首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The secA gene product is an autoregulated, membrane-associated ATPase which catalyzes protein export across the Escherichia coli plasma membrane. Previous genetic selective strategies have yielded secA mutations at a limited number of sites. In order to define additional regions of the SecA protein that are important in its biological function, we mutagenized a plasmid-encoded copy of the secA gene to create small internal deletions or duplications marked by an oligonucleotide linker. The mutagenized plasmids were screened in an E. coli strain that allowed the ready detection of dominant secA mutations by their ability to derepress a secA-lacZ protein fusion when protein export is compromised. Twelve new secA mutations were found to cluster into four regions corresponding to amino acid residues 196 to 252, 352 to 367, 626 to 653, and 783 to 808. Analysis of these alleles in wild-type and secA mutant strains indicated that three of them still maintained the essential functions of SecA, albeit at a reduced level, while the remainder abolished SecA translocation activity and caused dominant protein export defects accompanied by secA depression. Three secA alleles caused dominant, conditional-lethal, cold-sensitive phenotypes and resulted in some of the strongest defects in protein export characterized to date. The abundance of dominant secA mutations strongly favors certain biochemical models defining the function of SecA in protein translocation. These new dominant secA mutants should be useful in biochemical studies designed to elucidate SecA protein's functional sites and its precise role in catalyzing protein export across the plasma membrane.  相似文献   

3.
Mutations previously designated prlD were described that suppressed malE signal sequence mutations and were located in the vicinity of the secA gene on the Escherichia coli chromosome. In this study, we demonstrated that four such independently isolated prlD mutations represented three unique single-base substitutions in secA, resulting in alterations at residues 111, 373, and 488 of the 901-residue SecA protein. Heretofore, the only mutations that had been described for secA were located early in the gene and resulted in a general protein export defect. Insertion mutations in the cloned gene X-secA operon that reduced or eliminated suppression by a prlD mutation also have been obtained. The properties of these suppressor and insertion mutations provide some insight into the role of SecA in the protein export process.  相似文献   

4.
D B Oliver  J Beckwith 《Cell》1982,30(1):311-319
We have previously described a gene, secA, which may code for a component of the secretion machinery of E. coli. Temperature-sensitive mutations in this gene lead to the cytoplasmic accumulation of precursors to a number of secreted proteins. In this paper, we describe the use of antibody to the SecA protein to characterize the cellular location and regulation of the protein. The antibody was elicited in response to a SecA-LacZ hybrid protein, produced by a strain carrying a secA-lacZ gene fusion. The secA gene product is a 92 kd polypeptide that is present in small amounts in the cell and that fractionates as a peripheral cytoplasmic membrane protein. The synthesis of the SecA protein is greatly derepressed (at least tenfold) when secretion in E. coli is blocked either in a secAts mutant or in the presence of a MalE-LacZ hybrid protein. We suggest that components of the secretion machinery of E. coli, such as the SecA protein, may be regulated in response to the secretion needs of the cell. When suppression of a secAam mutant is eliminated, leading to the absence of SecA protein, the synthesis of maltose-binding protein is greatly reduced. These results support a mechanism in which secretion and translation are coupled.  相似文献   

5.
The DNA sequence of the secA gene, essential for protein export in Escherichia coli, was determined and found to encode a hydrophilic protein of 901 amino acid residues with a predicted molecular weight of 101,902, consistent with its previously determined size and subcellular location. Sequence analysis of 9 secA(Ts) mutations conferring general protein export and secA regulatory defects revealed that these mutations were clustered in three specific regions within the first 170 amino acid residues of the SecA protein and were the result of single amino acid changes predicted to be severely disruptive of protein structure and function. The DNA sequence immediately upstream of secA was shown to encode a previously inferred gene, gene X. Sequence analysis of a conditionally lethal amber mutation, am109, previously inferred to be located proximally in the secA gene, revealed that it was located distally in gene X and was conditionally lethal due to its polar effect on secA expression. This and additional evidence are presented indicating that gene X and secA are cotranscribed.  相似文献   

