首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Increasing air temperature and atmospheric CO2 levels may affect the distribution of invasive species. Whereas there is wide knowledge on the effect of global change on temperate species, responses of tropical invasive species to these two global change drivers are largely unknown. We conducted a greenhouse experiment on Terminalia catappa L. (Combretaceae), an invasive tree species on Brazilian coastal areas, to evaluate the effects of increased air temperature and CO2 concentration on seed germination and seedling growth on the island of Santa Catarina (Florianópolis, Brazil). Seeds of the invasive tree were subjected to two temperature levels (ambient and +1.6 °C) and two CO2 levels (ambient and ~650 ppmv) with a factorial design. Increased temperature enhanced germination rate and shortened germination time of T. catappa seeds. It also increased plant height, number of leaves and above‐ground biomass. By contrast, increased atmospheric CO2 concentration had no significant effects, and the interaction between temperature and CO2 concentration did not affect any of the measured traits. Terminalia catappa adapts to a relatively broad range of environmental conditions, being able to tolerate cooler temperatures in its invasive range. As T. catappa is native to tropical areas, global warming might favour its establishment along the coast of subtropical South America, while increased CO2 levels seem not to have significant effects on seed germination or seedling growth.  相似文献   

2.
Field experiments in managed grassland have shown that the response of vegetative growth to elevated CO2 is nitrogen‐dependent in grasses, but independent in N2‐fixing legumes. In the present study, we tested whether this is also true for reproduction. We evaluated reproductive growth, flowering phenology, seed development, reproductive success and seed germination in the grass Lolium perenne L. and the legume Trifolium repens L., growing in monocultures in a free air carbon dioxide enrichment (FACE) system at ambient (35 Pa) and elevated (60 Pa) partial pressure of CO2 and two levels of nitrogen fertilization (14 and 56 g N m?2 a?1). In both species, elevated CO2 had no significant effect on sexual reproduction. In L. perenne, reproduction was mainly nitrogen‐dependent. The weak interactions between CO2 and mineral N supply (13% more flowers and 8% more grains per spike at high N, 7% less flowers and 8% less grains at low N) were not significant. Under elevated CO2, grain maturation was slightly enhanced and grain weight tended to decrease. No influence could be ascertained in the date of anthesis, the temporal pattern of grain growth, the rate of grain abortion and germination. Trifolium repens, grown under CO2 enrichment at both levels of N fertilization, flowered 10 d earlier, tended to form more inflorescences per ground area and more flowers (8–12%) and seeds (>18%) per inflorescence than at ambient CO2. The temporal pattern of seed growth was about the same in all treatments; embryo development, however, was accelerated in fumigated plants. The number of aborted seeds per pod, seed size, thousand‐seed weight and germinability did not show any influence of CO2. Fumigated plants at high N were attacked slightly more frequently by seed‐eating weevils, which lowered the seed output per pod. In summary, the reproductive response of L. perenne and T. repens to CO2 enrichment on the flower and inflorescence level was far weaker than expected from the results on vegetative growth.  相似文献   

3.
T. Steinger  R. Gall  B. Schmid 《Oecologia》2000,123(4):475-480
Elevated CO2 can affect plant fitness not only through its effects on seed production but also by altering the quality of seeds and therefore germination and seedling performance. We collected seeds from mother plants of Bromus erectus grown in field plots at ambient and elevated CO2 (m-CO2, maternal CO2) and germinated them in the greenhouse in a reciprocal design under ambient and elevated CO2 (o-CO2, offspring CO2). This design allowed us to examine both the direct effects of elevated CO2 on germination and seedling growth and the indirect (maternal) effects via altered seed quality. Elevated m-CO2 significantly increased seed mass and increased the C:N ratio of seeds from field-grown plants. Percentage and rate of germination were not affected by the m-CO2 or o-CO2 treatments. Similarly, elevated m-CO2 had no significant effect on seedling size as estimated by the total leaf length. When differences in seed mass were adjusted by using seed mass as a covariate in ANOVA, a negative effect of m-CO2 on seedling size appeared which increased with increasing seed mass (significant covariate×m-CO2 interaction). This may indicate that the advantage of increased seed mass at elevated m-CO2 was offset by the reduced concentration of nitrogen (and possibly other nutrients) in these seeds. In contrast to m-CO2, elevated o-CO2 greatly increased seedling size, and this stimulatory effect of elevated o-CO2 was found to increase with increasing seed mass (significant covariate×o-CO2 interaction). Taken together, these results suggest that in B. erectus transgenerational effects of elevated CO2 are relatively small. However, other factors (genetic and environmental) that contribute to variation in seed provisioning can critically influence the responsiveness of seedlings to elevated CO2. Received: 10 May 1999 / Accepted: 6 January 2000  相似文献   

