied, tufA8 and tufB103, is not general; indeed most frameshift mutations are not suppressed. Several possible mechanisms by which mutant EF-Tu may cause frameshifting are discussed.  相似文献   

2.
Mutants of the elongation factor EF-Tu, a new class of nonsense suppressors   总被引:14,自引:4,他引:10  
Read-through of nonsense codons has been studied in wild-type Escherichia coli cells and in cells harbouring mutant species of the elongation factor EF-Tu. The two phenomena differ essentially. Readthrough of UGA in wild-type cells is reduced by inactivation of tufB but is restored to the original level by introducing into the cell plasmid-borne EF-Tu. This shows that the natural UGA leakiness is dependent on the intracellular concentration of EF-Tu. Strains of E. coli harbouring mutant species of the elongation factor EF-Tu suppress the nonsense codons UAG, UAA and UGA. Suppression shows a codon context dependence. It requires the combined action of two different EF-Tu species: EF-TuAR(Ala 375----Thr) and EF-TuBo(Gly 222----Asp). Cells harbouring EF-TuAR(Ala 375----Thr) and wild-type EF-TuB, or wild-type EF-TuA and EF-TuBo(Gly 222----Asp) do not display suppressor activity. These data demonstrate that mutated tuf genes form an additional class of nonsense suppressors. The requirement for two different mutant EF-Tu species raises the question whether translation of sense codons also occurs by the combined action of two EF-Tu molecules on the ribosome.  相似文献   

3.
Mutant forms of elongation factor Tu encoded by tufA8 and tufB103 in Salmonella typhimurium cause suppression of some but not all frameshift mutations. All of the suppressed mutations in S. typhimurium have frameshift windows ending in the termination codon UGA. Because both tufA8 and tufB103 are moderately efficient UGA suppressors, we asked whether the efficiency of frameshifting is influenced by the level of misreading at UGA. We introduced plasmids synthesizing either one of the release factors into strains in which the tuf mutations suppress a test frameshift mutation. We found that overproduction of release factor 2 (which catalyzes release at UGA and UAA) reduced frameshifting promoted by the tuf mutations at all sites tested. However, at one of these sites, trpE91, overproduction of release factor 1 also reduced suppression. The spontaneous level of frameshift "leakiness" at three sites in trpE, each terminating in UGA, was reduced in strains carrying the release factor 2 plasmid. We conclude that both spontaneous and suppressor-enhanced reading-frame shifts are influenced by the activity of peptide chain release factors. However, the data suggest that the effect of release factor on frameshifting does not necessarily depend on the presence of the normal triplet termination signal.  相似文献   

4.
Chattoo BB  Palmer E  Ono B  Sherman F 《Genetics》1979,93(1):67-79
A total of 358 lys2 mutants of Saccharomyces cerevisiae have been characterized for suppressibility by the following suppressors: UAA and UAG suppressors that insert tyrosine, serine or leucine; a putative UGA suppressor; an omnipotent suppressor SUP46; and a frameshift suppressor SUF1–1. In addition, the lys2 mutants were examined for phenotypic suppression by the aminoglycoside antibiotic paromomycin, for osmotic remediability and for temperature sensitivity. The mutants exhibited over 50 different patterns of suppression and most of the nonsense mutants appeared similar to nonsense mutants previously described. A total of 24% were suppressible by one or more of the UAA suppressors, 4% were suppressible by one or more of the UAG suppressors, while only one was suppressible by the UGA suppressor and only one was weakly suppressible by the frameshift suppressor. One mutant responded to both UAA and UAG suppressors, indicating that UAA or UAG mutations at certain rare sites can be exceptions to the specific action of UAA and UAG suppressors. Some of the mutants appeared to require certain types of amino acid replacements at the mutant sites in order to produce a functional gene product, while others appeared to require suppressors that were expressed at high levels. Many of the mutants suppressible by SUP46 and paromomycin were not suppressible by any of the UAA, UAG or UGA suppressors, indicating that omnipotent suppression and phenotypic suppression need not be restricted to nonsense mutations. All of the mutants suppressible by SUP46 were also suppressible by paromomycin, suggesting a common mode of action of omnipotent suppression and phenotypic misreading.  相似文献   

