首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sixteen hyperlipidemic men were enrolled in a randomized, placebo-controlled, double-blind, cross-over study to evaluate the effect of ezetimibe 10 mg and simvastatin 40 mg, coadministered and alone, on the in vivo kinetics of apolipoprotein (apo) B-48 and B-100 in humans. Subjects underwent a primed-constant infusion of a stable isotope in the fed state. The coadministration of simvastatin and ezetimibe significantly reduced plasma concentrations of cholesterol (−43.0%), LDL-C (−53.6%), and triglycerides (−44.0%). Triglyceride-rich lipoproteins (TRL) apoB-48 pool size (PS) was significantly decreased (−48.9%) following combination therapy mainly through a significant reduction in TRL apoB-48 production rate (PR) (−38.0%). The fractional catabolic rate (FCR) of VLDL and LDL apoB-100 were significantly increased with all treatment modalities compared with placebo, leading to a significant reduction in the PS of these fractions. We also observed a positive correlation between changes in TRL apoB-48 PS and changes in TRL apoB-48 PR (r = 0.85; P < 0.0001) with combination therapy. Our results indicate that treatment with simvastatin plus ezetimibe is effective in reducing plasma TRL apoB-48 levels and that this effect is most likely mediated by a reduction in the intestinal secretion of TRL apoB-48. Our study also indicated that the reduction in LDL-C concentration following combination therapy is mainly driven by an increase in FCR of apoB-100 containing lipoproteins.  相似文献   

2.
This study evaluates changes in cholesterol balance in hypercholesterolemic subjects following treatment with an inhibitor of cholesterol absorption or cholesterol synthesis or coadministration of both agents. This was a randomized, double blind, placebo-controlled, four-period crossover study to evaluate the effects of coadministering 10 mg ezetimibe with 20 mg simvastatin (ezetimibe/simvastatin) on cholesterol absorption and synthesis relative to either drug alone or placebo in 41 subjects. Each treatment period lasted 7 weeks. Ezetimibe and ezetimibe/simvastatin decreased fractional cholesterol absorption by 65% and 59%, respectively (P < 0.001 for both relative to placebo). Simvastatin did not significantly affect cholesterol absorption. Ezetimibe and ezetimibe/simvastatin increased fecal sterol excretion (corrected for dietary cholesterol), which also represents net steady state cholesterol synthesis, by 109% and 79%, respectively (P < 0.001). Ezetimibe, simvastatin, and ezetimibe/simvastatin decreased plasma LDL-cholesterol by 20, 38, and 55%, respectively. The coadministered therapy was well tolerated. The decreases in net cholesterol synthesis and increased fecal sterol excretion yielded nearly additive reductions in LDL-cholesterol for the coadministration of ezetimibe and simvastatin.  相似文献   

3.
Low density lipoprotein receptor (LDLR)-deficient mice fed a chow diet have a mild hypercholesterolemia caused by the abnormal accumulation in the plasma of apolipoprotein B (apoB)-100- and apoB-48-carrying intermediate density lipoproteins (IDL) and low density lipoproteins (LDL). Treatment of LDLR-deficient mice with ciprofibrate caused a marked decrease in plasma apoB-48-carrying IDL and LDL but at the same time caused a large accumulation of triglyceride-depleted apoB-100-carrying IDL and LDL, resulting in a significant increase in plasma cholesterol levels. These plasma lipoprotein changes were associated with an increase in the hepatic secretion of apoB-100-carrying very low density lipoproteins (VLDL) and a decrease in the secretion of apoB-48-carrying VLDL, accompanied by a significant decrease in hepatic apoB mRNA editing. Hepatic apobec-1 complementation factor mRNA and protein abundance were significantly decreased, whereas apobec-1 mRNA and protein abundance remained unchanged. No changes in apoB mRNA editing occurred in the intestine of the treated animals. After 150 days of treatment with ciprofibrate, consistent with the increased plasma accumulation of apoB-100-carrying IDL and LDL, the LDLR-deficient mice displayed severe atherosclerotic lesions in the aorta. These findings demonstrate that ciprofibrate treatment decreases hepatic apoB mRNA editing and alters the pattern of hepatic lipoprotein secretion toward apoB-100-associated VLDL, changes that in turn lead to increased atherosclerosis.  相似文献   