4.
Seed germination and seedling emergence are key processes for population recruitment. Flooding and grazing are disturbances forming gaps that may strongly influence recruitment patterns in space and time, but their combined effects and action mechanisms have rarely been addressed. In this study we analysed the effects of microhabitat conditions associated with winter flooding and spring‐summer defoliation on seed germination and seedling establishment of Paspalum dilatatum, a dominant perennial C4 grass in native grasslands of the Flooding Pampa, Argentina. The dynamics of seedling emergence from natural seed banks and buried seeds was studied in a factorial experiment with flooding and defoliation treatments applied to soil monoliths (mesocosms) collected from natural grassland. Additional laboratory experiments were applied to investigate seed germination under different combinations of temperature, light quality and simulated flooding. Seed germination and seedling emergence of P. dilatatum were promoted by flooding and high intensity defoliation. Gaps generated by flooding were maintained by high intensity defoliation exercising a synergistic effect on survival seedlings. Flooding resulted in the breaking of seed dormancy and higher germination rates associated with alternating temperature and the activation of the phytochrome system. Our results indicate that microhabitat conditions associated with the disturbances forming gaps, such as flooding and heavy grazing, synergistically promote the recruitment process of this dominant grass species.  相似文献   

5.
Both endophytic and mycorrhizal fungi interact with plants to form symbiosis in which the fungal partners rely on, and sometimes compete for, carbon (C) sources from their hosts. Changes in photosynthesis in host plants caused by atmospheric carbon dioxide (CO2) enrichment may, therefore, influence those mutualistic interactions, potentially modifying plant nutrient acquisition and interactions with other coexisting plant species. However, few studies have so far examined the interactive controls of endophytes and mycorrhizae over plant responses to atmospheric CO2 enrichment. Using Festuca arundinacea Schreb and Plantago lanceolata L. as model plants, we examined the effects of elevated CO2 on mycorrhizae and endophyte (Neotyphodium coenophialum) and plant nitrogen (N) acquisition in two microcosm experiments, and determined whether and how mycorrhizae and endophytes mediate interactions between their host plant species. Endophyte‐free and endophyte‐infected F. arundinacea varieties, P. lanceolata L., and their combination with or without mycorrhizal inocula were grown under ambient (400 μmol mol−1) and elevated CO2 (ambient + 330 μmol mol−1). A 15N isotope tracer was used to quantify the mycorrhiza‐mediated plant acquisition of N from soil. Elevated CO2 stimulated the growth of P. lanceolata greater than F. arundinacea, increasing the shoot biomass ratio of P. lanceolata to F. arundinacea in all the mixtures. Elevated CO2 also increased mycorrhizal root colonization of P. lanceolata, but had no impact on that of F. arundinacea. Mycorrhizae increased the shoot biomass ratio of P. lanceolata to F. arundinacea under elevated CO2. In the absence of endophytes, both elevated CO2 and mycorrhizae enhanced 15N and total N uptake of P. lanceolata but had either no or even negative effects on N acquisition of F. arundinacea, altering N distribution between these two species in the mixture. The presence of endophytes in F. arundinacea, however, reduced the CO2 effect on N acquisition in P. lanceolata, although it did not affect growth responses of their host plants to elevated CO2. These results suggest that mycorrhizal fungi and endophytes might interactively affect the responses of their host plants and their coexisting species to elevated CO2.  相似文献   

