首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
G-protein coupled receptors (GPCRs) are key elements in signal transduction pathways of eukaryotic cells and they play central roles in many human diseases. So far, most structural and functional approaches have been limited by the immense difficulties in the production of sufficient amounts of protein samples in conventional expression systems based on living cells. We report the high level production of six different GPCRs in an individual cell-free expression system based on Escherichia coli extracts. The open nature of cell-free systems allows the addition of detergents in order to provide an artificial hydrophobic environment for the reaction. This strategy defines a completely new technique for the production of membrane proteins that can directly associate with detergent micelles upon translation. We demonstrate the efficient overproduction of the human melatonin 1B receptor, the human endothelin B receptor, the human and porcine vasopressin type 2 receptors, the human neuropeptide Y4 receptor and the rat corticotropin releasing factor receptor by cell-free expression. In all cases, the long chain polyoxyethylene detergent Brij78 was found to be highly effective for solubilization and milligram amounts of soluble protein could be generated in less than 24 h. Single particle analysis indicated a homogenous distribution of predominantly protein dimers of the cell-free expressed GPCR samples, with dimensions similar to the related rhodopsin. Ligand interaction studies with the endothelin B receptor and a derivative of its peptide ligand ET-1 gave further evidence of a functional folding of the cell-free produced protein.  相似文献   

2.
The functional and structural characterization of G-protein-coupled receptors (GPCRs) still suffers from tremendous difficulties during sample preparation. Cell-free expression has recently emerged as a promising alternative approach for the synthesis of polytopic integral membrane proteins and, in particular, for the production of G-protein-coupled receptors. We have now analyzed the quality and functional folding of cell-free produced human endothelin type B receptor samples as an example of the rhodopsin-type family of G-protein-coupled receptors in correlation with different cell-free expression modes. Human endothelin B receptor was cell-free produced as a precipitate and subsequently solubilized in detergent, or was directly synthesized in micelles of various supplied mild detergents. Purified cell-free-produced human endothelin B receptor samples were evaluated by single-particle analysis and by ligand-binding assays. The soluble human endothelin B receptor produced is predominantly present as dimeric complexes without detectable aggregation, and the quality of the sample is very similar to that of the related rhodopsin isolated from natural sources. The binding of human endothelin B receptor to its natural peptide ligand endothelin-1 is demonstrated by coelution, pull-down assays, and surface plasmon resonance assays. Systematic functional analysis of truncated human endothelin B receptor derivatives confined two key receptor functions to the membrane-localized part of human endothelin B receptor. A 39 amino acid fragment spanning residues 93-131 and including the proposed transmembrane segment 1 was identified as a central area involved in endothelin-1 binding as well as in human endothelin B receptor homo-oligomer formation. Our approach represents an efficient expression technique for G-protein-coupled receptors such as human endothelin B receptor, and might provide a valuable tool for fast structural and functional characterizations.  相似文献   

3.
Membrane proteins, particularly G-protein coupled receptors (GPCRs), are notoriously difficult to express. Using commercial E. coli cell-free systems with the detergent Brij-35, we could rapidly produce milligram quantities of 13 unique GPCRs. Immunoaffinity purification yielded receptors at >90% purity. Secondary structure analysis using circular dichroism indicated that the purified receptors were properly folded. Microscale thermophoresis, a novel label-free and surface-free detection technique that uses thermal gradients, showed that these receptors bound their ligands. The secondary structure and ligand-binding results from cell-free produced proteins were comparable to those expressed and purified from HEK293 cells. Our study demonstrates that cell-free protein production using commercially available kits and optimal detergents is a robust technology that can be used to produce sufficient GPCRs for biochemical, structural, and functional analyses. This robust and simple method may further stimulate others to study the structure and function of membrane proteins.  相似文献   