6.
The subcellular localization of SecA, a protein essential for the catalysis of general protein export, was studied to better understand its state(s) and function(s) within Escherichia coli cells. In a wild-type strain approximately half of the cellular SecA content was found to be associated with the inner membrane, while the remainder was soluble. Association of SecA protein with the inner membrane required the presence of anionic phospholipids and was modulated by ATP. A fraction of the membrane-bound SecA was found to be integrally associated with the membrane. In the secA51(Ts) mutant 75-95% of SecA protein was found to be membrane associated, independent of the protein export status of the cell, implying that the partitioning of this protein between the cell membrane and cytoplasm may play an important role in its function. secA-lacZ fusions were used to map a membrane association determinant to the amino-terminal quarter of SecA protein sequence. When this portion of SecA protein was expressed within cells, it was found solely in membrane fractions and complemented the growth and protein secretion defect of the secA51(Ts) mutant. This indicates that the membrane is the site of the limiting defect in this mutant and suggests that either SecA functions can be divided into at least two separable activities or that productive interaction between SecA and the amino-terminal fragment can occur in vivo.  相似文献   

7.
Khatib K  Belin D 《Genetics》2002,162(3):1031-1043
The murine plasminogen activator inhibitor 2 (PAI2) signal sequence inefficiently promotes the export of E. coli alkaline phosphatase (AP). High-level expression of PAI2::AP chimeric proteins from the arabinose P(BAD) promoter is toxic and confers an Ara(S) phenotype. Most Ara(R) suppressors map to secA, as determined by sequencing 21 independent alleles. Mutations occur throughout the gene, including both nucleotide binding domains (NBDI and NBDII) and the putative signal sequence binding domain (SSBD). Using malE and phoA signal sequence mutants, we showed that the vast majority of these secA suppressors exhibit weak Sec phenotypes. Eight of these secA mutations were further characterized in detail. Phenotypically, these eight suppressors can be divided into three groups, each localized to one domain of SecA. Most mutations allow near-normal levels of wild-type preprotein export, but they enhance the secretion defect conferred by signal sequence mutations. Interestingly, one group exerts a selective effect on the export of PAI2::AP when compared to that of AP. In conclusion, this novel class of secA mutations, selected as suppressors of a toxic signal sequence, differs from the classical secA (prlD) mutations, selected as suppressors of defective signal sequences, although both types of mutations affect signal sequence recognition.  相似文献   

8.
To define additional components of the export machinery of Escherichia coli, I have isolated extragenic suppressors of a mutant [secA(Ts)] that is temperature sensitive for growth and secretion at 37 degrees C. Suppressors that restored growth at 37 degrees C, but that rendered the cell cold sensitive for growth at 28 degrees C, were obtained. The suppressor mutations fall into at least seven loci, two of which (prlA and secC) have been previously implicated in protein secretion. The five remaining loci (ssaD, ssaE, ssaF, ssaG, and ssaH) have been mapped by P1 transduction and appear to define new genes in E. coli. All of the suppressor mutations allow both enhanced growth and protein secretion of the secA(Ts) mutant at 37 degrees C, but not 42 degrees C, indicating a continued requirement for SecA protein. Strains carrying solely the cold-sensitive mutations show reduced levels of certain periplasmic proteins when grown at low temperatures. In at least one case, that of maltose-binding protein, this defect is at the level of synthesis of the protein. Since mutants in any of seven genes as well as secA amber mutants halt or reduce the synthesis of an exported protein, it appears that E. coli may possess a general and complex mechanism for coupling protein synthesis and secretion.  相似文献   

9.
The Escherichia coli SecB protein is a cytosolic chaperone protein that is required for rapid export of a subset of exported proteins. To aid in elucidation of the activities of SecB that contribute to rapid export kinetics, mutations that partially suppressed the export defect caused by the absence of SecB were selected. One of these mutations improves protein export in the absence of SecB and is the result of a duplication of SecA coding sequences, leading to the synthesis of a large, in-frame fusion protein. Unexpectedly, this mutation conferred a second phenotype. The secA mutation exacerbated the defective protein export caused by point mutations in the signal sequence of pre-maltose-binding protein. One explanation for these results is that the mutant SecA protein has sustained a duplication of its binding site(s) for exported protein precursors so that the mutant SecA is altered in its interaction with precursor molecules.  相似文献   

10.
We have examined the effects of thermosensitive mutations in secA and secY (prlA) genes on the export of proteins to the three layers of the Escherichia coli cell surface. After several hours at the nonpermissive temperature, the export of two major outer membrane proteins, lipoprotein and OmpA, is delayed, then essentially blocked, in either a secA or secY strain. These mutations also have a strong effect on the export of several proteins, such as maltose binding protein, to the periplasm, though the export of many periplasmic proteins is not affected. secA and secY block the assembly of leader peptidase, which is made without a leader sequence, into the inner membrane. However, the membrane assembly of M13 coat protein (an inner membrane protein made with an amino-terminal leader sequence) is not affected. Thus, the requirement for sec function for export does not correlate with the presence or absence of leader peptide or with a particular subcellular compartment, but rather is specific to each particular protein.  相似文献   