6.
Seeds were collected and compared from parent plants of Bromusrubens L. (Poaceae), an exotic Mojave Desert annual grass, grown in ambient (360 μmol mol−1) and elevated (700 μmol mol−1) CO2 to determine if parental CO2 growth conditions affected seed quality. Performance of seeds developed on the above plants was evaluated to determine the influence of parental CO2 growth conditions on germination, growth rate, and leaf production. Seeds of B. rubens developed on parents grown in elevated CO2 had a larger pericarp surface area, higher C:N ratio, and less total mass than ambient-developed seeds. Parental CO2 environment did not have an effect on germination percentage or mean germination time, as determined by radicle emergence. Seedlings from elevated-CO2-developed seeds had a reduced relative growth rate and achieved smaller final mass over the same growth period. Elevated-CO2-developed seeds had smaller seed reserves than ambient seeds, as determined by growing seedlings in sterile media and monitoring senescence. It appears that increased seed C:N ratios associated with plants grown under elevated CO2 may have a major effect on seed quality (morphology, nutrition) and seedling performance (e.g., growth rate and leaf production). Since the invasive success of B. rubens is primarily due to its ability to rapidly germinate, increase leaf area and maintain a relatively high growth rate compared to native annuals and perennial grasses, reductions in seed quality and seedling performance in elevated CO2 may have significant impacts on future community composition in the Mojave Desert. Received: 11 April 1997 / Accepted: 20 November 1997  相似文献   

7.
刘燕飞  张羽  赖金美  林威  黄幸然  方熊  易志刚 《生态学报》2020,40(16):5729-5738
羰基硫(COS)和CO_2化学结构相似,且植物对COS和CO_2具有共吸收特性,因此可利用COS作为示踪物来估算生态系统总初级生产力,而不同植物吸收COS和CO_2对环境因子变化的响应差异较大。以南亚热带典型树种马尾松(Pinus massoniana)和杉木(Cunninghamia lanceolata)为研究对象,设置2个氮水平及3个土壤水分梯度处理。采取顶空套袋法采集气体样品,用预浓缩—气质联用仪分析样品COS浓度,同时测量植物光合参数。结果表明:马尾松和杉木吸收COS,吸收速率均值分别为39.58—127.27 pmol m~(-2) s~(-1)和0.81—66.92 pmol m~(-2) s~(-1)。整体而言,施氮可促进植物吸收COS,但除施氮对马尾松COS通量有显著影响外(P0.05),施氮、土壤水分和两者交互作用对马尾松和杉木的COS和CO_2通量及其比值均无显著性影响。施氮情况下,高土壤水分处理促进马尾松COS吸收而低土壤水分处理促进杉木COS吸收。中等土壤水分和高土壤水分条件下马尾松和杉木COS通量与气孔导度呈正相关关系。线性拟合结果表明,植物COS通量(F_(COS))与CO_2通量(F_(CO_2))呈极显著正相关(P0.01),马尾松和杉木F_(COS)/F_(CO_2)值分别为1.48×10~(-6)和1.01×10~(-6)。中等土壤水分条件均可提高马尾松F_(COS)/F_(CO_2)比值,而低土壤水分条件下施氮增加杉木F_(COS)/F_(CO_2)比值,高土壤水分条件下施氮降低杉木F_(COS)/F_(CO_2)比值。低土壤水分和高土壤水分使马尾松蒸汽压亏缺增大,促使气孔导度减小从而降低净光合速率。低土壤水分和高土壤水分下施氮导致杉木气孔导度增加从而增强净光合速率。研究结果不仅对进一步了解区域氮沉降和降水对树木COS通量及F_(COS)/F_(CO_2)的影响有重要意义,而且可为模型估算总初级生产力提供区域性数据支持。  相似文献   

8.
Global climate changes and biological invasions are environmental disturbances that may interact synergistically, causing loss of biodiversity. As the early stages of development are the most sensitive and easily affected by these constraints, this study investigated the effects of increased carbon dioxide (CO2) and temperature, as forecasted for 2100, on seed germination and early development of three species of invasive African grasses that have gradually replaced landscapes of the Brazilian Cerrado biome. It was observed that these parameters affected percentage and rate of germination in Urochloa brizantha, rate of germination and mean germination time in Urochloa decumbens and accelerated autotrophy acquisition in U. brizantha, U. decumbens and Megathyrsus maximus. Regarding root elongation, all species showed changes in total length, absolute and relative growth rate, but at different stages of development or time intervals, with increased temperature being more significant than increased CO2, probably due to seed reserves still being the main carbon sources at this stage. Taken together, the results indicate that the effects of CO2 and increased temperature are species specific and highlight the greatest potential of U. brizantha to germinate, and of U. decumbens for seedling establishment under these environmental changes.  相似文献   