4.
This analysis evaluates the effects on lipoprotein subfractions and LDL particle size of ezetimibe/simvastatin with or without coadministration of fenofibrate in patients with mixed hyperlipidemia. This multicenter, double-blind, placebo-controlled, parallel-group study included 611 patients aged 18-79 years randomized in 1:3:3:3 ratios to one of four 12 week treatment groups: placebo; ezetimibe/simvastatin 10/20 mg/day; fenofibrate 160 mg/day; or ezetimibe/simvastatin 10/20 mg/day + fenofibrate 160 mg/day. At baseline and study endpoint, cholesterol associated with VLDL, intermediate density lipoprotein (IDL), LDL, and HDL subfractions was quantified using the Vertical Auto Profile II method. LDL particle size was determined using segmented gradient gel electrophoresis. Whereas fenofibrate reduced cholesterol mass within VLDL and IDL, and shifted cholesterol from dense LDL subfractions into the more buoyant subfractions and HDL, ezetimibe/simvastatin reduced cholesterol mass within all apolipoprotein B-containing particles without significantly shifting the LDL particle distribution profile. When administered in combination, the effects of the drugs were complementary, with more-pronounced reductions in VLDL, IDL, and LDL, preferential loss of more-dense LDL subfractions, and increased HDL, although the effects on most lipoprotein subfractions were not additive. Thus, ezetimibe/simvastatin + fenofibrate produced favorable effects on atherogenic lipoprotein subclasses in patients with mixed hyperlipidemia.  相似文献   

5.
We have identified a mutation of apolipoprotein B (apoB) in a kindred with hypobetalipoproteinemia. Four affected members had plasma concentrations of total cholesterol of 115 +/- 14, low density lipoprotein (LDL)-C of 48 +/- 11, and apoB of 28 +/- 9 (mg/dl mean +/- SD). The values correspond to approximately 30% the values for unaffected relatives. Triglyceride and high density lipoprotein (HDL)-C concentrations were 92 +/- 50 and 49 +/- 4, respectively, neither significantly different from unaffected relatives. Western blots of plasma apoB of affected subjects showed two major bands: apoB-100 and an apoB-75 (mol wt of approximately 418,000). DNA sequencing of the appropriate polymerase chain reaction (PCR)-amplified genomic DNA segment revealed a deletion of the cytidine at nucleotide position 10366, resulting in a premature stop codon at amino acid residue 3387. In apoB-75/apoB-100 heterozygotes, two LDL populations containing either apoB-75 or apoB-100 could be distinguished from each other by gel permeation chromatography and by immunoblotting of nondenaturing gels using monoclonal antibodies B1B3 (epitope between apoB amino acid residues 3506-3635) and C1.4 (epitope between residues 97-526). ApoB-75 LDL were smaller and more dense than apoB-100 LDL. To determine whether the low concentration of apoB-75 was due to its enhanced LDL-receptor-mediated removal, apoB-75 LDL were isolated from the proband's d 1.063-1.090 g/ml fraction (which contained most of the apoB-75 in his plasma) by chromatography on anti-apoB and anti-apoA-I immunoaffinity columns. The resulting pure apoB-75 LDL fraction interacted with the cells 1.5-fold more effectively than apoB-100 LDL (d 1.019-1.063 g/ml). To determine the physiologic mechanism responsible for the hypobetalipoproteinemia, in vivo kinetic studies were performed in two affected subjects, using endogenous labeling of apoB-75 and apoB-100 with [13C]leucine followed by multicompartmental kinetic analyses. Fractional catabolic rates of apoB-75 VLDL and LDL were 2- and 1.3-fold those of apoB-100 very low density lipoprotein (VLDL) and LDL, respectively. Production rates of apoB-75 were approximately 30% of those for apoB-100. This differs from the behavior of apoB-89, a previously described variant, whose FCRs were also increased approximately 1.5-fold relative to apoB-100, but whose production rates were nearly identical to those of apoB-100. Thus, in contrast to the apoB-89 mutation, the apoB-75 mutation imparts two physiologic defects to apoB-75 lipoproteins that account for the hypobetalipoproteinemia, diminished production and increased catabolism.  相似文献   