5.
Neurospora crassa has 10 mapped supersuppressor (ssu) genes. In vivo studies indicate that they suppress amber (UAG) premature termination mutations but the spectrum of their functions remains to be elucidated. We examined seven ssu strains (ssu-1, -2, -3, -4, -5, -9, and -10) using cell-free translation extracts. We tested suppression by requiring it to produce firefly luciferase from a reading frame containing premature UAA, UGA, or UAG terminators. All mutants except ssu-3 suppressed UAG codons. Maximal UAG suppression ranged from 15% to 30% relative to controls containing sense codons at the corresponding position. Production from constructs containing UAA or UGA was 1-2%, similar to levels observed with all nonsense codons in wild-type and ssu-3 extracts. UAG suppression was also seen using [35S]Met to radiolabel polypeptides. Suppression enabled ribosomes to continue translation elongation as determined using the toeprint assay. tRNA from supersuppressors showed suppressor activity when added to wild-type extracts. Thus, these supersuppressors produce amber suppressor tRNA.  相似文献   

6.
Mutant ribosomes can generate dominant kirromycin resistance.   总被引:12,自引:4,他引:8       下载免费PDF全文
Mutations in the two genes for EF-Tu in Salmonella typhimurium and Escherichia coli, tufA and tufB, can confer resistance to the antibiotic kirromycin. Kirromycin resistance is a recessive phenotype expressed when both tuf genes are mutant. We describe a new kirromycin-resistant phenotype dominant to the effect of wild-type EF-Tu. Strains carrying a single kirromycin-resistant tuf mutation and an error-restrictive, streptomycin-resistant rpsL mutation are resistant to high levels of kirromycin, even when the other tuf gene is wild type. This phenotype is dependent on error-restrictive mutations and is not expressed with nonrestrictive streptomycin-resistant mutations. Kirromycin resistance is also expressed at a low level in the absence of any mutant EF-Tu. These novel phenotypes exist as a result of differences in the interactions of mutant and wild-type EF-Tu with the mutant ribosomes. The restrictive ribosomes have a relatively poor interaction with wild-type EF-Tu and are thus more easily saturated with mutant kirromycin-resistant EF-Tu. In addition, the mutant ribosomes are inherently kirromycin resistant and support a significantly faster EF-Tu cycle time in the presence of the antibiotic than do wild-type ribosomes. A second phenotype associated with combinations of rpsL and error-prone tuf mutations is a reduction in the level of resistance to streptomycin.  相似文献   

7.
8.
Effects of surrounding sequence on the suppression of nonsense codons   总被引:61,自引:0,他引:61  
Using a lacI-Z fusion system, we have determined the efficiency of suppression of nonsense codons in the I gene of Escherichia coli by assaying beta-galactosidase activity. We examined the efficiency of four amber suppressors acting on 42 different amber (UAG) codons at known positions in the I gene, and the efficiency of a UAG suppressor at 14 different UGA codons. The largest effects were found with the amber suppressor supE (Su2), which displayed efficiencies that varied over a 35-fold range, and with the UGA suppressor, which displayed a 170-fold variation in efficiency. Certain UGA sites were so poorly suppressed (less than 0.2%) by the UGA suppressor that they were not originally detected as nonsense mutations. Suppression efficiency can be correlated with the sequence on the 3' side of the codon being suppressed, and in many cases with the first base on the 3' side. In general, codons followed by A or G are well suppressed, and codons followed by U or C are poorly suppressed. There are exceptions, however, since codons followed by CUG or CUC are well suppressed. Models explaining the effect of the surrounding sequence on suppression efficiency are considered in the Discussion and in the accompanying paper.  相似文献   

9.
Paromomycin, an aminoglycoside antibiotic, can phenotypically suppress nonsense mutations in the yeast Saccharomyces cerevisiae (Palmer et al., 1979). We report here that the extrachromosomal determinant, ψ+, enhances this phenotypic suppression of all three nonsense mutations. UAG. UAA and UGA, by three-to sevenfold.  相似文献   

10.
D. Garza  M. M. Medhora    D. L. Hartl 《Genetics》1990,126(3):625-637
Amber (UAG) and opal (UGA) nonsense suppressors were constructed by oligonucleotide site-directed mutagenesis of two Drosophila melanogaster leucine-tRNA genes and tested in yeast, Drosophila tissue culture cells and transformed flies. Suppression of a variety of amber and opal alleles occurs in yeast. In Drosophila tissue culture cells, the mutant tRNAs suppress hsp70:Adh (alcohol dehydrogenase) amber and opal alleles as well as an hsp70:β-gal (β-galactosidase) amber allele. The mutant tRNAs were also introduced into the Drosophila genome by P element-mediated transformation. No measurable suppression was seen in histochemical assays for Adh(n4) (amber), Adh(nB) (opal), or an amber allele of β-galactosidase. Low levels of suppression (approximately 0.1-0.5% of wild type) were detected using an hsp70:cat (chloramphenicol acetyltransferase) amber mutation. Dominant male sterility was consistently associated with the presence of the amber suppressors.  相似文献   

