首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Prolongation of larval life in Drosophila melanogaster, by growing wild type larvae at lower temperature, or in animals carrying the X-linked mutation giant is known to result in a greater proportion of nuclei in salivary glands showing the highest level of polyteny. We have examined by autoradiography the patterns of 3H-thymidine incorporation during 10 min or 1 min pulses in salivary gland polytene chromosomes of older giant larvae and of wild type late third instar larvae of D. melanogaster grown since hatching either at 24 ° C or at 10 ° C. The various patterns of labelling and their relative frequencies are generally similar in glands from the warm-(24 ° C) or cold (10 ° C)-reared wild type larvae, except the interband (IB) labelling patterns which are very frequent in the later group but rare in the former. The IB type labelled nuclei in cold-reared wild type larvae show labelling ranging from only a few puffs/interbands labelled to nearly all puffs/interbands labelled. In warm-reared wild type larvae, very low labelled IB patterns are not seen. In older giant larvae, the 3H-thymidine labelling patterns are in most respects similar to those seen in cold-reared wild type larvae. In 1 min pulsed preparations from all larvae, the IB patterns are relatively more frequent than in corresponding 10 min pulsed preparations. No nuclei with the continuous (2C or 3C) type of labelling pattern, with all bands and interbands/puffs labelled, were seen in 1 min pulsed preparations from cold-reared wild type or in giant larvae, and only a few nuclei in 1 min pulsed preparations from warm-reared wild type larvae exhibited the 2C labelling pattern. Analysis of silver grain density on specific late replicating sites in late discontinuous (1D) type labelled nuclei suggests that the rate of DNA synthesis per chromosomal site is not different at the two developmental temperatures. It is suggested that correlated with the prolongation of larval life under cold-rearing conditions or in giant larvae, the polytene replication cycles are also prolonged. It is further suggested that the polytene S-period in these larvae is longer due to a considerable asynchrony in the initiation and termination of replication of different sites during a replication cycle.  相似文献   

3.
A simple fluorescence technique is decribed to localise in situ the non-replicating alpha heterochromatin in the chromocentre region of Drosophila nasuta polytene nuclei. After incorporating 5-bromodeoxyuridine in larval salivary gland cells for one or two cycles of replication, the polytene nuclei are examined for Hoechst 33258 flourescence at pH 7.O. The nonreplicating alpha heterochromatin remains brightly fluorescing as it does not incorporate any 5-bromodeoxyuridine while the rest of the replicating chromatin shows dull fluorescence due to the quenching of Hoechst 33258 fluorescence by the bromodeoxyuridine substituted DNA.  相似文献   

4.
The programmes of replication of hetero- and euchromatin regions, mitotic cell cycle and the DNA content in metaphases in brain ganglia from late third instar larvae ofDrosophila melanogaster (wild type and a tumour bearing mutant, 1(2)gl, strain) and ofDrosophila nasuta were examined by autoradiography of [3H]thymidine labelled (continuous or pulse) cells and by cytophotometry, respectively. Brain ganglia labelled continuously with [3H]thymidine for 24 hin vitro showed a significantly high proportion of cells with incorporation of radioactivity restricted to heterochromatin only. Pulse labelling of brain ganglia from larvae ofDrosophila melanogaster andDrosophila nasuta followed by chase for different time intervals showed that (i) the frequency of labelled metaphases was more than 50% within 15 to 30 min of chase and remained higher than 50% in nearly all the chase samples till 24 h, (ii) euchromatin labelled metaphases appeared with a low frequency within 1 to 4 h chase period but the heterochromatin labelled metaphases continued to be more common in the later chase samples also, (iii) single chromatid labelled second cycle metaphases were seen within 1 to 4 h after the pulse, but their frequency did not increase in the later samples. Cytophotometry of feulgen-DNA and Hoechst 33258 stained metaphases in late third instar larval brain ganglia revealed a greater variation in the DNA content of individual metaphases, although the means were close to the expected 4 C content. It appears that in relation to the known asymmetric cell divisions of neuroblast and other neural cells, the mitotically active cells in brain ganglia comprise a heterogenous population with widely varying lengths of the different phases of cell cycle; some of them may not cycle regularly and may possibly have a discontinuous S-phase.  相似文献   