9.
Tropical forest degradation is a global environmental issue. In degraded forests, seedling recruitment of canopy trees is vital for forest regeneration and recovery. We investigated how selective logging, a pervasive driver of tropical forest degradation, impacts canopy tree seedling recruitment, focusing on an endemic dipterocarp Dryobalanops lanceolata in Sabah, Borneo. During a mast‐fruiting event in intensively logged and nearby unlogged forest, we examined four stages of the seedling recruitment process: seed production, seed predation, and negative density‐dependent germination and seedling survival. Our results suggest that each stage of the seedling recruitment process is altered in logged forest. The seed crop of D. lanceolata trees in logged forest was one‐third smaller than that produced by trees in unlogged forest. The functional role of vertebrates in seed predation increased in logged forest while that of non‐vertebrates declined. Seeds in logged forest were less likely to germinate than those in unlogged forest. Germination increased with local‐scale conspecific seed density in unlogged forest, but seedling survival tended to decline. However, both germination and seedling survival increased with local‐scale conspecific seed density in logged forest. Notably, seed crop size, germination, and seedling survival tended to increase for larger trees in both unlogged and logged forests, suggesting that sustainable timber extraction and silvicultural practices designed to minimize damage to the residual stand are important to prevent seedling recruitment failure. Overall, these impacts sustained by several aspects of seedling recruitment in a mast‐fruiting year suggest that intensive selective logging may affect long‐term population dynamics of D. lanceolata. It is necessary to establish if other dipterocarp species, many of which are threatened by the timber trade, are similarly affected in tropical forests degraded by intensive selective logging.  相似文献   

10.
The relative importance of seed availability, waterdepth, and soil phosphorus (P) concentrations oncattail (Typha domingensis pers.) earlyestablishment in an Everglades wetland area wasexamined using seed bank analysis and controlledexperiments. The experiments measured seed germinationand seedling growth in tanks with cattail seedaddition subjected to two P concentrations(un-enriched vs. enriched) and water depth (saturatedvs. flooded soils). A limited seed bank (223 ± 69m2) of cattail was found in the surface soil ofthe area studied. The germination of added seeds wasinhibited under flooded conditions, and only 0.6% ofthe germination was found. In contrast,under-saturated soil conditions, a maximum of 6% and15% germination was observed in P-un-enriched andP-enriched treatments, respectively. High mortality ofseedlings occurred regardless of P treatments followinga cold spell. However, P enrichment resulted inincreased seedling growth and asexual propagation.These results suggested the importance of theconcurrence of appropriate hydrologic regimes, Penrichment, and air temperature on the recruitment ofplant species.  相似文献   

11.
It has been suggested that enrichment of atmospheric CO2 should alter mycorrhizal function by simultaneously increasing nutrient‐uptake benefits and decreasing net C costs for host plants. However, this hypothesis has not been sufficiently tested. We conducted three experiments to examine the impacts of CO2 enrichment on the function of different combinations of plants and arbuscular mycorrhizal (AM) fungi grown under high and low soil nutrient availability. Across the three experiments, AM function was measured in 14 plant species, including forbs, C3 and C4 grasses, and plant species that are typically nonmycorrhizal. Five different AM fungal communities were used for inoculum, including mixtures of Glomus spp. and mixtures of Gigasporaceae (i.e. Gigaspora and Scutellospora spp.). Our results do not support the hypothesis that CO2 enrichment should consistently increase plant growth benefits from AM fungi, but rather, we found CO2 enrichment frequently reduced AM benefits. Furthermore, we did not find consistent evidence that enrichment of soil nutrients increases plant growth responses to CO2 enrichment and decreases plant growth responses to AM fungi. Our results show that the strength of AM mutualisms vary significantly among fungal and plant taxa, and that CO2 levels further mediate AM function. In general, when CO2 enrichment interacted with AM fungal taxa to affect host plant dry weight, it increased the beneficial effects of Gigasporaceae and reduced the benefits of Glomus spp. Future studies are necessary to assess the importance of temperature, irradiance, and ambient soil fertility in this response. We conclude that the affects of CO2 enrichment on AM function varies with plant and fungal taxa, and when making predictions about mycorrhizal function, it is unwise to generalize findings based on a narrow range of plant hosts, AM fungi, and environmental conditions.  相似文献   