4.
G protein-coupled receptors (GPCRs) represent approximately 3% of the human proteome. They are involved in a large number of diverse processes and, therefore, are the most prominent class of pharmacological targets. Besides rhodopsin, X-ray structures of classical GPCRs have only recently been resolved, including the β1 and β2 adrenergic receptors and the A2A adenosine receptor. This lag in obtaining GPCR structures is due to several tedious steps that are required before beginning the first crystallization experiments: protein expression, detergent solubilization, purification, and stabilization. With the aim to obtain active membrane receptors for functional and crystallization studies, we recently reported a screen of expression conditions for approximately 100 GPCRs in Escherichia coli, providing large amounts of inclusion bodies, a prerequisite for the subsequent refolding step. Here, we report a novel artificial chaperone-assisted refolding procedure adapted for the GPCR inclusion body refolding, followed by protein purification and characterization. The refolding of two selected targets, the mouse cannabinoid receptor 1 (muCB1R) and the human parathyroid hormone receptor 1 (huPTH1R), was achieved from solubilized receptors using detergent and cyclodextrin as protein folding assistants. We could demonstrate excellent affinity of both refolded and purified receptors for their respective ligands. In conclusion, this study suggests that the procedure described here can be widely used to refold GPCRs expressed as inclusion bodies in E. coli.  相似文献   

5.
G protein-coupled receptors (GPCRs) represent the largest class of cell surface receptors and play crucial roles in many cellular and physiological processes. Functional production of recombinant GPCRs is one of the main bottlenecks to obtaining structural information. Here, we report the use of a novel bacterial expression system based on the photosynthetic bacterium Rhodobacter sphaeroides for the production of human recombinant GPCRs. The advantage of employing R. sphaeroides as a host lies in the fact that it provides much more membrane surface per cell compared to other typical expression hosts. The system was tailored to overexpress recombinant receptors under the control of the moderately strong and highly regulated superoperonic photosynthetic promoter pufQ. We tested this system for the expression of some class A GPCRs, namely, the human adenosine A2a receptor (A2aR), the human angiotensin AT1a receptor (AT1aR) and the human bradykinin B2 receptor (B2R). Several different constructs were examined and functional production of the recombinant receptors was achieved. The best-expressed receptor, AT1aR, was solubilized and affinity-purified. To the best of our knowledge, this is the first report of successful use of a bacterial host--R. sphaeroides--to produce functional recombinant GPCRs under the control of a photosynthetic gene promoter.  相似文献   

6.
Shukla AK  Reinhart C  Michel H 《FEBS letters》2006,580(17):4261-4265
High-level overexpression of G protein-coupled receptors GPCRs in mammalian cells remains a difficult task inspite of newly developed virus based expression systems. Here, we show that the functional expression level of the recombinant bradykinin receptor (B(2)R) in mammalian cells can be increased up to sixfold just by the addition of dimethylsulphoxide in the culture medium. Total expression level, cellular localization and binding affinity of the recombinant receptor for its endogenous ligand remains unaltered. The strategy presented here, with recombinant B(2)R as a case example, is applicable to other GPCRs and provides a generic tool to improve the functional expression level of recombinant GPCRs in mammalian cells.  相似文献   

7.
Cell-free expression has become a highly promising tool for the fast and efficient production of integral membrane proteins. The proteins can be produced as precipitates that solubilize in mild detergents usually without any prior denaturation steps. Alternatively, membrane proteins can be synthesized in a soluble form by adding detergents to the cell-free system. However, the effects of a representative variety of detergents on the production, solubility and activity of a wider range of membrane proteins upon cell-free expression are currently unknown. We therefore analyzed the cell-free expression of three structurally very different membrane proteins, namely the bacterial alpha-helical multidrug transporter, EmrE, the beta-barrel nucleoside transporter, Tsx, and the porcine vasopressin receptor of the eukaryotic superfamily of G-protein coupled receptors. All three membrane proteins could be produced in amounts of several mg per one ml of reaction mixture. In general, the detergent 1-myristoyl-2-hydroxy-sn-glycero-3-[phospho-rac-(1-glycerol)] was found to be most effective for the resolubilization of membrane protein precipitates, while long chain polyoxyethylene-alkyl-ethers proved to be most suitable for the soluble expression of all three types of membrane proteins. The yield of soluble expressed membrane protein remained relatively stable above a certain threshold concentration of the detergents. We report, for the first time, the high-level cell-free expression of a beta-barrel type membrane protein in a functional form. Structural and functional variations of the analyzed membrane proteins are evident that correspond with the mode of expression and that depend on the supplied detergent.  相似文献   