5.
A comparative study of fluorescence patterns of heterochromatin in mitotic and polytene chromosomes of seven species belonging to 3 subgroups melanogaster sub-group: D. melanogaster and D. simulans; montium sub-group: D. kikkawai and D. jambulina; ananassae sub-group: D. ananassae, D. malerkotliana and D. bipectinata) of the melanogaster species group of Drosophila (Sophophora) has been made. Hoechst 33258 (H) fluorescence patterns of mitotic chromosomes reveal differences correlated to the taxonomic groupings of these species. The melanogaster sub-group species have H-bright regions on heterochromatin of all chromosomes; the montium subgroup species have H-bright regions mainly on the 4th and Y-chromosomes; in the ananassae sub-group, while D. ananassae chromosomes do not show any H-bright regions, D. malerkotliana and D. bipectinata have small H-bright segments only on their 4th chromosomes. The H-and quinacrine mustard (QM) fluorescence patterns of larval salivary gland polytene chromocentre in these species, however, do not show the same taxonomic correlation. While D. ananassae and D. kikkawai polytene nuclei lack any H-or QMbright region in the chromocentre, the remaining species have prominent H-and/or QM-bright region(s). In D. jambulina, the QM-bright regions are generally bigger than H-bright regions, while in D. malerkotliana and D. bipectinata the situation is reversed. Actinomycin D counterstaining prior to H-staining of polytene preparations of each species confirms that the H-bright region/s in the chromocentre are composed of A-T rich sequences. In vivo labelling of salivary gland polytene nuclei with 5-bromodeoxyuridine for 24 to 48 h and subsequent H-staining reveals that in all the species, the H-bright regions do not replicate in 3rd instar stage and presumably represent the non-replicating alpha heterochromatin. Significantly, in all the species (excepting D. kikkawai and D. ananassae), the size, location and the number of H-and/or QM-bright regions were seen to vary in different polytene nuclei in the same gland. It seems that the organization and the extent of under-replication of alpha heterochromatin varies in different polytene nuclei. Present studies also show that even closely related species differ in the content and organization of H-bright heterochromatin. The 81 F band at the base of 3 R in D. melanogaster, but not in D. simulans, appears to contain non-replicating H-bright sequences in addition to replicating chromatin.  相似文献   

6.
It is widely known that the bulk of the pericentromeric heterochromatin (-heterochromatin) does not replicate during polytenization in Drosophila. However, a recent DNA-Feulgen cytophotometric study (Dennhöfer 1982a) has claimed equal polytenization of all heterochromatin regions. To re-examine this issue, the amount of Hoechst 33258-bright heterochromatin in non-polytene and polytene nuclei in salivary glands and Malpighian tubules of late third instar larvae of D. nasuta has been compared by cytofluorometry. Since the amount of Hoechst 33258-bright heterochromatin is similar in non-polytene and polytene nuclei in spite of the latter having an enormously high euchromatin DNA content, it is concluded that the -heterochromatin does not replicate during polytenization. The present results further indicate that in the polytene nuclei of Malpighian tubules the -heterochromatin remains at the 2C level whereas in salivary gland polytene nuclei it varies between the 2C and 4C levels.I would like to dedicate this paper to the memory of E. Heitz to commemorate 50 years of - and -heterochromatin  相似文献   

7.
Both two-wavelength microspectrophotometry of Feulgen-stained whole nuclei and autoradiography of H3-thymidine incorporation by giant salivary chromosomes in Drosophila virilis demonstrate a net decrease in the relative rate of salivary DNA synthesis during the late third instar and prepupal stages of development. Amounts of DNA-Feulgen per nucleus were distributed into several classes, the means of which closely approximated values projected as geometric multiples of the basic somatic DNA level estimated from hemocyte nuclei of the same larvae. Comparison of DNA polytene class frequencies showed no statistical difference between male larvae of different development stages, although female prepupae showed a greater frequency of nuclei in higher polytene classes when compared to male prepupae of the same age. Comparison of chromosomal H3-thymidine incorporation with previously described H3-histidine incorporation suggests that the amino acid labeling, which reaches a maximum during the prepupal period, has a physiological significance distinct from chromosomal endoreplication.  相似文献   