12.
Chilling depresses seed germination and seedling establishment, and is one major constraint to grain yield formation in late sown winter wheat. Seeds of winter wheat (Triticum aestivum L.) were separately pre-soaked with sodium nitroprusside (SNP, as nitric oxide donor) and Gibberellic acid (GA3) before germination and then germinated under low temperature. SNP and GA3 pre-treatment increased seed germination rate, germination index, weights and lengths of coleoptile and radicle, while they decreased mean germination time and weight of seeds germinating under low temperature. Exogenous NO and GA3 increased seed respiration rate and promoted starch degradation along with increased amylase activities. In addition, efficient antioxidant systems were activated by NO, and which effectively reduced concentrations of malondialdehyde and hydrogen peroxide (H2O2). Seedling growth was also enhanced by exogenous NO and GA3 as a result of improved seed germination and maintenance of better reactive oxygen species homeostasis in seedling growing under chilling temperatures. It is indicated that exogenous NO was more effective than GA3 in alleviating chilling stress during seed germination and seedling establishment in wheat.  相似文献   

13.
Summary This experiment was conducted in a greenhouse to study the influence of soil CO2 differential treatments on plant response, concentrations of nutrients in soils and plants, and total nutrients per plant (Citrus sinensis var. Bessie). Higher levels of soil CO2, applied to the roots, significantly increased the amount of dry weight per seedling, the height of seedling, and decreased the concentrations of N, P, Ca, Mg, and Mn in the tops. The dry weight of roots supplied with high soil CO2 was decreased, while the concentrations of Mg and Mn were increased. Concentrations of N, P, K, and B in the roots were also reduced due to high level of soil CO2. Only total K and Mg per plant were increased with an increased soil CO2 supply. No significant interactions were found between the soil CO2 treatments and years of experiment. University of California, Citrus Research Center and Agricultural Station, Riverside, California. The research reported in this paper was supported in part by NSF Grant GB-19916.  相似文献   

14.
Elevated CO2 decreases seed germination in Arabidopsis thaliana   总被引:2,自引:0,他引:2  
The impact of elevated [CO2] on seed germination was studied in different genotypes of Arabidopsis thaliana from natural populations. Two generations of seeds were studied: the maternal generation was produced in the greenhouse (present-day conditions), the offspring generation was produced in two chambers where the CO2 concentration was either the present atmospheric concentration (about 350 ppm) or elevated (700 ppm). The seeds were tested for proportion of germinated seeds and mean germination time in both chambers to study the impact of elevated [CO2] during seed production and germination. Elevated [CO2] during maturation of seeds on the mother-plants decreased the proportion of germinated seeds, while elevated [CO2] during germination had no effect on the proportion of germinated seeds. However, when seeds were both produced and germinated under elevated [CO2] (situation expected by the end of next century), germination was slow and low. Moreover, the effect of the [CO2] treatment differs among genotypes of Arabidopsis: there is a strong treatment × genotype interaction. This means that there is ample genetic variance for a selective response modiying the effects of high levels of [CO2] in natural populations of Arabidopsis thaliana. The outcome at the community level will depend on what seeds are available, when they germinate and the resulting competition following germination.  相似文献   

15.
While previous studies have examined the growth and yield response of rice to continued increases in CO2 concentration and potential increases in air temperature, little work has focused on the long-term response of tropical paddy rice (i.e. the bulk of world rice production) in situ, or genotypic differences among cultivars in response to increasing CO2 and/or temperature. At the International Rice Research Institute, rice (cv IR72) was grown from germination until maturity for 4 field seasons, the 1994 and 1995 wet and the 1995 and 1996 dry seasons at three different CO2 concentrations (ambient, ambient + 200 and ambient + 300 μL L–1 CO2) and two air temperatures (ambient and ambient + 4 °C) using open-top field chambers placed within a paddy site. Overall, enhanced levels of CO2 alone resulted in significant increases in total biomass at maturity and increased seed yield with the relative degree of enhancement consistent over growing seasons across both temperatures. Enhanced levels of temperature alone resulted in decreases or no change in total biomass and decreased seed yield at maturity across both CO2 levels. In general, simultaneous increases in air temperature as well as CO2 concentration offset the stimulation of biomass and grain yield compared to the effect of CO2 concentration alone. For either the 1995 wet and 1996 dry seasons, additional cultivars (N-22, NPT1 and NPT2) were grown in conjunction with IR72 at the same CO2 and temperature treatments. Among the cultivars tested, N-22 showed the greatest relative response of both yield and biomass to increasing CO2, while NPT2 showed no response and IR72 was intermediate. For all cultivars, however, the combination of increasing CO2 concentration and air temperature resulted in reduced grain yield and declining harvest index compared to increased CO2 alone. Data from these experiments indicate that (a) rice growth and yield can respond positively under tropical paddy conditions to elevated CO2, but that simultaneous exposure to elevated temperature may negate the CO2 response to grain yield; and, (b) sufficient intraspecific variation exists among cultivars for future selection of rice cultivars which may, potentially, convert greater amounts of CO2 into harvestable yield.  相似文献   