8.
Understanding the three-dimensional structure of G protein-coupled receptors (GPCRs) has been limited by the technical challenges associated with expression, purification, and crystallization of membrane proteins, and their low abundance in native tissue. In the first large-scale comparative study of GPCR protein production using recombinant baculovirus, we report the characterization of 16 human receptors. The GPCRs were produced in three insect cell lines and functional protein levels monitored over 72 h using radioligand binding assays. Different GPCRs exhibited widely different expression levels, ranging from less than 1 pmol receptor/mg protein to more than 250 pmol/mg. No single set of conditions was suitable for all GPCRs, and large differences were seen for the expression of individual GPCRs in different cell lines. Closely related GPCRs did not share similar expression profiles; however, high expression (greater than 20 pmol/mg) was achieved for over half the GPCRs in our study. Overall, the levels of protein production compared favourably to other published systems.  相似文献   

9.
10.
Kai L  Kaldenhoff R  Lian J  Zhu X  Dötsch V  Bernhard F  Cen P  Xu Z 《PloS one》2010,5(9):e12972
The continuous progress in the structural and functional characterization of aquaporins increasingly attracts attention to study their roles in certain mammalian diseases. Although several structures of aquaporins have already been solved by crystallization, the challenge of producing sufficient amounts of functional proteins still remains. CF (cell free) expression has emerged in recent times as a promising alternative option in order to synthesize large quantities of membrane proteins, and the focus of this report was to evaluate the potential of this technique for the production of eukaryotic aquaporins. We have selected the mouse aquaporin 4 as a representative of mammalian aquaporins. The protein was synthesized in an E. coli extract based cell-free system with two different expression modes, and the efficiencies of two modes were compared. In both, the P-CF (cell-free membrane protein expression as precipitate) mode generating initial aquaporin precipitates as well as in the D-CF (cell-free membrane protein expression in presence of detergent) mode, generating directly detergent solubilized samples, we were able to obtain mg amounts of protein per ml of cell-free reaction. Purified aquaporin samples solubilized in different detergents were reconstituted into liposomes, and analyzed for the water channel activity. The calculated P(f) value of proteoliposome samples isolated from the D-CF mode was 133 μm/s at 10°C, which was 5 times higher as that of the control. A reversible inhibitory effect of mercury chloride was observed, which is consistent with previous observations of in vitro reconstituted aquaporin 4. In this study, a fast and convenient protocol was established for functional expression of aquaporins, which could serve as basis for further applications such as water filtration.  相似文献   

11.
Zhang L  Salom D  He J  Okun A  Ballesteros J  Palczewski K  Li N 《Biochemistry》2005,44(44):14509-14518
G protein-coupled receptors (GPCRs) constitute the largest superfamily of transmembrane signaling proteins; however, the only known GPCR crystal structure is that of rhodopsin. This disparity reflects the difficulty in generating purified GPCR samples of sufficient quantity and quality. Rhodopsin, the light receptor of retinal rod neurons, is produced in large amounts of homogeneous quality in the vertebrate retina. We used transgenic Xenopus laevis to convert these retina rod cells into bioreactors to successfully produce 20 model GPCRs. The receptors accumulated in rod outer segments and were homogeneously glycosylated. Ligand and [(35)S]GTPgammaS binding assays of the 5HT(1A) and EDG(1) GPCRs confirmed that they were properly folded and functional. 5HT(1A)R was highly purified by taking advantage of the rhodopsin C-terminal immunoaffinity tag common to all GPCR constructs. We have also developed an automated system that can generate hundreds of transgenic tadpoles per day. This expression approach could be extended to other animal model systems and become a general method for the production of large numbers of GPCRs and other membrane proteins for pharmacological and structural studies.  相似文献   