11.
The Tsr protein of Escherichia coli is a chemosensory transducer that mediates taxis toward serine and away from certain repellents. Like other bacterial transducers, Tsr spans the cytoplasmic membrane twice, forming a periplasmic domain of about 150 amino acids and a cytoplasmic domain of about 300 amino acids. The 32 N-terminal amino acids of Tsr resemble the consensus signal sequence of secreted proteins, but they are not removed from the mature protein. To investigate the function of this N-terminal sequence in the assembly process, we isolated translational fusions between tsr and the phoA and lacZ genes, which code for the periplasmic enzyme alkaline phosphatase and the cytoplasmic enzyme beta-galactosidase, respectively. All tsr-phoA fusions isolated code for proteins whose fusion joints are within the periplasmic loop of Tsr, and all of these hybrid proteins have high alkaline phosphatase activity. The most N-terminal fusion joint is at amino acid 19 of Tsr. Tsr-lacZ fusions were found throughout the tsr gene. The beta-galactosidase activity of the LacZ-fusion proteins varies greatly, depending on the location of the fusion joint. Fusions with low activity have fusion joints within the periplasmic loop of Tsr. The expression of these fusions is most likely reduced at the level of translation. In addition, one of these fusions markedly reduces the export and processing of the periplasmic maltose-binding protein and the outer membrane protein OmpA, but not of intact PhoA or of the outer membrane protein LamB. A temperature-sensitive secA mutation, causing defective protein secretion, stops expression of new alkaline phosphatase activity coded by a tsr-phoA fusion upon shifting to the nonpermissive temperature. The same secA mutation, even at the permissive temperature, increases the activity and the level of expression of LacZ fused to the periplasmic loop of Tsr relative to a secA+ strain. We conclude that the assembly of Tsr into the cytoplasmic membrane is mediated by the machinery responsible for the secretion of a subset of periplasmic and outer membrane proteins. Moreover, assembly of the Tsr protein seems to be closely coupled to its synthesis.  相似文献   

12.
We have followed the synthesis and secretion of a number of periplasmic and outer membrane proteins in three strains of Escherichia coli, a secA amber mutant, a secA temperature-sensitive mutant, and a strain that blocks protein secretion due to a high level of expression of an export-defective hybrid protein between maltose-binding protein and beta-galactosidase (MalE-LacZ). Our results show that after several hours under nonpermissive conditions the specificity and extent of the export blocks in the secA temperature-sensitive mutant and the strain producing the MalE-LacZ hybrid protein are identical, affecting at least four major outer membrane proteins and most but not all periplasmic proteins. The secA gene product, therefore, appears to be an essential component of the major export pathway in E. coli which is used by many envelope proteins independent of whether they are cotranslationally or post-translationally secreted. In contrast, the synthesis of only a subset of these envelope proteins is reduced in the secA amber mutant after shift to the nonpermissive condition. These results indicate that the SecA protein serves roles both in the synthesis and the secretion of certain cell envelope proteins.  相似文献   

13.
TnphoA insertions in the first gene of the Escherichia coli secA operon, gene X, were isolated and analyzed. Studies of the Gene X-PhoA fusion proteins showed that gene X encodes a secretory protein, since the fusion proteins possessed normal alkaline phosphatase activity and a substantial portion of this activity was found in the periplasm. In addition, the Gene X-PhoA fusion proteins were initially synthesized with a cleavable signal peptide. A gene X::TnphoA insertion was used to construct a strain containing a disrupted chromosomal copy of gene X. Analysis of this strain indicated that gene X is nonessential for cell growth and viability and does not appear to play an essential role in the process of protein export.  相似文献   

14.
Membrane biogenesis in Escherichia coli: effects of a secA mutation   总被引:4,自引:0,他引:4  
In Escherichia coli K-12, temperature-sensitive mutations in the secA gene have been shown to interfere with protein export. Here we show that the effect of a secA mutation is strongly pleiotropic on membrane biogenesis. Freeze-fracture experiments as well as cryosections of the cells revealed the appearance of intracytoplasmic membranes upon induction of the SecA phenotype. The permeability barrier of the outer membrane to detergents was lost. Two alterations in the outer membrane may be responsible for this effect, namely the reduced amounts of outer membrane proteins, or the reduction of the length of the core oligosaccharide of the lipopolysaccharide, which was observed in phage-sensitivity experiments and by SDS-polyacrylamide gel electrophoresis. Phospholipid analysis of the secA mutant, grown under restrictive conditions, revealed a lower content of the negatively charged phospholipid cardiolipin and of 18:1 fatty acid compared to those of the parental strain grown under identical conditions. These results are in line with the hypothesis that protein export and lipid metabolism are coupled.  相似文献   