8.
The temporal order of replication of specific sites in polytene chromosomes from salivary glands and gastric caeca of Drosophila nasuta larvae was compared using 3H-thymidine autoradiography. Labelling of different cytological regions in segments of chromosome 2R (section 47 A to 49 C) and chromosome 3 (section 80 A to 82 C) was examined in detail in nuclei showing late S-period labelling (2 D and 1D types) in both cell types. The different labelling sites (22 on the 2R segment and 38 on the chromosome 3 segment) are cytologically similar in the two cell types. However, there are profound differences in the labelling frequencies of certain sites in polytene nuclei from salivary glands and gastric caeca during the late S-phase. This suggests that even though a comparable number of chromosomal replicating units operates in the two polytene cell types, the temporal order of completion of replication differs.  相似文献   

9.
In situ digestion of metaphase and polytene chromosomes and of interphase nuclei in different cell types ofDrosophila nasuta with restriction enzymes revealed that enzymes like AluI, EcoRI, HaeIII, Sau3a and SinI did not affect Giemsa-stainability of heterochromatin while that of euchromatin was significantly reduced; TaqI and SalI digested both heterochromatin and euchromatin in mitotic chromosomes. Digestion of genomic DNA with AluI, EcoRI, HaeIII, Sau3a and KpnI left a 23 kb DNA band undigested in agarose gels while withTaqI, no such undigested band was seen. TheAluI resistant 23 kb DNA hybridized insitu specifically with the heterochromatic chromocentre. It appears that the digestibility of heterochromatin region in genome ofDrosophila nasuta with the tested restriction enzymes is dependent on the availability of their recognition sites.  相似文献   

10.
The formation of alpha and beta heterochromatin in chromosomes of Drosophila melanogaster was studied in salivary glands (SGs) and pseudonurse cells (PNCs). In SGs of X0, XY, XYY, XX and XXY individuals the amounts of alpha heterochromatin were similar, suggesting that the Y chromosome does not substantially contribute to alpha heterochromatin formation. Pericentric heterochromatin developed a linear sequence of blocks in PNCs, showing morphology of both alpha and beta heterochromatin. In situ hybridization with Rsp sequences (H o clone) revealed that the most proximal heterochromatic segment of the mitotic map (region h39) formed a polytenized block in PNCs. Dot analysis showed that the clone had a hybridization rate with PNC-DNA very close to that with DNA from mainly diploid head cells, whereas the homologous SG-DNA was dramatically underrepresented. A similar increase of DNA representation in PNC was found for AAGAC satellite DNA. The mitotic region h44 was found not to polytenize in the SG chromosome, whereas in PNC chromosome 2 this region was partly polytenized and presented as an array of several blocks of alpha and beta heterochromatin. The mapping of deficiencies with proximal breakpoints in the most distal heterochromatin segments h35 in arm 2L and h46 in 2R showed that the mitotic eu-heterochromatin transitions were located in SG chromosomes distally to the polytene 40E and 41C regions, respectively. Thus, the transition zones between mitotic hetero- and euchromatin are located in banded polytene euchromatin. A scheme for dynamic organization of pericentric heterochromatin in nuclei with polytene chromosomes is proposed. Received: 17 November 1995; in revised form: 10 April 1996 / Accepted: 18 September 1996  相似文献   

11.
SATELLITE DNAs are heavily concentrated in the centromeric heterochromatin of metaphase chromosomes1–3. Satellites and other repeated polynucleotide sequences are under-represented in the polytene, salivary gland cells of Drosophila melanogaster, D. virilis and D. hydei larvae but are fully represented in diploid cells from embryos and imaginal disks4–6. This under-representation in polytene cells stems from the association of heterochromatin in the chromocentre and the progressive under-replication of the chromocentre during larval development7,8.  相似文献   