12.
G-protein coupled receptors (GPCRs) constitute the largest family of intercellular signaling molecules and are estimated to be the target of more than 50% of all modern drugs. As with most integral membrane proteins (IMPs), a major bottleneck in the structural and biochemical analysis of GPCRs is their expression by conventional expression systems. Cell-free (CF) expression provides a relatively new and powerful tool for obtaining preparative amounts of IMPs. However, in the case of GPCRs, insufficient homogeneity of the targeted protein is a problem as the in vitro expression is mainly done with detergents, in which aggregation and solubilization difficulties, as well as problems with proper folding of hydrophilic domains, are common. Here, we report that using CF expression with the help of a fructose-based polymer, NV10 polymer (NVoy), we obtained preparative amounts of homogeneous GPCRs from the three GPCR families. We demonstrate that two GPCR B family members, corticotrophin-releasing factor receptors 1 and 2β are not only solubilized in NVoy but also have functional ligand-binding characteristics with different agonists and antagonists in a detergent-free environment as well. Our findings open new possibilities for functional and structural studies of GPCRs and IMPs in general.  相似文献   

13.
A major hurdle in the structural analysis of membrane proteins is the expression of a functional and homogeneous form of the protein. Except for rhodopsin, most G protein-coupled receptors (GPCRs) are endogenously expressed at very low levels. Heterologous expression of GPCRs in bacteria, yeast, insect cells or mammalian cell lines often yields proteins with large amounts of misfolded proteins and heterogeneous posttranslational modifications. Here, we report a novel mammalian “in vivo” system for the expression of the chemokine receptor CXCR1. This receptor was expressed in liver of mice infected with adenovirus encoding CXCR1. Liver plasma membranes from infected mice displayed high-levels of 125I-labeled human interleukin-8 (IL-8) binding. The pharmacological profile of the recombinant CXCR1 expressed “in vivo” was similar to those expressed in neutrophils. We found that the incorporation of the detergent solubilized CXCR1 into phospholipid vesicles in the presence of Gi/Go proteins is required for the reconstitution of 125I-IL-8 binding. On the basis of the presence of the several endogenous His residues and glycosylation moieties in CXCR1 we fractionated the detergent-solubilized plasma membranes by employing Ni- and Concanavalin A-based chromatography. Fractions enriched with CXCR1 were monitored by 125I-IL-8-bound to the receptor and Western blots with anti-CXCR1 antibodies. This robust expression system could be readily applied for the expression of GPCRs and other eukaryotic membrane proteins.  相似文献   

14.
We previously described a functional assay for G protein-coupled receptors (GPCRs) based on stably transformed insect cells and using the promiscuous G protein Galpha16. We now show that, compared with Galpha16, the use of chimeric Galphaq subunits with C-terminal modifications (qi5-HA, qo5-HA, or qz5-HA) significantly enhances the ability of insect cells to redirect Gi-coupled GPCRs into a Gq-type signal transduction pathway. We coexpressed human Gi-coupled GPCRs, G protein alpha subunits (either a chimeric Galphaq or Galpha16), and the calcium-sensitive reporter protein aequorin in Sf9 cells using a nonlytic protein expression system, and measured agonist-induced intracellular calcium flux using a luminometer. Three of the GPCRs (serotonin 1A, 1D, and dopamine D2) were functionally redirected into a Gq-type pathway when coexpressed with the chimeric G proteins, compared with only one (serotonin 1A) with Galpha16. We determined agonist concentration-response relationships for all three receptors, which yielded EC50 values comparable with those achieved in mammalian cell-based assay systems. However, three other Gi-coupled GPCRs (the opioid kappa1 and delta1 receptors, and serotonin 1E) were not coupled to calcium flux by either the G protein chimeras or Galpha16. Possible reasons and solutions for this result are discussed.  相似文献   