6.
The present study was undertaken to elucidate the metabolic basis for the increased remnants and lipoprotein(a) [Lp(a)] and decreased LDL apolipoprotein B (apoB) levels in human apoE deficiency. A primed constant infusion of (13)C(6)-phenylalanine was administered to a homozygous apoE-deficient subject. apoB-100 and apoB-48 were isolated, and tracer enrichments were determined by gas chromatography-mass spectrometry, then kinetic parameters were calculated by multicompartmental modeling. In the apoE-deficient subject, fractional catabolic rates (FCRs) of apoB-100 in VLDL and intermediate density lipoprotein and apoB-48 in VLDL were 3x, 12x, and 12x slower than those of controls. On the other hand, the LDL apoB-100 FCR was increased by 2.6x. The production rate of VLDL apoB-100 was decreased by 45%. In the Lp(a) kinetic study, two types of Lp(a) were isolated from plasma with apoE deficiency: buoyant and normal Lp(a). (125)I-buoyant Lp(a) was catabolized at a slower rate in the patient. However, (125)I-buoyant Lp(a) was catabolized at twice as fast as (131)I-normal Lp(a) in the control subjects. In summary, apoE deficiency results in: 1) a markedly impaired catabolism of VLDL/chylomicron and their remnants due to lack of direct removal and impaired lipolysis; 2) an increased rate of catabolism of LDL apoB-100, likely due to upregulation of LDL receptor activity; 3) reduced VLDL apoB production; and 4) a delayed catabolism of a portion of Lp(a).  相似文献   

7.
Inhibition of esterified and non-esterified cholesterol synthesis by lovastatin in primary rat hepatocytes suppressed the net synthesis and very-low-density lipoprotein (VLDL) secretion of apolipoprotein B (apoB)-48 and apoB-100. Lovastatin did not alter the rates of apoB-48 and apoB-100 post-translational degradation. 25-Hydroxycholesterol, which inhibited non-esterified cholesterol synthesis but increased the synthesis of cholesteryl ester, showed differential effects on the metabolism of apoB-48 and apoB-100. Whereas the secretion of apoB-48 VLDL was suppressed there was no effect on the secretion of apoB-100 VLDL. The post-translational degradation of apoB-48, but not of apoB-100, was enhanced by 25-hydroxycholesterol. The net synthesis rates of apoB-48 and apoB-100 were unaffected by 25-hydroxycholesterol. The inhibitory effect of lovastatin alone on the net synthesis of apoB-48 and apoB-100 was reversed by the simultaneous presence of 25-hydroxycholesterol, suggesting a role for newly synthesised cholesteryl ester. Prevention of the reversal effect by the acyl-CoA: cholesterol acyltransferase (ACAT) inhibitor YM 17E supported this interpretation. In the presence of lovastatin, restoration of the net synthesis of apoB by 25-hydroxycholesterol was not accompanied by an increased VLDL output of apoB-48 and apoB-100. However, under these conditions there was an increased post-translational degradation of apoB-48 and apoB-100. These results suggest that interference with intracellular cholesterol and cholesteryl ester metabolism interrupts VLDL assembly at sites of both apoB net synthesis and post-translational degradation.  相似文献   