11.
E Vijgenboom  L Bosch 《Biochimie》1987,69(10):1021-1030
The elongation factor EF-Tu of E. coli is a multifunctional protein that lends itself extremely well to studies concerning structure-function relationships. It is encoded by two genes: tufA and tufB. Mutant species of EF-Tu have been obtained by various genetic manipulations, including site- and segment-directed mutagenesis of tuf genes on a vector. The presence of multiple tuf genes in the cell, both chromosomal and plasmid-borne, hampers the characterization of the mutant EF-Tu. We describe a procedure for transferring plasmid-borne tuf gene mutations to the chromosome. Any mutation engineered by genetic manipulation of tuf genes on a vector can be transferred both to the tufA and the tufB position on the chromosome. The procedure facilitated the functional characterization of some of our recently obtained tuf mutations. Of particular relevance is, that it enabled us for the first time to obtain a mutant tufB on the chromosome, encoding an EF-TuB resistant to kirromycin. It thus became possible to study the consequences for growth of tufA inactivation by insertion of bacteriophage Mu. The preliminary evidence obtained suggests that an EF-TuA, active in polypeptide synthesis, is essential for growth whereas such an EF-TuB is dispensable.  相似文献   

12.
Procedure for Identifying Nonsense Mutations   总被引:81,自引:60,他引:21  
A method has been devised for the rapid identification of nonsense mutations (UAG, UAA, UGA codons) in Salmonella. The mutations to be tested are reverted, and the revertants are replica-printed onto lactose plates spread with lawns of tester strains. These tester strains contain F' lac episomes with nonsense mutations in the episomal Z gene. The revertants are infected with the episome from the tester strain lawn. Because S. typhimurium is unable to ferment lactose, only those revertants which have nonsense suppressors are able to grow on lactose. If colonies appear on the lactose plate, it may be concluded that the original strain carries a nonsense mutation, since nonsense suppressors suppress the mutant phenotype.  相似文献   

13.
T. Washburn  J. E. O''Tousa 《Genetics》1992,130(3):585-595
We placed UAA, UAG and UGA nonsense mutations at two leucine codons, Leu205 and Leu309, in Drosophila's major rhodopsin gene, ninaE, by site-directed mutagenesis, and then created the corresponding mutants by P element-mediated transformation of a ninaE deficiency strain. In the absence of a genetic suppressor, flies harboring any of the nonsense mutations at the 309 site, but not the 205 site, show increased rhodopsin activity. Additionally, all flies with nonsense mutations at either site have better rhabdomere structure than does the ninaE deficiency strain. Construction and analysis of a 3'-deletion mutant of ninaE indicates that translational readthrough accounts for the extra photoreceptor activity of the ninaE309 alleles and that truncated opsins are responsible for the improved rhabdomere structure. The presence of leucine-inserting tRNA nonsense suppressors DtLa Su+ and DtLb Su+ in the mutant strains produced a small increase (less than 0.04%) in functional rhodopsin. The opal (UGA) suppressor derived from the DtLa tRNA gene is more efficient than the amber (UAG) or opal suppressor derived from the DtLb gene, and both DtLa and DtLb derived suppressors are more efficient at site 205 than 309.  相似文献   

14.
Nonsense suppressor tRNAs have been suggested as potential agents for human somatic gene therapy. Recent work from this laboratory has described significant effects of 3' codon context on the efficiency of human nonsense suppressors. A rapid increase in the number of reports of human diseases caused by nonsense codons, prompted us to determine how the spectrum of mutation to either UAG, UAA or UGA codons and their respective 3' contexts, might effect the efficiency of human suppressor tRNAs employed for purposes of gene therapy. This paper presents a survey of 179 events of mutations to nonsense codons which cause human germline or somatic disease. The analysis revealed a ratio of approximately 1:2:3 for mutation to UAA, UAG and UGA respectively. This pattern is similar, but not identical, to that of naturally occurring stop codons. The 3' contexts of new mutations to stop were also analysed. Once again, the pattern was similar to the contexts surrounding natural termination signals. These results imply there will be little difference in the sensitivity of nonsense mutations and natural stop codons to suppression by nonsense suppressor tRNAs. Analysis of the codons altered by nonsense mutations suggests that efforts to design human UAG suppressor tRNAs charged with Trp, Gln, and Glu; UAA suppressors charged with Gln and Glu, and UGA suppressors which insert Arg, would be an essential step in the development of suppressor tRNAs as agents of human somatic gene therapy.  相似文献   