15.
In Escherichia coli and other cell-based expression systems, there are critical difficulties in synthesizing membrane proteins, such as the low protein expression levels and the formation of insoluble aggregates. However, structure determinations by X-ray crystallography require the purification of milligram quantities of membrane proteins. In this study, we tried to solve these problems by using cell-free protein expression with an E. coli S30 extract, with G protein coupled receptors (GPCRs) as the target integral membrane proteins. In this system, the thioredoxin-fusion vector induced high protein expression levels as compared with the non-fusion and hexa-histidine-tagged proteins. Two detergents, Brij35 and digitonin, effectively solubilized the produced GPCRs, with little or no effect on the protein yields. The synthesized proteins were detected by Coomassie brilliant blue staining within 1h of reaction initiation, and were easily reconstituted within phospholipid vesicles. Surprisingly, the unpurified, reconstituted thioredoxin-fused receptor proteins had functional activity, in that a specific affinity binding value of an antagonist was obtained for the receptor. This cell-free translation system (about 1mg/ml of reaction volume for 6-8 h) has biophysical and biochemical advantages for the synthesis of integral membrane proteins.  相似文献   

16.
Lehman CW  Lee JD  Komives CF 《Genomics》2005,85(3):386-391
Olfactory receptors are a diverse set of G-protein-coupled receptors (GPCRs) that localize to cellular plasma membranes in the olfactory epithelium. Associated trafficking proteins often assist in targeting these GPCRs to the membrane, facilitating function. One such trafficking protein has been isolated as a mutant defective for both odorant response and proper receptor localization in Caenorhabditis elegans. This gene (ODR-4) allows for functional expression of olfactory receptors in heterologous cells that are otherwise incapable of targeting. We have isolated a full-length human cDNA that is homologous to the C. elegans gene at the protein level across nearly the entire gene by using a novel RecA-based gene enrichment procedure. This sequence is homologous to a family of orthologs that share predicted structural features, indicating a conserved function. The gene was expressed in 41 of 44 human, mouse, and rat tissues, suggesting an important role in trafficking olfactory and other GPCRs.  相似文献   

17.
G-protein coupled receptors (GPCRs) are seven transmembrane helical proteins involved in cell signaling and response. They are targets for many existing therapeutic agents, and numerous drug discovery efforts. Production of large quantities of these receptors for drug screening and structural biology remains challenging. To address this difficulty, we sought to express genes for several human GPCRs in Escherichia coli. For most of the receptors, expression was poor, and was not markedly improved even in strains designed to compensate for differences in codon bias between human and E. coli genes. However, the gene for human NK(1) receptor (hNK(1)R) was expressed in large quantities as inclusion bodies in E. coli. The inclusion bodies were not soluble in chemical denaturants such as guanidine chloride or urea, but were soluble in ionic detergents such as SDS, and the zwitterionic detergent fos-choline. Using immobilized metal affinity chromatography, we purified milligram amounts of hNK(1)R. Although inactive in ligand-binding assays, purified hNK(1)R in fos-choline micelles appeared to have a high content of alpha-helix, and was well-behaved in solution. Thus this protein is suitable for additional biophysical characterization and refolding studies.  相似文献   

18.
The biochemical analysis of human cell membrane proteins remains a challenging task due to the difficulties in producing sufficient quantities of functional protein. G protein‐coupled receptors (GPCRs) represent a main class of membrane proteins and drug targets, which are responsible for a huge number of signaling processes regulating various physiological functions in living cells. To circumvent the current bottlenecks in GPCR studies, we propose the synthesis of GPCRs in eukaryotic cell‐free systems based on extracts generated from insect (Sf21) cells. Insect cell lysates harbor the fully active translational and translocational machinery allowing posttranslational modifications, such as glycosylation and phosphorylation of de novo synthesized proteins. Here, we demonstrate the production of several GPCRs in a eukaryotic cell‐free system, performed within a short time and in a cost‐effective manner. We were able to synthesize a variety of GPCRs ranging from 40 to 133 kDa in an insect‐based cell‐free system. Moreover, we have chosen the μ opioid receptor (MOR) as a model protein to analyze the ligand binding affinities of cell‐free synthesized MOR in comparison to MOR expressed in a human cell line by “one‐point” radioligand binding experiments. Biotechnol. Bioeng. 2017;114: 2328–2338. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.  相似文献   