16.
毛竹各器官和根际土浸提液对杉木种子萌发的化感作用   总被引:1,自引:0,他引:1  
随着毛竹杉木混交林面积的不断扩大,它们之间既会产生促进作用,又会产生抑制作用。本研究对比分析了不同浓度毛竹各器官(鲜叶、干叶、枝条、竹杆、竹鞭和鞭根)的浸提液及枯落物、根际土浸提液对杉木种子发芽率的影响,探讨了毛竹各器官浸提液及枯落物、根际土浸提液对杉木种子萌发的化感作用。结果表明:(1)处理前期,毛竹各器官浸提液对杉木种子萌发具有抑制作用,且当浸提液浓度为1∶25和1∶50的高浓度时,相对于低浓度浸提液对杉木种子萌发的抑制作用更为持久;(2)处理后期,低浓度的毛竹各器官浸提液对杉木种子萌发促进作用较快,而高浓度的浸提液仍呈现抑制作用,促进作用出现较为缓慢;(3)枯落叶浸提液总体上对杉木种子萌发具有抑制作用,在整个实验过程中低于对照组的发芽率,仅在1∶50浓度时略高对照组实验;而根际土浸提液对杉木种子萌发自始至终都具有促进作用,其中低浓度的促进作用十分显著。故在实际的毛竹杉木混交林生产营林过程中可选用毛竹根际土制备浸提液,促进杉木种子萌发,为毛竹杉木混交林的生产经营提供参考。  相似文献   

17.
Goverde M  Erhardt A  Stöcklin J 《Oecologia》2004,139(3):383-391
Effects of elevated CO2 and P availability on plant growth of the legume Lotus corniculatus and consequences for the butterfly larvae of Polyommatus icarus feeding on L. corniculatus were investigated in screen-aided CO2 control chambers under natural conditions on a calcareous grassland in the Swiss Jura mountains. Elevated CO2 conditions and P fertilisation increased the biomass production of L. corniculatus plants and affected the plant chemical composition. CO2 enrichment increased the C/N ratio and sugar concentration and decreased the N and P concentrations. C- and N-based allelochemicals (cyanoglycosides, total polyphenols and condensed tannins) were only marginally affected by CO2 enrichment. P fertilisation increased the specific leaf area and concentrations of water, N, sugar and P, while the C/N ratio and the concentration of total polyphenols decreased. Furthermore, P availability marginally enhanced the effect of elevated CO2 on the total dry mass and sugar concentration while the opposite occurred for the total polyphenol concentration. The changes in food-plant chemistry as a result of P fertilisation positively affected larval mass gain and accelerated the development time of P. icarus. Only a marginal negative effect on larval mass gain was found for CO2 enrichment. However, we found genotype-specific responses in the development time of P. icarus to elevated CO2 conditions. Larvae originating from different mothers developed better either under elevated CO2 or under ambient CO2 but some did not react to CO2 elevation. As far as we know this is the first finding of a genotype-specific response of an insect herbivore to elevated CO2 which suggests genetic shifts in insect life history traits in response to elevated CO2.  相似文献   