8.
Regional specificities of monoclonal anti-human apolipoprotein B antibodies   总被引:5,自引:0,他引:5  
The usefulness of monoclonal antibodies as probes of protein structure is directly related to knowledge of the structures and locations of the epitopes with which they interact. In this report we provide a detailed map of 13 epitopes on apoB-100 defined by our anti-apoB monoclonal antibodies based on current information on the amino acid sequence of apoB-100. To localize antibody specificities to smaller regions along the linear sequence of the apoB-100 molecule we used a) thrombin- and kallikrein-generated fragments of apoB-100; b) beta-galactosidase- apoB fusion proteins; c) heparin; and d) antibody versus antibody competition experiments. Most of the monoclonal antibodies elicited by immunization with LDL were directed towards epitopes within the first 1279 amino terminal (T4/K2 fragments) or last 1292 carboxyl terminal amino acid residues (T2/K4 fragments) of apoB-100. One epitope localized to the mid-portion of apoB-100 was elicited by immunization with VLDL (D7.2). Saturating amounts of heparin bound to LDL did not inhibit the binding of any of the monoclonal antibodies to their respective epitopes on apoB-100, indicating that none of the antibody determinants is situated close to any of the reported heparin binding sites on LDL apoB. We examined the expression of apoB epitopes on VLDL subfractions and LDL isolated from a normolipidemic donor. The apparent affinities with which the antibodies interacted with their respective epitopes on the VLDL subfractions and LDL uniformly increased as follows: LDL greater than VLDL3 greater than VLDL2 greater than VLDL1, suggesting that each of the major regions of apoB-100 is progressively more exposed as normal VLDL particles become smaller in size and epitopes are most exposed in LDL. Previous experiments utilizing hypertriglyceridemic VLDL subfractions yielded similar results, but the rank order of VLDL subfractions and LDL was not the same for all antibodies tested. Thus, differences in apoB epitope expression on VLDL particles of differing sizes is a general phenomenon, but the expression of apoB epitopes in hypertriglyceridemic VLDL appears to be more heterogeneous than is the case for VLDL from normolipidemic donors.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
The aim of this study was to investigate the direct effects of growth hormone (GH) on production and secretion of apolipoprotein B (apoB)-containing lipoproteins from hepatocytes. Bovine GH (5-500 ng/ml) was given for 1 or 3 days to rat hepatocytes cultured on laminin-rich matrigel in serum-free medium. The effects of GH were compared with those of 3 nM insulin and 500 microM oleic acid. GH increased the editing of apoB mRNA, and the proportion of newly synthesized apoB-48 (of total apoB) in the cells and secreted into the medium changed in parallel. GH increased total secretion of apoB-48 (+30%) and apoB-48 in very low density lipoproteins (VLDL) more than twofold. Total apoB-100 secretion decreased 63%, but apoB-100-VLDL secretion was unaffected by GH. Pulse-chase studies indicated that GH increased intracellular early degradation of apoB-100 but not apoB-48. GH had no effect on apoB mRNA or LDL receptor mRNA levels. The triglyceride synthesis, the mass of triglycerides in the cells, and the VLDL fraction of the medium increased after GH incubation. Three days of insulin incubation had effects similar to those of GH. Combined incubation with oleic acid and GH had additive effects on apoB mRNA editing and apoB-48-VLDL secretion. In summary, GH has direct effects on production and secretion of apoB-containing lipoproteins, which may add to the effects of hyperinsulinemia and increased flux of fatty acids to the liver during GH treatment in vivo.  相似文献   

10.
Early radiokinetic studies revealed that the classical metabolic defect in patients with familial hypercholesterolemia (FH) is hypocatabolism of LDL due to decreased LDL receptor activity. However, recent studies have suggested that hepatic oversecretion of apolipoprotein B-100 (apoB-100)-containing lipoproteins could also contribute to the markedly elevated plasma concentrations of LDL-cholesterol found in FH. The aim of this study was to examine the kinetics of apoB-100 labeled with a stable isotope (l-[5,5,5-D(3)] leucine) in five normolipidemic controls and in seven well-characterized FH subjects that included six FH heterozygotes and one FH homozygote carrying the same null LDL receptor gene mutation. As compared with controls, the VLDL apoB-100 production rate was increased by 50% in the FH heterozygotes and by 109% in the FH homozygote. Furthermore, FH subjects had significantly higher LDL apoB-100 pool size and lower LDL apoB-100 fractional catabolic rate than controls. These results indicate that the elevation of plasma LDL-cholesterol found in FH is attributable to both decreased clearance of LDL and increased hepatic production of apoB-100-containing lipoproteins.  相似文献   