15.
The Escherichia coli secA gene, whose translation is responsive to the proficiency of protein export within the cell, is the second gene in a three-gene operon and is flanked by gene X and mutT. By using gene fusion and oligonucleotide-directed mutagenesis techniques, we have localized this translationally regulated site to a region at the end of gene X and the beginning of secA. This region has been shown to bind SecA protein in vitro. These studies open the way for a direct investigation of the mechanism of secA regulation and its coupling to the protein secretion capability of the cell.  相似文献   

16.
We describe the identification and characterization of a second secA gene in Listeria monocytogenes. This gene, termed secA2, is involved in smooth-rough phenotypic variation and secA2 expression contributes to bacterial virulence. Spontaneous rough (R-) variants of L. monocytogenes grow in chains and form rough colonies on solid media. A subset of R-variants, classified here as type I, also shows reduced secretion of an autolysin, p60. We find that disruptions and in frame deletions in secA2 confer phenotypes identical to those of spontaneous type I R-variants. Additionally, the secA2 genes from two spontaneous type I R-variants encoded truncated SecA2 proteins. Mutations were not found in the secA2 genes from the remaining five independent R-variants, four of which showed a distinct (type II) rough morphology and secreted wild-type levels of p60. Expression of an epitope-tagged SecA2 in the DeltasecA2 strain and a spontaneous R-variant restored normal cell septation and smooth colony morphology. These data suggest that mutations in both secA2 and other genes contribute to smooth-rough phase variation in L. monocytogenes. Expression of the full-length SecA2 also promotes secretion of p60 and a set of additional L. monocytogenes proteins. We hypothesize that SecA2-dependent protein secretion plays a role in the colonization of environmental and host surfaces.  相似文献   

17.
18.
Plasmids have been constructed in which the Escherichia coli alkaline phosphatase promoter and signal sequence have been fused to the staphylococcal nuclease gene to promote the high-level expression and secretion of this gene product in E. coli. We determined that the first amino acid residue after the signal sequence can determine whether this protein was processed and exported to the periplasmic space. Fractionation and protease accessibility studies were used to show that the export-defective, nuclease precursor is internal to the cytoplasmic membrane barrier of the cell. Furthermore, this export defect was suppressed in a strain containing a prlA mutation. These findings are novel in that this region of the polypeptide chain has been implicated in processing but not export and that prlA mutations have not been previously known to suppress such defects.  相似文献   

19.
The Escherichia coli Tat system mediates Sec-independent export of protein precursors bearing twin arginine signal peptides. Genes known to be involved in this process include tatA, tatB, and tatC that form an operon with a fourth gene, tatD. The tatD gene product has two homologues in E. coli coded by the unlinked ycfH and yjjV genes. An E. coli strain with in-frame chromosomal deletions in all three of tatD, ycfH, and yjjV exhibits no significant defect in the cellular location of five cofactor-containing enzymes that are synthesized with twin arginine signal peptides. Neither these mutations nor overproduction of the TatD protein cause any discernible effect on the export kinetics of an additional E. coli Tat pathway substrate. It is concluded that proteins of the TatD family have no obligate involvement in protein export by the Tat system. TatD is shown to be a cytoplasmic protein. TatD binds to immobilized Ni(2+) or Zn(2+) affinity columns and exhibits magnesium-dependent DNase activity. Features of the tatA operon that may control TatD expression are discussed.  相似文献   

20.
In Escherichia coli, the efficient export of maltose-binding protein (MBP) is dependent on the chaperone SecB, whereas export of ribose-binding protein (RBP) is SecB independent. To localize the regions of MBP involved in interaction with SecB, hybrids between MBP and RBP in SecB mutant cells were constructed and analyzed. One hybrid consisted of the signal peptide and first third of the mature moiety of MBP, followed by the C-terminal two-thirds of RBP (MBP-RBP112). This hybrid was dependent upon SecB for its efficient export and exhibited a strong export defect in secA mutant cells. A hybrid between RBP and MBP with the same fusion point was also constructed (RBP-MBP116). The RBP-MBP116 hybrid remained SecB independent and only exhibited a partial export defect in secA mutant cells. In addition, MBP species with specific alterations in the early mature region were less dependent on SecB for their efficient export. The export of these altered MBP species was also less affected in secA mutant cells and in cells treated with sodium azide. These results present additional evidence for the targeting role of SecB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号