12.
Cytophotometric DNA determinations in Feulgen stained mitotic diploid chromosome sets of neuroblasts from larvae of Drosophila melanogaster stocks, which possess different karyotypes, show significant differences between the 4C values, caused by an additional or deficient X- and Y-chromosome depending on the karyotype. The ranges of polytenic DNA size classes are theoretically expected to be doublings of the corresponding 4C mean value of each karyotype. The extinction integral data of nuclei with completely duplicated 4C quantities exclusively fall into the range of the expected size classes. Not all data falling into the range of a size class necessarily originate from duplicated nuclei, because the limits of the DNA size classes cannot be determined by measurements, but must be estimated from the confidence limits of the corresponding 4C mean value. The validity of the mitotic 4C values of the karyotypes X/X and X/Y is tested using data from non-labeled interphase nuclei, where extinction integral data accumulate in two groups. The larger values (= G2-nuclei) confirm the 4C values of mitotic chromosome sets, and the lower values (= G1-nuclei) are just half of these. Extinction integrals from individual, 3H-thymidine non-incorporating polytene salivary gland nuclei accumulate in distinct, non-overlapping groups which are always complete doublings of the preceding smaller group. In each karyotype, the most frequent data of each group are in accord with the 4C doublings. The data from labeled nuclei alternate with those from unlabeled nuclei. The measured DNA values of individual polytene nuclei that did not incorporate any 3H-thymidine, demonstrate that all chromosomal DNA replicates completely during polytenization of the chromosomes in the larval salivary gland nuclei of Drosophila melanogaster. Specifically, this would mean that the heterochromatic Y-chromosome replicates as well as the partially heterochromatic X-chromosome along with the autosomes. There is no indication of underreplicating heterochromatin.  相似文献   

13.
Polytene chromosome sections 63E1-6 of 3L in Drosophila melanogaster were studied by 3H-uridine and 3H-thymidine autoradiography in late third instar larvae and prepupae. In late third instar larvae 63E does not incorporate 3H-uridine. In prepupae, however, a large puff is formed in 63E which is most active in RNA synthesis. — 3H-thymidine labeling patterns and frequencies of regions 61A-64C were analysed and the non-puffed and puffed 63E sections were compared with reference sections. Both in late third instar larvae and in prepupae 63E shows late replication behavior. It is concluded that the decondensation of chromosome bands does not necessarily entail earlier and/or faster DNA replication.  相似文献   

14.
We have compared the temporal order of completion of replication of specific sites of X and 2nd chromosomes in two polytene cell types of D. hydei by examining the patterns of autoradiographic labelling in 3H-thymidine pulse (10 min) labelled salivary glands and gastric ceaca of mid 3rd instar larvae. Present results are in agreement with our earlier finding in D. nasuta (Lakhotia & Tiwari, 1984, Chromosoma, 89: 212–217 that in spites of a general similarity in the cytological identity of independently replicating sites in the two polytene cell types, their temporal programme of replication varies in different tissues. This may be related to differential gene activity patterns and polytene organization in the different cell types.  相似文献   

15.
In otu mutants of Drosophila melanogaster ovarian tumours develop because of the high mitotic activity of the mutant cystocytes; the latter are normally endopolyploid. In certain alleles of otu, however, a varying proportion of the mutant ovarian cystocytes undergo polyteny. Mutant cystocytes with polytene chromosomes are termed pseudonurse cells (PNC). Polytene chromosome morphology and banding patterns in PNC of otu 1/otu3 flies were cytologically analysed. Extensive variability was noted in the quality of the banding pattern of the PNC chromosomes which ranged from highly condensed (condensed PNC chromosomes) to those with a banding pattern (banded PNC chromosomes) similar to that in larval salivary gland cells (SGC). Both the condensed and banded PNC chromosomes frequently enter into a diffuse state characterised by weakened synapsis of the polytene chromatids and alterations in their banding pattern (diffuse PNC chromosomes). Analysis of DNA synthesis patterns in the various morphological forms of PNC polytene chromosomes by 3H-thymidine autoradiography revealed a basic similarity to the pattern seen in polytene nuclei of larval SGC. Independently replicating sites, however, could be unambiguously identified only in banded PNC chromosomes. Comparison of late replicating sites in such PNC chromosomes with those of larval SGC showed a remarkable similarity in the two cell types. These results suggest a close correlation between the polytene chromosome banding pattern and its replicative organization.  相似文献   

16.
It is reported that chromatin can be prepared from highly purified polytene nuclei from the salivary glands of third instar larvae of Drosophila hydei; such chromatin differs from that of diploid nuclei mainly by deficiencies in certain nonhistone chromosomal proteins. It is suggested that these proteins are important components of constitutive heterochromatin, which is severely underrepresented in polytene chromosomes. Chromosome morphology, including the pattern of induced puffs, is maintained throughout the mass isolation of glands and sucrose gradient purification of nuclei, as indicated by studies on temperature-shocked and control larvae. No significant alteration in the chromosomal proteins following puff induction by heat shock could be detected on analysis of the isolated protein fractions by disc gel electrophoresis. More sensitive techniques must be developed to study the apparent rearrangement or accumulation of protein at puff sites, and to elucidate the role of this protein in gene activation.  相似文献   