11.
Ezetimibe is a cholesterol uptake inhibitor that targets the Niemann-Pick C1-like 1 cholesterol transporter. Ezetimibe treatment has been shown to cause significant decreases in plasma cholesterol levels in patients with hypercholesterolemia and familial hypercholesterolemia. A recent study in humans has shown that ezetimibe can decrease the release of atherogenic postprandial intestinal lipoproteins. In the present study, we evaluated the mechanisms by which ezetimibe treatment can lower postprandial apoB48-containing chylomicron particles, using a hyperlipidemic and insulin-resistant hamster model fed a diet rich in fructose and fat (the FF diet) and fructose, fat, and cholesterol (the FFC diet). Male Syrian Golden hamsters were fed either chow or the FF or FFC diet ± ezetimibe for 2 wk. After 2 wk, chylomicron production was assessed following intravenous triton infusion. Tissues were then collected and analyzed for protein and mRNA content. FFC-fed hamsters treated with ezetimibe showed improved glucose tolerance, decreased fasting insulin levels, and markedly reduced circulating levels of TG and cholesterol in both the LDL and VLDL fractions. Examination of triglyceride (TG)-rich lipoprotein (TRL) fractions showed that ezetimibe treatment reduced postprandial cholesterol content in TRL lipoproteins as well as reducing apoB48 content. Although ezetimibe did not decrease TRL-TG levels in FFC hamsters, ezetimibe treatment in FF hamsters resulted in decreases in TRL-TG. Jejunal apoB48 protein expression was lower in ezetimibe-treated hamsters. Reductions in jejunal protein levels of scavenger receptor type B-1 (SRB-1) and fatty acid transport protein 4 were also observed. In addition, ezetimibe-treated hamsters showed significantly lower jejunal mRNA expression of a number of genes involved in lipid synthesis and transport, including srebp-1c, sr-b1, ppar-γ, and abcg1. These data suggest that treatment with ezetimibe not only inhibits cholesterol uptake, but may also alter intestinal function to promote improved handling of dietary lipids and reduced chylomicron production. These, in turn, promote decreases in fasting and postprandial lipid levels and improvements in glucose homeostasis.  相似文献   

12.
Discovery of the ileal apical sodium-dependent bile acid transporter (ASBT) permitted development of specific inhibitors of bile acid reabsorption, potentially a new class of cholesterol-lowering agents. In the present study, we tested the hypothesis that combining the novel ASBT inhibitor, SC-435, with the HMG-CoA reductase inhibitor, atorvastatin, would potentiate reductions in LDL cholesterol (LDL-C) and LDL apolipoprotein B (apoB). ApoB kinetic studies were performed in miniature pigs fed a typical human diet and treated with the combination of SC-435 (5 mg/kg/day) plus atorvastatin (3 mg/kg/day) (SC-435+A) or a placebo. SC-435+A decreased plasma total cholesterol by 23% and LDL-C by 40%. Multicompartmental analysis (SAAM II) demonstrated that LDL apoB significantly decreased by 35% due primarily to a 45% increase in the LDL apoB fractional catabolic rate (FCR). SC-435+A significantly decreased hepatic concentrations of free cholesterol and cholesteryl ester, and increased hepatic LDL receptor mRNA consequent to increased cholesterol 7alpha-hydroxylase expression and activity. In comparison, SC-435 (10 mg/kg/day) monotherapy decreased LDL apoB by 10% due entirely to an 18% increase in LDL apoB FCR, whereas atorvastatin monotherapy (3 mg/kg/day) decreased LDL apoB by 30% due primarily to a 22% reduction in LDL apoB production. We conclude that SC-435+A potentiates the reduction of LDL-C and LDL apoB due to complementary mechanisms of action.  相似文献   