15.
The base sequence around nonsense codons affects the efficiency of nonsense codon suppression. Published data, comparing different nonsense sites in a mRNA, implicate the two bases downstream of the nonsense codon as major determinants of suppression efficiency. However, the results we report here indicate that the nature of the contiguous upstream codon can also affect nonsense suppression, as can the third (wobble) base of the contiguous downstream codon. These conclusions are drawn from experiments in which the two Ser codons UCU233 and UCG235 in a nonsense mutant form (UGA234) of the trpA gene in Escherichia coli have been replaced with other Ser codons by site-directed mutagenesis. Suppression of these trpA mutants has been studied in the presence of a UGA nonsense suppressor derived from glyT. We speculate that the non-site-specific effects of the two adjacent downstream bases may be largely at the level of the termination process, whereas more site-specific or codon-specific effects may operate primarily on the activity of the suppressor tRNA.  相似文献   

16.
Using a genetic selection for suppressors of a UGA nonsense mutation in trpA, we have isolated a G to A transition mutation at position 1491 in the decoding region of 16S rRNA. This suppressor displayed no codon specificity, suppressing UGA, UAG and UAA nonsense mutations and +1 and -1 frameshift mutations in lacZ. Subsequent examination of a series of mutations at G1491 and its base-pairing partner C1409 revealed various effects on nonsense suppression and frameshifting. Mutations that prevented Watson-Crick base pairing between these residues were observed to increase misreading and frameshifting. However, double mutations that retained pairing potential produced an antisuppressor or hyperaccurate phenotype. Previous studies of antibiotic resistance mutations and antibiotic and tRNA footprints have placed G1491 and C1409 near the site of codon-anticodon pairing. The results of this study demonstrate that the nature of the interaction of these two residues influences the fidelity of tRNA selection.  相似文献   

17.
UGA-specific nonsense suppressors from Escherichia coli K-12 were isolated and characterized. One of them (Su+UGA-11) was identified as a mutant of the prfB gene for the peptide releasing factor RF2. It appears that in this strain, while peptide release at sites of UGA mutations is retarded, the UGA stop codon is read through even in the absence of a tRNA suppressor, exhibiting a novel type of passive nonsense suppression. Three suppressors (Su+UGA-12, -16 and -34) were capable of restoring the streptomycin sensitive phenotype in resistant bacteria (strAr). Because of their drug-related phenotype, these are possibly mutations in the components of the ribosomal machinery, particularly those concerned with peptide release at UGA nonsense codons. A tRNA suppressor was also obtained which was derived from the tRNA(Trp) gene. In this strain, a long region between rrnC (84.5 min) and rrnB (89.5 min) was duplicated and one of the duplicated genes of tRNA(Trp) was mutated to the suppressor. The mechanism of UGA-suppression is discussed in terms of translation termination at the nonsense codon in both active and passive fashions.  相似文献   

18.
We identified a short RNA fragment, complementary to the Escherichia coli 23S rRNA segment comprising nucleotides 735 to 766 (in domain II), which when expressed in vivo results in the suppression of UGA nonsense mutations in two reporter genes. Neither UAA nor UAG mutations, examined at the same codon positions, were suppressed by the expression of this antisense rRNA fragment. Our results suggest that a stable phylogenetically conserved hairpin at nucleotides 736 to 760 in 23S rRNA, which is situated close to the peptidyl transferase center, may participate in one or more specific interactions during peptide chain termination.  相似文献   

19.
20.
Summary We have examined the response of phage T4 nonsense mutations located at various sites within the same cistron to different suppression agents. A wide range of suppression efficiency is found for both ochre (UAA) and amber (UAG) mutations under conditions where suppression provides a measurement of the amount of chain propagation past the mutated site. We have established a relationship between our measurement-the size of the phage yield-and the amount of rIIB product present in the infection. Our data suggest that the 1000-fold range of variations in yields observed in the rIIB cistron corresponds to a 30-fold range of variation in the level of rIIB product, i.e. in the relative frequency of chain propagation past the various nonsense codons included in our test.From the parallelism of response of any particular mutant to very different suppression mechanisms we conclude that the efficiency of suppression is site specific, that is to say, that the main factor determining the frequency of chain propagation at a nonsense codon by any type of suppression mechanism is the nucleotide sequence adjacent to the nonsense codon (reading context).We propose that the recognition of a natural termination signal involves a sequence longer than a nonsense codon and that nonsense codons outside of their natural environment induce variable termination rates which are reflected in the suppression potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号