18.
The effects of factorial combinations of alternating (20/10 oC) and constant temperature (20 oC), of light (intermittent) and dark, and of distilled water and nitrate on the germination of a range of species of indigenous grassland were investigated in 1979, and in 1980 when the effects of pre-chilling were also studied. Species differed greatly in their response to the eight sets of environmental conditions in 1979. With the exception of Lolium perenne ssp. perenne and Cynosurus cristatus, only a small percentage of seeds of most species was able to germinate in constant temperature in the dark. However, when light was supplied there was moderate germination of Anthoxanthum odoratum, Cerastium fontanum ssp. glabrescens, Festuca rubra, Holcus lanatus and Poa trivialis. Alternating temperature greatly increased the germination of most species and nitrate further increased germination of Agrostis capillaris, Deschampsia caespitosa, H. lanatus, Poa annua and P. trivialis. In alternating temperatures, light increased germination of these species even more than did nitrate. A. capillaris, D. caespitosa and P. annua required all three factors for maximum germination, and another 7% of seeds of A. capillaris also required gibberellic acid. Germination responses following sequential application of factors often differed from those resulting from simultaneous treatment: in particular, the germination of Ranunculus species was greatly enhanced. Although seeds of the species tested in 1980 were more germinable than those of the same species in 1979, they responded similarly to the different factors. Light increased the germination of both Taraxacum officinale and Plantago lanceolata in constant but not in alternating temperature, while nitrate was much more stimulatory to the latter species. About half the seeds of P. lanceolata were dormant. Pre-chilling at 4oC for 7 days increased subsequent germination of all species when followed by constant temperature, except of A. capillaris in the dark and C. cristatus (already maximal) in the light. When followed by alternating temperature in the dark, pre-chilling greatly decreased germination of A. capillaris. In the light, where germination of most species was maximal, there was little effect of pre-chilling. Longer durations (21 and 42 days) of chilling of older seed gave similar results to the 7 day pre-chilling.  相似文献   

19.
How might wild relatives of modern cereals have responded to past, and how might they respond to future, atmospheric CO2 enrichment under competitive situations in a dry, low‐nutrient environment? In order to test this, Aegilops and Hordeum species, common in semiarid annual grasslands of the Middle East, were grown in nine model ecosystems (400 kg each) with a natural matrix of highly diverse Negev vegetation established on native soil shipped to Basel, Switzerland. In a simulated, seasonally variable climate of the northern Negev, communities experienced a full life‐cycle in 280 (preindustrial), 440 (immediate future) and 600 ppm of CO2 (end of the next century). Neither Aegilops (A. kotschyi and A. peregrina), nor Hordeum spontaneum showed a significant biomass response to CO2 concentrations exceeding 280 ppm The reproductive output remained unaffected or even declined (A. peregrina) under elevated CO2. Non‐structural carbohydrates in leaf tissues increased and N concentration decreased with increasing CO2 concentration. N concentration, germination success and seedling development of newly formed grains were either unchanged or reduced in response to high CO2 treatment of parent plants. In a separate fertilizer × CO2 trial with A. kotschyi nested in smaller model communities, we found no effect of P addition, but a 2–3‐fold biomass increase by NPK addition compared to the unfertilized control. A significant stimulation of biomass by CO2 enrichment (+ 44% between 280 and 600 ppm) was obtained only in the NPK treatment. These data suggest that increased CO2 concentration had little direct effect on growth and reproduction in these ‘wild cereals’ in the recent past, and the same seems to hold for their future, except if N‐rich fertilizer is added.  相似文献   

20.
Summary Seeds of Gliricidia sepium (Jacq.) Walp., a tree native to seasonal tropical forests of Central America, were inoculated with N-fixing Rhizobium bacteria and grown in growth chambers for 71 days to investigate interactive effects of atmospheric CO2 and plant N status on early seedling growth, nodulation, and N accretion. Seedlings were grown with CO2 partial pressures of 350 and 650 bar (current ambient and a predicted partial pressure of the mid-21st century) and with plus N or minus N nutrient solutions to control soil N status. Of particular interest was seedling response to CO2 when grown without available soil N, a condition in which seedlings initially experienced severe N deficiency because bacterial N-fixation was the sole source of N. Biomass of leaves, stems, and roots increased significantly with CO2 enrichment (by 32%, 15% and 26%, respectively) provided seedlings were supplied with N fertilizer. Leaf biomass of N-deficient seedlings was increased 50% by CO2 enrichment but there was little indication that photosynthate translocation from leaves to roots or that plant N (fixed by Rhizobium) was altered by elevated CO2. In seedlings supplied with soil N, elevated CO2 increased average nodule weight, total nodule weight per plant, and the amount of leaf nitrogen provided by N-fixation (as indicated by leaf 15N). While CO2 enrichment reduced the N concentration of some plant tissues, whole plant N accretion increased. Results support the contention that increasing atmospheric CO2 partial pressures will enhance productivity and N-fixing activity of N-fixing tree seedlings, but that the magnitude of early seedling response to CO2 will depend greatly on plant and soil nutrient status.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号