13.
Familial hypobetalipoproteinemia, a syndrome associated with low plasma cholesterol levels, can be caused by apoB gene mutations. We identified a healthy 42-year-old man whose total plasma cholesterol level was 80 mg/dl. His plasma very low density lipoprotein (VLDL) contained a unique truncated apoB species, apoB-83, in addition to the normal B apolipoproteins, apoB-100 and apoB-48. Virtually no apoB-83 was detectable in his low density lipoprotein (LDL). From the subject's kindred, we identified nine other hypocholesterolemic subjects whose VLDL contained apoB-83. A tendency for cholelithiasis was noted in the apoB-83 heterozygotes, particularly in the older individuals. From the apparent size of apoB-83 on SDS-polyacrylamide gels and its reactivity with apoB-specific monoclonal antibodies, we estimated that it would contain approximately 3700-3800 amino acids. DNA sequencing of apoB genomic clones from two affected individuals revealed that apoB-83 was caused by a C----A transversion in exon 26 of the apoB gene (apoB cDNA nucleotide 11458). This mutation converts Ser-3750 (TCA) into a premature stop codon (TAA) and creates a unique MseI restriction endonuclease site. Thus, a single nucleotide transversion in the apoB gene results in a unique truncated apoB species, apoB-83, and the clinical syndrome of familial hypobetalipoproteinemia.  相似文献   

14.
Apolipoprotein E (apoE) is essential for the clearance of plasma chylomicron and VLDL remnants. The human APOE locus is polymorphic and 5-10% of APOE*2 homozygotes exhibit type-III hyperlipoproteinemia (THL), while the remaining homozygotes have less than normal plasma cholesterol. In contrast, mice expressing APOE*2 in place of the mouse Apoe (Apoe(2/2) mice) are markedly hyperlipoproteinemic, suggesting a species difference in lipid metabolism (e.g., editing of apolipoprotein B) enhances THL development. Since apoB-100 has an LDLR binding site absent in apoB-48, we hypothesized that the Apoe(2/2) THL phenotype would improve if all Apoe(2/2) VLDL contained apoB-100. To test this, we crossed Apoe(2/2) mice with mice lacking the editing enzyme for apoB (Apobec(-/-)). Consistent with an increase in remnant clearance, Apoe(2/2). Apobec(-/-) mice have a significant reduction in IDL/LDL cholesterol (IDL/LDL-C) compared with Apoe(2/2) mice. However, Apoe(2/2).Apobec(-/-) mice have twice as much VLDL triglyceride as Apoe(2/2) mice. In vitro tests show the apoB-100-containing VLDL are poorer substrates for lipoprotein lipase than apoB-48-containing VLDL. Thus, despite a lowering in IDL/LDL-C, substituting apoB-48 lipoproteins with apoB-100 lipoproteins did not improve the THL phenotype in the Apoe(2/2).Apobec(-/-) mice, because apoB-48 and apoB-100 differentially influence the catabolism of lipoproteins.  相似文献   

15.
16.
The effect of apolipoprotein (apo) E genotype on apoB-100 metabolism was examined in three normolipidemic apoE2/E2, five type III hyperlipidemic apoE2/E2, and five hyperlipidemic apoE3/E2 subjects using simultaneous administration of 131I-VLDL and 125I-LDL, and multi-compartmental modeling. Compared with normolipidemic apoE2/E2 subjects, type III hyperlipidemic E2/E2 subjects had increased plasma and VLDL cholesterol, plasma and VLDL triglycerides, and VLDL and intermediate density lipoprotein (IDL) apoB concentrations (P < 0.05). These abnormalities were chiefly a consequence of decreased VLDL and IDL apoB fractional catabolic rate (FCR). Compared with hyperlipidemic E3/E2 subjects, type III hyperlipidemic E2/E2 subjects had increased IDL apoB concentration and decreased conversion of IDL to LDL particles (P < 0.05). In a pooled analysis, VLDL cholesterol was positively associated with VLDL and IDL apoB concentrations and the proportion of VLDL apoB in the slowly turning over VLDL pool, and was negatively associated with VLDL apoB FCR after adjusting for subject group. VLDL triglyceride was positively associated with VLDL apoB concentration and VLDL and IDL apoB production rates after adjusting for subject group. A defective apoE contributes to altered lipoprotein metabolism but is not sufficient to cause overt hyperlipidemia. Additional genetic mutations and environmental factors, including insulin resistance and obesity, may contribute to the development of type III hyperlipidemia.  相似文献   