17.
Embryonic and third instar larval brain cells of D. nasuta were cultured in vitro in the presence of Hoechst 33258 (H) and H + 5-bromodeoxyuridine (BUdR) for periods varying from 2 to 24 h at 24 °C. Air-dried chromosome preparations were made with and without hypotonic pretreatment and stained with Giemsa. Metaphase chromosomes from H-treated (2 h) embryonic preparations show typical inhibition of condensation of the A-T-rich heterochromatin as in mouse. Presence of BUdR with H causes inhibition of condensation in fewer embryonic metaphase cells, but in the affected metaphases the degree of inhibition is more severe. In larval brains, however, even a 24 h H or H + BUdR treatment does not cause any significant inhibition of heterochromatin condensation. It is suggested that the differences in H effect on metaphase chromosomes of embryos and larval brains is related to differences in chromosome organization in the two cell types. Exposure of H-treated embryonic as well as larval brain cells to a hypotonic salt solution prior to fixation causes a ‘supercondensation’ of the heterochromatic chromocentre in most interphase nuclei. Presence of BUdR along with H reduces the frequency of cells showing such ‘supercondensed’ chromocentre. The euchromatin region in H-treated interphase nuclei is, on the other hand, slightly more diffuse than in control nuclei. Apparently, H-binding to DNA affects the nucleoprotein organization in hetero- and euchromatic regions of interphase nuclei in specific ways.  相似文献   

18.
19.
Salivary-gland nuclei ofDrosophila hydei were pulse-labeledin vitro with3H-thymidine and studied autoradiographically in squash preparations. The distribution of radioactive label over the length of the polytene chromosomes was discontinuous in most of the labeled nuclei; in some nuclei the pattern of incorporation was continuous. Comparison of the various labeling patterns of homologous chromosome regions in different nuclei showed that specific replicating units are replicated in a specific order. By combining autoradiography with cytophotometry of Feulgen-stained chromosomes, it was possible to correlate thymidine labeling of specific bands with their DNA content. The resulting data indicate that during the S-period many or perhaps all of the replicating units in a salivary-gland nucleus start DNA synthesis simultaneously but complete it at different times. Furthermore, the data support the hypothesis that the chromomere is a unit of replication or replicon. The DNA content of haploid chromomeres was found to be about 5×10-4 pg for the largest bands inDrosophila hydei. From the results of H3-thymidine autoradiography and Feulgen-cytophotometry on neuroblast and anlage nuclei it was concluded that during growth of the polytenic nucleus heterochromatin is for the most part excluded from duplication. The results of DNA measurements in interbands of polytene chromosomes do not agree with a multistrand structure for the haploid chromatid. A chromosome model is proposed which is in accordance with the reported results and with current views concerning the replicative organization of chromosomes.  相似文献   

20.
Analysis of 3H-thymidine autoradiograms of late third instar larval salivary glands of Drosophila pseudoobscura revealed a unique example of asynchrony of replication in the autosome complement. The two autosomal arms, 2 and 3, show similar labeling pattern during the initial phases, DD to 3C, and thereafter, the chromosome 3 has fewer labeled sites than chromosome 2 until the most terminal pattern, 1D. Detailed sitewise analysis of 3H-thymidine labeling shows that while nearly 54% of the sites examined in chromosome 2 have a labeling frequency greater than 50%, only 13% of all sites in chromosome 3 have labeling frequency at that range. The number of labeled sites on chromosome 3 plotted against that on chromosome 2 shows a hyperbolic profile rather than a linear relationship. The silver grain ratio of the 2nd to 3rd increases from 1.5 to 3.1 through different stages of the cycle. These results suggest that both chromosomes start replication simultaneously but the third chromosome appears to complete the replication earlier than the second. These data open up the possibility of separate control mechanisms for the initiation and termination of DNA replication in polytene chromosomes.This paper is dedicated to the memory of the late Prof. H. D. Berendes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号