19.
Nanoparticles composed of amphiphilic scaffold proteins and small lipid bilayers are valuable tools for reconstitution and subsequent functional and structural characterization of membrane proteins. In combination with cell-free protein production systems, nanoparticles can be used to cotranslationally and translocon independently insert membrane proteins into tailored lipid environments. This strategy enables rapid generation of protein/nanoparticle complexes by avoiding detergent contact of nascent membrane proteins. Frequently in use are nanoparticles assembled with engineered derivatives of either the membrane scaffold protein (MSP) or the Saposin A (SapA) scaffold. Furthermore, several strategies for the formation of membrane protein/nanoparticle complexes in cell-free reactions exist. However, it is unknown how these strategies affect functional folding, oligomeric assembly and membrane insertion efficiency of cell-free synthesized membrane proteins.We systematically studied membrane protein insertion efficiency and sample quality of cell-free synthesized proteorhodopsin (PR) which was cotranslationally inserted in MSP and SapA based nanoparticles. Three possible PR/nanoparticle formation strategies were analyzed: (i) PR integration into supplied preassembled nanoparticles, (ii) coassembly of nanoparticles from supplied scaffold proteins and lipids upon PR expression, and (iii) coexpression of scaffold proteins together with PR in presence of supplied lipids. Yield, homogeneity as well as the formation of higher PR oligomeric complexes from samples generated by the three strategies were analyzed. Conditions found optimal for PR were applied for the synthesis of a G-protein coupled receptor. The study gives a comprehensive guideline for the rapid synthesis of membrane protein/nanoparticle samples by different processes and identifies key parameters to modulate sample yield and quality.  相似文献   

20.
G protein-coupled receptors (GPCRs) help to regulate the physiology of all the major organ systems. They respond to a multitude of ligands and activate a range of effector proteins to bring about the appropriate cellular response. The choice of effector is largely determined by the interaction of individual GPCRs with different G proteins. Several factors influence this interaction, and a better understanding of the process may enable a more rational approach to identifying compounds that affect particular signalling pathways. A number of systems have been developed for the analysis of GPCRs. All provide useful information, but the genetic amenability and relative simplicity of yeast makes them a particularly attractive option for ligand identification and pharmaceutical screening. Many, but not all, GPCRs are functional in the budding yeast Saccharomyces cerevisiae, and we have developed reporter strains of the fission yeast Schizosaccharomyces pombe as an alternative host. To provide a more generic system for investigating GPCRs, we created a series of yeast-human Galpha-transplants, in which the last five residues at the C-terminus of the yeast Galpha-subunit are replaced with the corresponding residues from different human G proteins. These enable GPCRs to be coupled to the Sz. pombe signalling machinery so that stimulation with an appropriate ligand induces the expression of a signal-dependent lacZ reporter gene. We demonstrate the specificity of the system using corticotropin releasing factor (CRF) and CRF-related peptides on two CRF receptors. We find that different combinations of ligand and receptor activate different Galpha-transplants, and the specificity of the coupling is similar to that in mammalian systems. Thus, CRF signalled through the Gs- and Gi-transplants, consistent with its regulation of adenylate cyclase, and was more active against the CRF-R1A receptor than against the CRF-R2B receptor. In contrast, urocortin II and urocortin III were selective for the CRF-R2B receptors. Furthermore, urocortin, but not CRF, induced signalling through the CRF-R1A receptor and the Gq-transplant. This is the first time that human GPCRs have been coupled to the signalling pathway in Sz. pombe, and the strains described in this study will complement the other systems available for studying this important family of receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号