17.
An orally bioavailable acyl coenzyme A:cholesterol acyltransferase (ACAT) inhibitor, avasimibe (CI-1011), was used to test the hypothesis that inhibition of cholesterol esterification, in vivo, would reduce hepatic very low density (VLDL) apolipoprotein (apo) B secretion into plasma. ApoB kinetic studies were carried out in 10 control miniature pigs, and in 10 animals treated with avasimibe (10 mg/kg/d, n = 6; 25 mg/kg/d, n = 4). Pigs were fed a diet containing fat (34% of calories) and cholesterol (400 mg/d; 0.1%). Avasimibe decreased the plasma concentrations of total triglyceride, VLDL triglyceride, and VLDL cholesterol by 31;-40% 39-48%, and 31;-35%, respectively. Significant reductions in plasma total cholesterol (35%) and low density lipoprotein (LDL) cholesterol (51%) concentrations were observed only with high dose avasimibe. Autologous 131I-labeled VLDL, 125I-labeled LDL, and [3H]leucine were injected simultaneously into each pig and apoB kinetic data were analyzed using multicompartmental analysis (SAAM II). Avasimibe decreased the VLDL apoB pool size by 40;-43% and the hepatic secretion rate of VLDL apoB by 38;-41%, but did not alter its fractional catabolism. Avasimibe decreased the LDL apoB pool size by 13;-57%, largely due to a dose-dependent 25;-63% in the LDL apoB production rate. Hepatic LDL receptor mRNA abundances were unchanged, consistent with a marginal decrease in LDL apoB FCRs. Hepatic ACAT activity was decreased by 51% (P = 0.050) and 68% (P = 0.087) by low and high dose avasimibe, respectively. The decrease in total apoB secretion correlated with the decrease in hepatic ACAT activity (r = 0.495; P = 0.026).We conclude that inhibition of hepatic ACAT by avasimibe reduces both plasma VLDL and LDL apoB concentrations, primarily by decreasing apoB secretion.  相似文献   

18.
A new, large kindred with hypobetalipoproteinemia and a previously undescribed truncated form of apolipoprotein B (apoB) has been identified. The asymptomatic, Caucasian male proband (CK, aged 37 years) has total plasma cholesterol, triglyceride, low density lipoprotein-(LDL) cholesterol, high density lipoprotein- (HDL) cholesterol, and apoB concentrations of 108, 131, 32, 50, and 16 mg/dl, respectively. Plasma samples of 11 family members spanning three generations, which had less than 5th percentile concentrations of LDL-cholesterol, contained three apoB bands detected on immunoblots: the normal apoB-100 and apoB-48 and an unusual band of apparent molecular mass of 299,356 +/- 9580 daltons (approximately 54% the molecular weight of apoB-100). Additional immunoblotting experiments using several different anti-apoB monoclonal antibodies showed that the carboxyl terminal of apoB-100 had been deleted somewhere between amino acid residues 2148-2488. A segment of genomic DNA from the proband was amplified by polymerase chain reaction (PCR) between nucleotides 7491-7791 of Exon 26 of the apoB gene. The DNA segment was cloned into pGEM3Zf(-) and sequenced. A C----T transition was found at nucleotide 7665, resulting in a premature stop codon at amino acid residue 2486 corresponding to apoB-54.8. These results were confirmed by direct sequencing of PCR products from three apoB-54.8 positive and three apoB-54.8 negative kindred members. Allele-specific oligonucleotides were used to identify other affected family members. Cosegregation of apoB-54.8 with the C----T transition occurred in all cases. Based on haplotypes constructed from restriction fragment length polymorphism, variable number of tandem repeats, and 5' insertion/deletion analyses and from the presence or absence of apoB-54.8, it was possible to assign a single allele of apoB to the mutation throughout the family. In contrast with other shorter truncations such as apoB-31, apoB-40, and apoB-46, which are found with particles in the HDL density range, and apoB-89 that is found primarily with LDL, apoB-54.8 was found primarily in very low density lipoproteins, much less in LDL, and was virtually absent in HDL. This suggests that the length of the truncation may significantly affect the metabolism of the associated lipoprotein particles.  相似文献   

19.
Apolipoprotein B (apoB) metabolism was investigated in 20 men with plasma triglyceride 0.66-2.40 mmol/l and plasma cholesterol 3.95-6. 95 mmol/l. Kinetics of VLDL(1) (S(f) 60-400), VLDL(2) (S(f) 20-60), IDL (S(f) 12-20), and LDL (S(f) 0;-12) apoB were analyzed using a trideuterated leucine tracer and a multicompartmental model which allowed input into each fraction. VLDL(1) apoB production varied widely (from 5.4 to 26.6 mg/kg/d) as did VLDL(2) apoB production (from 0.18 to 8.4 mg/kg/d) but the two were not correlated. IDL plus LDL apoB direct production accounted for up to half of total apoB production and was inversely related to plasma triglyceride (r = -0.54, P = 0.009). Percent of direct apoB production into the IDL/LDL density range (r = 0.50, P < 0.02) was positively related to the LDL apoB fractional catabolic rate (FCR). Plasma triglyceride in these subjects was determined principally by VLDL(1) and VLDL(2) apoB fractional transfer rates (FTR), i.e., lipolysis. IDL apoB concentration was regulated mainly by the IDL to LDL FTR (r = -0.71, P < 0.0001). LDL apoB concentration correlated with VLDL(2) apoB production (r = 0.48, P = 0.018) and the LDL FCR (r = -0.77, P < 0. 001) but not with VLDL(1), IDL, or LDL apoB production. Subjects with predominantly small, dense LDL (pattern B) had lower VLDL(1) and VLDL(2) apoB FTRs, higher VLDL(2) apoB production, and a lower LDL apoB FCR than those with large LDL (pattern A). Thus, the metabolic conditions that favored appearance of small, dense LDL were diminished lipolysis of VLDL, resulting in a raised plasma triglyceride above the putative threshold of 1.5 mmol/l, and a prolonged residence time for LDL. This latter condition presumably permitted sufficient time for the processes of lipid exchange and lipolysis to generate small LDL particles.  相似文献   

20.
The measurement of apolipoprotein B (apoB) in purified lipoproteins by immunological assays is subject to criticism because of denatured epitopes or immunoreactivity differences between purified lipoproteins and standard. Chemical methods have therefore been developed, such as the selective precipitation of apoB followed by quantification of the precipitate. In this study, we present the measurement of apoB concentration in lipoproteins purified by ultracentrifugation by combining isopropanol precipitation and gas chromatography/mass spectrometry. Very low density lipoprotein (VLDL; d < 1.006 g/mL); VLDL plus intermediate density lipoprotein (VLDL + IDL; d < 1.019 g/mL); and VLDL, IDL, and low density lipoprotein (VLDL + IDL + LDL; d < 1.063 g/mL) were purified by ultracentrifugation. Apolipoprotein B-100 was selectively precipitated by isopropanol. The leucine content of the pellet was then determined by gas chromatography/mass spectrometry, using norleucine as internal standard. Knowledge of the number of leucine molecules in one apoB-100 molecule makes it possible to calculate the plasma concentration of apoB in the various lipoprotein fractions. ApoB in IDL (d 1.006-1.019 g/mL) and LDL (d 1.019-1.063 g/mL) were then determined by subtracting VLDL-apoB from apoB in lipoproteins d < 1.019 and apoB in lipoproteins d < 1.019 g/mL from apoB in lipoproteins d < 1.063 g/mL, respectively. The isopropanol precipitate was verified as pure apoB (>97%) in lipoprotein fractions isolated from normo- and hyperlipidemic plasma and the method appeared reproducible.The combination of isopropanol precipitation and the GC/MS method appears therefore to be a precise and reliable method for kinetic and epidemiological studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号